Publications
My publications on Google Scholar and DBLP.
All publications in one bibtex file.
Journal Papers
- Franc, V., Fikar, O., Bartos, K., Sofka, M., 2018. Learning data discretization via convex optimization. Machine Learning 333–355.
- Sofka, M., Zhang, J., Good, S., Zhou, S.K., Comaniciu, D., 2014. Automatic Detection and Measurement of Structures in Fetal Head Ultrasound Volumes Using Sequential Estimation and Integrated Detection Network (IDN). IEEE Transactions on Medical Imaging 33, 1054–1070.
- Lin, K.-S., Tsai, C.-L., Tsai, C.-H., Sofka, M., Chen, S.-J., Lin, W.-Y., 2012. Retinal Vascular Tree Reconstruction With Anatomical Realism. IEEE Transactions on Biomedical Engineering 59, 3337–3347.
- Sofka, M., Ralovich, K., Zhang, J., Zhou, S.K., Comaniciu, D., 2012. Progressive Data Transmission for Anatomical Landmark Detection in a Cloud. Methods of Information in Medicine 51, 268–278.
- Sofka, M., V. Stewart, C., 2010. Location Registration and Recognition (LRR) for Serial Analysis of Nodules in Lung CT Scans. Medical Image Analysis 14, 407–428.
- Tsai, C.-L., Madore, B., Leotta, M., Sofka, M., Yang, G., Majerovics, A., L. Tanenbaum, H., V. Stewart, C., Roysam, B., 2008. Automated Retinal Image Analysis over the Internet. IEEE Transactions on Information Technology in Biomedicine 12, 480–487.
- Yang, G., V. Stewart, C., Sofka, M., Tsai, C.-L., 2007. Registration of Challenging Image Pairs: Initialization, Estimation, and Decision. Pattern Analysis and Machine Intelligence 23, 1973–1989.
- Sofka, M., V. Stewart, C., 2006. Retinal Vessel Extraction Using Multiscale Matched Filters, Confidence and Edge Measures. IEEE Transactions on Medical Imaging 25, 1531–1546.
Book Chapters
- Sofka, M., 2015. Integrated Detection Network for Multiple Object Recognition. In: Zhou, S.K. (Ed.), Medical Image Recognition, Segmentation and Parsing. Elsevier.
- Birkbeck, N., Sofka, M., Kohlberger, T., Zhang, J., Wetzl, J., Kaftan, J., Zhou, S.K., 2014. Robust Segmentation of Challenging Lungs in CT using Multi-Stage Learning and Level Set Optimization. In: Suzuki, K. (Ed.), Computational Intelligence in Biomedical Imaging. Springer New York, pp. 185–208.
Unpublished Manuscripts
- Machlica, L., Sofka, M., Bartos, K., 2017. Learning detectors of malware behavior for intrusion detection in network traffic. ArXiv.
Conference Papers
- Schlemper, J., Salehi, S.S.M., Lazarus, C., Dyvorne, H., O’Halloran, R., de Zwart, N., Sacolick, L., By, S., M. Stein, J., Rueckert, D., Sofka, M., Kundu, P., 2020. Deep Learning MRI Reconstruction in Application to Point-of-Care MRI. In: Proceedings of the International Society for Magnetic Resonance in Medicine. Virtual Conference.
- Schlemper, J., Salehi, S.S.M., Kundu, P., Lazarus, C., Dyvorne, H., Sofka, M., 2019. Nonuniform Variational Network: Deep Learning for Accelerated Nonuniform MR Image Reconstruction. In: Proceedings of the 22th International Conference On Medical Image Computing and Computer-Assisted Intervention (MICCAI 2019). Shenzhen, China.
- Fausto Milletari, V.B., Sofka, M., 2019. Straight to the point: reinforcement learning for user guidance in ultrasound. In: Proceedings of the MICCAI 2019 Workshop on Smart UltraSound Imaging. Shenzhen, China.
- Milletari, F., Rothberg, A., Jia, J., Sofka, M., 2017. Integrating statistical prior knowledge into convolutional neural networks. In: Proceedings of the 20th International Conference On Medical Image Computing and Computer-Assisted Intervention (MICCAI 2017). Quebec City, Quebec, Canada.
- Sofka, M., Milletari, F., Jia, J., Rothberg, A., 2017. Fully convolutional regression network for accurate detection of measurement points. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support (DLMIA). Quebec City, Quebec, Canada.
- Bartos, K., Sofka, M., Franc, V., 2016. Optimized Invariant Representation of Network Traffic for Detecting Unseen Malware Variants. In: USENIX Security Symposium. Austin, TX, USA.
