
IntellEditS: Intelligent Learning-Based Editor of
Segmentations

Adam P. Harrison1,2, Neil Birkbeck1, and Michal Sofka1

1 Siemens Corporation, Corporate Technology, Princeton, NJ, USA
2 University of Alberta, Edmonton, Canada

Abstract. Automatic segmentation techniques, despite demonstrating excellent
overall accuracy, can often produce inaccuracies in local regions. As a result,
correcting segmentations remains an important task that is often laborious, es-
pecially when done manually for 3D datasets. This work presents a powerful
tool called Intelligent Learning-Based Editor of Segmentations (IntellEditS) that
minimizes user effort and further improves segmentation accuracy. The tool part-
ners interactive learning with an energy-minimization approach to editing. Based
on interactive user input, a discriminative classifier is trained and applied to the
edited 3D region to produce soft voxel labeling. The labels are integrated into
a novel energy functional along with the existing segmentation and image data.
Unlike the state of the art, IntellEditS is designed to correct segmentation results
represented not only as masks but also as meshes. In addition, IntellEditS ac-
cepts intuitive boundary-based user interactions. The versatility and performance
of IntellEditS are demonstrated on both MRI and CT datasets consisting of varied
anatomical structures and resolutions.

1 Introduction

Interactive approaches to segmentation have a proven track record [9]. However, the
important task of interactively editing a pre-existing but imperfect segmentation, or
presegmentation, has not enjoyed much attention [6, 11, 8]. This is unfortunate, as man-
ually correcting segmentations in 3D medical imaging applications can be a time-
consuming but necessary task. Local corrections are often needed for fully-automatic
segmentation techniques [6, 8], which are powerful and time-saving but still have not
matched the performance of interactive tools in key applications [9]. To use all available
information, an editor should consider: (1) user interactions, (2) the presegmentation,
and (3) the underlying volume or data. These sources should guide an editing algorithm
that strives to (1) minimize number of edits to achieve desired result, (2) minimize seg-
mentation error after each edit, and (3) respect user guidance.

Apart from 2D-focused tools [10, 15], many 3D editors function by propagating
user corrections from an interaction plane to the larger 3D volume [6, 3, 8]. Propagation
can be achieved by minimizing an energy term constrained by user input, the preseg-
mentation, and the volumetric data [6]. Such approaches face several key challenges.
First, volumetric data is incredibly rich and varied, making it non-trivial in how to best
employ it. Ideally, an editor would use volume data in a way that can generalize to



(a) (b) (c) (d) (e)

Fig. 1: Removing the vena cava from a liver mesh (red) using IntellEditS. (a) User
chooses an interaction plane and draws a corrected boundary (green); (b) Mesh is up-
dated in the plane; (c) As shown in a perpendicular plane, mesh boundary is accurately
propagated in 3D; (d)-(e) The 3D propagation can also be viewed by comparing before
and after surfaces in (d) and (e), respectively. As IntellEditS is executed within an MPR
viewer, pre- and post-edit segmentation accuracy can be quickly assessed.

different modalities, imaging qualities, and anatomical structures. Second, many pre-
segmentations are mesh-based, meaning they must be reconciled with the voxel-based
volume data. Third, user input should be as intuitive and user-friendly as possible.

This work presents an interactive editor of 3D presegmentations that simultaneously
addresses all the above challenges. First, the system allows users to precisely draw new
boundaries using lines within the interaction plane. This is called splice-based inter-
actions. Second, a discriminative classifier uses foreground and background regions
defined by the splice to model voxels inside and outside the object being edited. Clas-
sification results of unknown voxels are then incorporated within an energy functional
that locally propagates user interactions to the 3D volume. Finally, when editing mesh
presegmentations, a soft voxel-based representation is used, reconciling it with the vol-
ume data while still retaining a highly accurate boundary. These features culminate in
a system entitled Intelligent Learning-Based Editor of Segmentations (IntellEditS) that
provides a sophisticated and flexible means to rapidly edit presegmentations. Fig. 1
visually depicts the steps involved in editing.

IntellEditS advances the state of the art of data-driven editing through several means.
For instance, many editing techniques use interactions, such as brush-based tools [6, 3],
that are nonintuitive for clinicians [8] as they do not allow precise correction of bound-
aries. In addition, state of the art data-driven editors only consider mask-based pre-
segmentations [6, 3, 8], meaning that IntellEditS is the first to simultaneously perform
mesh-based and data-driven editing. Finally, the above works only use local differences
in volume intensity and do not attempt to model foreground and background voxels.
This state of data-driven editing is in contrast to many interactive segmentation tech-
niques, which successfully leverage learning algorithms as they build up a segmentation
from scratch [16, 17, 13, 18].

With these advances, IntellEditS fills an important gap in the state of the art of
data-driven editing. The algorithmic details of IntellEditS are expounded further in the
methodology section (§2). As demonstrated in the results section (§3), using identical
parameters IntellEditS can perform effectively on volumetric data coming from differ-
ent anatomical structures, modalities, imaging conditions, resolutions, and anisotropic
characteristics. This work is concluded by a discussion of results (§4).



Ωbox

Presegmentation

User stroke

Interaction plane

Discriminative Learning (§2.2)
pi = P (vi ∈ Ωobj |θi)

Sb
Sf

Determine
& Augment Seeds

Minimize Energy (2) Data Conversion (§2.3)

Ωbox

Input

(§2.1)

Soft-valued maskŜf

Ŝb

Ŝf

Ŝb

Sf Sb

yi

pi

xi

Final result

Fig. 2: Algorithm steps of IntellEditS.

2 Interactive Learning-based Editing

IntellEditS partners interactive discriminative classification with energy-based mini-
mization in order to edit mesh- or mask-based representations of anatomical structures.
Fig. 2 provides a high-level view of IntellEditS’ algorithm steps.

First, a user corrects a presegmentation on a 2D interaction plane using splices.
Foreground and background seed points, Sf and Sb respectively, are calculated based
on user input and the presegmentation. If the presegmentation is a mesh, it is converted
to floating-point distance map, yi, where i indexes individual voxel locations within the
volume. IntellEditS only operates on a cropped region of the volume, Ωbox, which is
specified using a bounding box around the splice line and the region of the presegmen-
tation contained within said splice.

An augmented set of seed points, Ŝf and Ŝb, serve as inputs to IntellEditS’ classifier,
which learns how to discriminate between foreground and background regions based on
a pool of features for each voxel. Features are denoted using an ordered vector of values
θi. In formal terms, define a variable pi ∈ [0, 1], which describes the probability that
voxel vi is in the foreground. Based on the trained model, the classifier calculates the
following posterior probability for each non-seed voxel:

pi = P (vi ∈ Ωobj |θi), (1)

where Ωobj denotes the true boundary of the anatomical object being edited.
If the pi values were completely accurate, the editing task would be finished. How-

ever, as complete accuracy cannot be guaranteed, pi values are employed as part of an
energy minimization formulation that incorporates the presegmentation, user seeds, and
a regularizer. Formally, the energy formulation can be expressed as:

E(x) =
∑
eij

wij(xi − xj)2 + γi
∑

i∈Ωbox

(yi − xi)2 + α
∑

i∈Ωbox

(pi − xi)2 (2)

s.t.,
{
xi = 1, vi ∈ Sf
xi = 0, vi ∈ Sb ,

where xi are soft output potential values and wij denotes the weights assigned to the
graph edges eij connecting each vertex vi or voxel. The first summation acts as a reg-
ularizer, ensuring coherent output potentials. The second summation incorporates the



(a) (b) (c) (d)

Fig. 3: Calculating Seed Points. (a) an edit and the presegmentation; (b) corresponding
foreground (Sf ) and background (Sb) seed points in green and red, respectively; (c)
volume and presegmentation above the editing plane; (d) corresponding foreground
(Ŝf ) and background (Ŝb) augmented seed points in green and red, respectively.

presegmentation, where γi is a local parameter controlling its influence. IntellEditS
uses the same γi and wij values as Grady and Funka-Lea [6]. However, floating-point
presegmentation values are used instead of binary values. Finally, the third summation
incorporates the per-voxel probabilities of being in the foreground. The influence of the
pi values are controlled by α, which has a context sensitive value explained in Sect. 2.2.
IntellEditS minimizes (2) using the random walker algorithm [5].