- Bartos, K., Sofka, M., Franc, V., 2016. Learning Invariant Representation for Malicious Network Traffic Detection. In: Proceedings of the European Conference on Artificial Intelligence. Hague, Holland.
- Franc, V., Sofka, M., Bartos, K., 2015. Learning detector of malicious network traffic from weak labels. In: Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD). Porto, Portugal, pp. 85–99.
- Bartos, K., Sofka, M., 2015. Robust representation of network traffic for detecting malware variations. In: Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD). Porto, Portugal, pp. 116–132.
- Birkbeck, N., Kohlberger, T., Zhang, J., Sofka, M., Kaftan, J., Comaniciu, D., Zhou, S.K., 2014. Lung Segmentation from CT with Severe Pathologies Using Anatomical Constraints. In: Proceedings of the 17th International Conference On Medical Image Computing and Computer-Assisted Intervention (MICCAI 2014). Boston, MA, USA.
- Wu, D., Sofka, M., Birkbeck, N., Zhou, S.K., 2014. Segmentation of Multiple Knee Bones from CT for Orthopedic Knee Surgery Planning. In: Proceedings of the 17th International Conference On Medical Image Computing and Computer-Assisted Intervention (MICCAI 2014). Boston, MA, USA.
- El-Zehiry, N., Jolly, M.-P., Sofka, M., 2013. A Splice-Guided Data Driven Interactive Editing. In: International Symposium on Biomedical Imaging: From Nano to Macro (ISBI 2013). San Francisco, CA, USA.
- P. Harrison, A., Birkbeck, N., Sofka, M., 2013. IntellEditS: Intelligent Learning-Based Editor of Segmentations. In: Proceedings of the 16th International Conference On Medical Image Computing and Computer-Assisted Intervention (MICCAI 2013). Nagoya, Japan.
- Park, J.H., Sofka, M., Lee, S.M., Kim, D.Y., Zhou, S.K., 2013. Automatic Nuchal Translucency Measurement from Ultrasonography. In: Proceedings of the 16th International Conference On Medical Image Computing and Computer-Assisted Intervention (MICCAI 2013). Nagoya, Japan.
- Breitenreicher, D., Sofka, M., Britzen, S., Zhou, S.K., 2013. Hierarchical Discriminative Framework for Detecting Tubular Structures in 3D Images. In: Proceedings of the 23rd International Conference On Information Processing in Medical Imaging (IPMI 2013). Asilomar, CA, USA.
- Birkbeck, N., Sofka, M., Zhou, S.K., 2011. Fast Boosting Trees for Classification, Pose Detection, and Boundary Detection on a GPU. In: Proceedings of the 7th IEEE Workshop on Embedded Computer Vision (in Conjunction with IEEE CVPR). Colorado Springs, CO.
- Sofka, M., Ralovich, K., Birkbeck, N., Zhang, J., Zhou, S.K., 2011. Integrated Detection Network (IDN) for Pose and Boundary Estimation in Medical Images. In: Proceedings of the 8th International Symposium On Biomedical Imaging (ISBI 2011). Chicago, IL.
- Sofka, M., Wetzl, J., Birkbeck, N., Zhang, J., Kohlberger, T., Kaftan, J., Declerck, J., Zhou, S.K., 2011. Multi-stage Learning for Robust Lung Segmentation in Challenging CT Volumes. In: Proceedings of the 14th International Conference On Medical Image Computing and Computer-Assisted Intervention (MICCAI 2011). Toronto, Canada.
- Sofka, M., Wu, D., Suehling, M., Liu, D., Tietjen, C., Soza, G., Zhou, S.K., 2011. Automatic Contrast Phase Estimation in CT Volumes. In: Proceedings of the 14th International Conference On Medical Image Computing and Computer-Assisted Intervention (MICCAI 2011). Toronto, Canada.
- Kohlberger, T., Sofka, M., Zhang, J., Birkbeck, N., Wetzl, J., Kaftan, J., Declerck, J., and S. Kevin Zhou, 2011. Automatic Multi-Organ Segmentation Using Learning-based Segmentation and Level Set Optimization. In: Proceedings of the 14th International Conference On Medical Image Computing and Computer-Assisted Intervention (MICCAI 2011). Toronto, Canada.
- Sofka, M., Zhang, J., Zhou, S.K., Comaniciu, D., 2010. Multiple Object Detection by Sequential Monte Carlo and Hierarchical Detection Network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco, CA, USA.