Apart from using splice-based interactions and accommodating mesh-based pre-
segmentations, the third summation in (2) represents one of the most important depar-
tures from the state of the art. While combining learning with energy minimization has
proven successful in interactive segmentation, it has not been used to locally edit pre-
segmentations. Other energy-minimization-based editors only employ volume data to
calculate wij [6, 3, 10, 15]. As a result, these methods neglect the highly informative
ensemble of local foreground and background voxel features that users implicitly spec-
ify during edits. Thus, the strength of (2) rests on its use of all available sources of
information—foreground/background features, presegmentation, and user seeds.

In order to apply (2) in a concrete implementation, the generation of seed points
must be specified (§2.1). The seed points define the fixed regions of the segmenta-
tion and are also used to train the discriminative classifier (§2.2). After solving (2), the
voxel-based output potentials are converted to a mesh-based representation (§2.3) or
thresholded for mask-based presegmentations.

2.1 Determining and Augmenting Seeds

When a user draws a splice intersecting a presegmentation, she is drawing a new 2D
boundary. As Fig. 3(a) and (b) demonstrate, corresponding seed points, Sf and Sb, can
be inferred by flood filling the new boundary. These are only extracted from the 2D
interaction plane. A buffer ensures any voxels on or close to the new boundary are not
chosen as seed points, allowing IntellEditS to settle on a precise iso-contour instead.

Sf and Sb provide reliable training samples. However, since IntellEditS must prop-
agate an edit away from the interaction plane, training samples should be extracted from
the larger volume. As well, any learning algorithm’s performance partly hinges on the
number of training samples used. For this reason, seed points are augmented into two
larger sets, Ŝf and Ŝb. These are calculated by projecting locations of out-of-editing-
plane voxels onto the editing plane itself. If their 2D projected location is far enough



from the user’s splice then they are included into Ŝf (Ŝb) if they are in the presegmen-
tation foreground (background). One such example is provided by Fig. 3(c) and (d).
While there is a possibility of incorrectly labelled samples entering the training set,
experience indicates the impact, if any, to be minimal.

2.2 Discriminative Learning

Both generative [16, 17] and discriminative [13, 18] models have been used to interac-
tively segment visual data. While powerful, generative-model performance hinges on
selecting an appropriate model and the correct feature(s) to examine. This is a chal-
lenge when faced with different modalities, anatomical structures, image qualities, and
editing contexts. Since IntellEditS’ goal is to operate effectively even on dataset types
not encountered during development, it employs discriminative classification to directly
model posterior probability. Classification features are drawn from a large pool of 3D
Haar wavelets, where their relative influence varies based on the dataset.

This work uses a Probabilistic Boosting Tree (PBT) [14], whose nodes are com-
posed of AdaBoost classifiers. Unlike much of previous work using PBTs, classifica-
tion must execute at interactive speeds. A recent work by Birkbeck et al. documented
a GPU PBT implementation [4], which also included fast calculation of 3D Haar fea-
tures. However, since classifiers were still trained offline using multiple volumes, the
algorithm was not meant to be interactive and did not address speeding up training.
In contrast, IntellEditS requires both fast training and detection using a single volume.
As a result, IntellEditS extends Birkbeck et al.’s work by implementing an interactive-
speed PBT (I-PBT) for single-volume classification. Training is GPU-implemented us-
ing CUDA.

Based on feature values of Ŝf and Ŝb, IntellEditS trains the I-PBT to discrimi-
nate between foreground and background voxels. After training, the detection accuracy,
ρ ∈ [0, 1], of the I-PBT in classifying the training samples is calculated. The weight
parameter, α, in (2) is then set to 0.5ρ, providing an automatic and performance-based
tuning of the editor.

2.3 Data Conversion

Unlike previous works, IntellEditS’ goal is to edit meshes in addition to masks. Nonethe-
less, outside of pre- and post-processing steps to convert data, IntellEditS works within
a voxel-based domain. This enables parallel execution of many of the per-voxel tasks in
training and detection. As well, resampling of the volume and its features, commonly
needed in simplex-based representations of voxel data, is avoided.

To retain the high resolution of mesh-based presegmentations, IntellEditS converts
them to soft-valued voxel representations based on distance-map calculations. For the
mesh-to-distance-map direction, IntellEditS uses the fast pseudo-normal method [2].
Converting the distance map back to a mesh is accomplished using the marching cubes
algorithm [12]. The authors’ experience indicates that this conversion does not affect
visual quality of the boundary. Since (2) works within a [0, 1] range, distance-map val-
ues must be mapped to this range using a scale and offset. The reverse mapping must
also be executed before converting output potentials to a mesh.



0 20 40 60 80 100
0

0.25

0.5

0.75

1

% Improvement

C
u
m

u
la

ti
v

e 
P

ro
b
ab

il
it

y

 

 

IE

IntellEditS

Fig. 4: Cumulative probability distribution of improvements in SPS error after IE and
IntellEditS corrections. The median improvements of the IE and IntellEdits were 11 and
19% respectively and third-quartile improvements were 48 and 55%, respectively.

3 Results

Experiments tested IntellEditS’ performance on 11 CT and MRI datasets of different
anatomical structures, resolutions, and anisotropies. Using the same single splice, ex-
periments compared IntellEditS’ performance against an intensity-based editor (IE) that
only uses the first two summations in (2). As such, IE does not model foreground
and background voxels and is similar to Grady and Funka-Lea’s approach [6], ex-
cept it has been significantly modified to use splice interactions and edit meshes. Each
tool’s performance was gauged using symmetrical point-to-surface (SPS) error against a
manually-annotated ground truth in the Ωbox region. These results were then compared
against the original SPS error of the presegmentation.

All experiments used the same parameter values, detailed in §2. For all datasets,
the I-PBT was configured to have a depth of 3 with 10 weak classifiers at each node.
On average, editing time consumed 3 seconds on an 8 core machine with an NVIDIA
GeForce 9800 GT video card. As Fig. 4 illustrates, IntellEditS is able to more effectively
reduce segmentation errors after the same user interaction. Fig. 5 visually demonstrates
the effectiveness of IntellEditS by depicting representative qualitative results drawn
from the quantitative experiment.

4 Discussion and Conclusion

This work presented an interactive editing tool called IntellEditS that represents a novel
and powerful way to correct presegmentations in a 3D context. Unlike previous data-
driven editors, IntellEditS can edit meshes. Users employ intuitive splice-based inter-
actions to correct presegmentations on a 2D interaction plane, which IntellEditS prop-
agates in 3D through a combination of discriminative learning coupled with energy
minimization. The practical benefits and versatility of IntellEditS were demonstrated in
quantitative and qualitative experiments composed of challenging datasets of various
modalities, anatomical structures, resolutions, and anisotropy. Comparing against an
intensity-based editor and using the same user input, these experiments demonstrated
that IntellEditS can output a mesh significantly closer to ground truth, saving valuable
end-user time and effort. Interesting directions of future work include combining Intell-
EditS with tools that can help choose suspicious interaction planes [1], providing the



Liver MRI
420 × 302 × 216

Liver CT
512 × 512 × 129

Lung CT
512 × 512 × 486

Lung CT
512 × 512 × 137

Liver CT
512 × 512 × 204

1 × 1 × 1 mm3 0.65 × 0.65 × 5 mm3 0.8 × 0.8 × 2 mm3 0.81 × 0.81 × 5 mm3 0.64 × 0.64 × 2 mm3

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 5: Qualitative comparison of IntellEditS vs IE using the same single splice. (a)
overall view of presegmentation and editing splice; (b) zoomed-in view of (a); (c) cor-
rected mesh; (d) cross-section view of presegmentation; (e) and (f) same view as (d) but
after the correction produced by IE and IntellEditS, respectively. Dataset dimensions
and resolutions are also provided.

option to use live-wire techniques [7], and incorporating online learning into the editing
process to incrementally learn a more robust model from consecutive interactions.



5 Acknowledgments
We thank S.Kevin Zhou, Noha El-Zehiry, and Enrico Kuhn for valuable discussions,
feedback, and code that contributed to this paper.