- Sofka, M., Ralovich, K., Zhang, J., Zhou, S.K., Comaniciu, D., 2010. Progressive Data Transmission for Hierarchical Detection in a Cloud. In: Proceedings of the 2nd International Workshop on High-Performance Medical Image Computing for Image-Assisted Clinical Intervention and Decision-Making (HP-MICCAI 2010). Bejing, China.
- Lin, K.-S., Tsai, C.-L., Sofka, M., Tsai, C.-H., Chen, S.-J., Lin, W.-Y., 2009. Vascular Tree Construction with Anatomical Realism for Retinal Images. In: Bioinformatics and BioEngineering, 2009. BIBE ’09. Ninth IEEE International Conference On. pp. 313–318.
- Sofka, M., V. Stewart, C., 2008. Location Registration and Recognition (LRR) for Longitudinal Evaluation of Corresponding Regions in CT Volumes. In: Proceedings of the 11th International Conference On Medical Image Computing and Computer-Assisted Intervention (MICCAI 2008). pp. 989–997.
- Sofka, M., Yang, G., V. Stewart, C., 2007. Simultaneous Covariance Driven Correspondence (CDC) and Transformation Estimation in the Expectation Maximization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Minneapolis, MN, USA.
- Kelman, A., Sofka, M., Stewart, C.V., 2007. Keypoint Descriptors for Matching Across Multiple Image Modalities and Non-linear Intensity Variations. In: Proceedings of the IEEE Computer Vision and Pattern Recognition Workshop on Image Registration and Fusion. Minneapolis, MN, USA.
- Tsai, C.-L., Stewart, C.V., Perera, A., Lee, Y.-L., Yang, G., Sofka, M., 2006. A Correspondence-Based Software Toolkit for Image Registration. In: Proceedings of the IEEE International Conference On Systems, Man, and Cybernetics. Taipei, Taiwan, pp. 3972–3977.
- Yang, G., Stewart, C.V., Sofka, M., Tsai, C.-L., 2006. Automatic robust image registration system: initialization, estimation, and decision. In: Proceedings of the IEEE International Conference on Computer Vision Systems. New York, NY, pp. 23–31.
- Sofka, M., Benslimane, R., Macaire, L., Rudko, M., Postaire, J.-G., 2002. Archeological mosaic image indexing by color-based segmentation and skeleton extraction. In: Proceedings of the Second IEEE International Symposium on Signal Processing and Information Technology. Marrakesh, Marocco, pp. 327–331.
Granted
USPTO Granted
- Machlica, L., & Sofka, M. (2019). Hierarchical Feature Extraction for Malware Classification in Network Traffic. US10187401.
- Sofka, M., M. Rothberg, J., L. Charvat, G., & S. Ralston, T. (2019). Systems and methods for automated detection in magnetic resonance images. US10416264.
- Sofka, M. (2019). Automatic detection of network threats based on modeling sequential behavior in network traffic. US10154051.
- Machlica, L., & Sofka, M. (2019). Joint anomaly detection across IOT devices. US10193913.
- Havelka, J., Sofka, M., & Rehak, M. (2019). Detection of malicious domains using recurring patterns in domain names. US10178107.
- Franc, V., Bartos, K., & Sofka, M. (2019). Refined learning data representation for classifiers. US10504038.
- Jusko, J., & Sofka, M. (2019). Network Security Classification. US10382462.
- Bartos, K., & Sofka, M. (2019). Robust Representation of Network Traffic for Detecting Malware Variations. US10187412.
- Bartos, K., Sofka, M., Franc, V., & Havelka, J. (2018). Method and apparatus for aggregating indicators of compromise for use in network security. US9985982.
- Franc, V., Sofka, M., & Bartos, K. (2018). Learning Detector of Malicious Network Traffic from Weak Labels. US9923912.
- Wu, D., Birkbeck, N., Sofka, M., Liu, M., Soza, G., & Zhou, S. K. (2017). Method and system for automatic pelvis unfolding from 3D computed tomography images. US9542741.
- Sofka, M., Machlica, L., Bartos, K., & McGrew, D. (2017). Identifying Malware Communications with DGA Generated Domains by Discriminative Learning. US9781139.
- Sofka, M., Liu, M., Wu, D., & Zhou, S. K. (2017). Method and System for Bone Segmentation and Landmark Detection for Joint Replacement Surgery. US9646229.
- Bartos, K., & Sofka, M. (2016). Identifying Threats Based on Hierarchical Classification. US9462008.
- Wu, D., Birkbeck, N., Sofka, M., Liu, M., & Zhou, S. K. (2016). Multi-Bone Segmentation for 3D Computed Tomography. US9495752.
- Bartos, K., Rehak, M., & Sofka, M. (2016). Global Clustering of Incidents Based on Malware Similarity and Online Trustfulness. US9432393.
- El-Zehiry, N. Y., Grady, L., Sofka, M., Tietjen, C., & Zhou, S. K. (2015). Semi-Automated Preoperative Resection Planning. US9129391.
- Kohlberger, T., Sofka, M., Wetzl, J., Zhou, J. Z. S. K., Birkbeck, N., Kaftan, J., & Declerck, J. (2015). Method and System for Multi-Organ Segmentation Using Learning-Based Segmentation and Level Set Optimization. US9042620.
- Sofka, M., Ralovich, K., Zhang, J., Zhou, S. K., Paladini, G., & Comaniciu, D. (2014). Data Transmission in Remote Computer Assisted Detection. US8811697.
- Birkbeck, N., Sofka, M., & Zhou, S. K. (2014). Method and System for Evaluation Using Probabilistic Boosting Trees. US8860715.
- Sofka, M., Zhang, J., Zhou, S. K., & Comaniciu, D. (2013). Method and System for Multiple Object Detection by Sequential Monte Carlo and Hierarchical Detection Network. US8605969.
- Zhang, L., Sofka, M., & Schäfer, U. (2012). Feature-Based Composing for 3D MR Angiography Images. US8265354.
- Sofka, M., Zhang, L., & Schäfer, U. (2010). Validation Scheme For Composing Magnetic Resonance Images (MRI). US7711161.
Pending
USPTO Applications
- Schlemper, J., Salehi, S. S. M., Sofka, M., Kundu, P., Wang, Z., Lazarus, C., A. Dyvorne, H., Sacolick, L., O’Halloran, R., & M. Rothberg, J. (2020). Deep Learning Techniques for Magnetic Resonance Image Reconstruction. US20200033431.
- Lazarus, C., Kundu, P., Tang, S., Salehi, S. S. M., Sofka, M., A. Dyvorne, J. S. H., O’Halloran, R., Sacolick, L., S. Poole, M., & M. Rothberg, J. (2020). Deep Learning Techniques for Suppressing Artefacts In Magnetic Resonance Images. US20200058106.
- Schlemper, J., Salehi, S. S. M., & Sofka, M. (2020). Deep Learning Techniques for For Alignment Of Magnetic Resonance Images. US20200294282.
- Schlemper, J., Salehi, S. S. M., & Sofka, M. (2020). Multi-coil Magnetic Resonance Imaging Using Deep Learning. US20200294287.
- Schlemper, J., Salehi, S. S. M., & Sofka, M. (2020). Self Ensembling Techniques For Generating Magnetic Resonance Images From Spatial Frequency Data. US20200294229.
- Schlemper, J., Salehi, S. S. M., Sofka, M., Kundu, P., Lazarus, C., A. Dyvorne, H., O’Halloran, R., & Sacolick, L. (2020). Deep Learning Techniques For Generating Magnetic Resonance Images From Spatial Frequency Data. US20200058106.
- Park, J.-hyeong, Sofka, M., & S. Zhou, K. (2018). Intervolume Lesion Dection and Image Preparation. US20180168536.
- Rothberg, A., de Jonge, M., Jia, J., Nouri, D., Rothberg, J. M., & Sofka, M. (2017). Automated Image Acquisition For Assisting A User To Operate An Ultrasound Device. US20170360403.
- Rothberg, A., de Jonge, M., Jia, J., Nouri, D., Rothberg, J. M., Sofka, M., Elgena, D., Mark, M. M., & Gafner, T. (2017). Automated Image Analysis For Diagnosing A Medical Condition. US20170360412.
- Rothberg, A., de Jonge, M., Jia, J., Nouri, D., Rothberg, J. M., & Sofka, M. (2017). Automated Image Analysis For Identifying A Medical Parameter. US20170360411.
- Gafner, T., de Jonge, M., Schneider, R., Elgena, D., Rothberg, A., Rothberg, J. M., Sofka, M., & Thiele, K. (2017). Augmented Reality Interface For Assisting A User To Operate An Ultrasound Device. US20170360404.
- Zhou, S. K., Birkbeck, N., Guardia, G. D., Zhang, J., Sofka, M., B. Thompson, J., & Paladini, G. (2014). Cloud-Based Processing of Medical Imaging Data. US20160092632.