References

1. Andrew Top, G.H., Abugharbieh, R.: Active Learning for Interactive 3D Image Segmenta-
tion. In: MICCAI 2011. LNCS, vol. 6893, pp. 603–610. Springer, Heidelberg (2011)

2. Baerentzen, J.A., Aanaes, H.: Generating Signed Distance Fields From Triangle Meshes.
Tech. rep., Informat. and Math. Mod., Tech. Univ. of Denmark (2002)

3. Beichel, R., Bauer, C., Bornik, A., Sorantin, E., Bischof, H.: Liver segmentation in CT Data:
A Segmentation Refinement Approach. In: Proceedings of 3D Segmentation in the Clinic: A
Grand Challenge. pp. 235–245 (2007)

4. Birkbeck, N., Sofka, M., Zhou, S.: Fast Boosting Trees for Classification, Pose Detection,
and Boundary Detection on a GPU. In: Computer Vision and Pattern Recognition Workshops
(CVPRW), 2011 IEEE Computer Society Conference on. pp. 36 –41 (2011)

5. Grady, L.: Random Walks for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell.
28(11), 1768–1783 (Nov 2006)

6. Grady, L., Funka-Lea, G.: An Energy Minimization Approach to the Data Driven Editing of
Presegmented Images/Volumes. In: MICCAI (2). pp. 888–895 (2006)

7. Hamarneh, G., Yang, J., Mcintosh, C., Langille, M.: 3D live-wire-based semi-automatic seg-
mentation of medical images. In: Proceedings of SPIE Medical Imaging: Image Processing
5747. pp. 1597–1603 (2005)

8. Heckel, F., Moltz, J.H., Bornemann, L., Dicken, V., Bauknecht, H.C., Fabel, M., Hittinger,
M., Kieling, A., Meier, S., Psken, M., Peitgen, H.O.: 3D contour based local manual correc-
tion of tumor segmentations in CT scans. In: SPIE Med. Img. vol. 7259, pp. 1–9

9. Heimann, T., van Ginneken, B., et al.: Comparison and Evaluation of Methods for Liver
Segmentation From CT Datasets. IEEE Trans. Med. Imaging 28(8), 1251–1265 (2009)

10. Jagadeesh, V., Manjunath, B.: Interactive graph cut segmentation of touching neuronal struc-
tures from electron micrographs. In: Image Processing (ICIP), 2010 17th IEEE International
Conference on. pp. 3625 –3628 (2010)

11. Kang, Y., Engelke, K., Kalender, W.A.: Interactive 3D editing tools for image segmentation.
Medical Image Analysis 8(1), 35 – 46 (2004)

12. Lorensen, W.E., Cline, H.E.: Marching Cubes: A High Resolution 3D Surface Construction
Algorithm. Computer Graphics 21(4), 163–169 (1987)

13. Santner, J., Unger, M., Pock, T., Leistner, C., Saffari, A., Bischof, H.: Interactive Texture
Segmentation using Random Forests and Total Variation. In: British Machine Vision Con-
ference (BMVC) (2009)

14. Tu, Z.: Probabilistic Boosting-Tree: Learning Discriminative Models for Classification,
Recognition, and Clustering. In: Computer Vision, 2005. ICCV 2005. Tenth IEEE Inter-
national Conference on. vol. 2, pp. 1589 –1596 Vol. 2 (2005)

15. Yang, H.F., Choe, Y.: An Interactive Editing Framework for Electron Microscopy Image
Segmentation. In: Advances in Visual Computing, LNCS, vol. 6938, pp. 400–409 (2011)

16. Yang, Q., Tang, X., Wang, C., Ye, Z., Chen, M.: Progressive Cut: An Image Cutout Algorithm
that Models User Intentions. MultiMedia, IEEE 14(3), 56–66 (2007)

17. Yang, W., Cai, J., Zheng, J., Luo, J.: User-friendly Interactive Image Segmentation Through
Unified Combinatorial User Inputs. IEEE Trans. Image Process 19(9), 2470 –2479 (2010)

18. Zhao, Y., Zhu, S.C., Luo, S.: CO3 for Ultra-fast and Accurate Interactive Segmentation. In:
Proceedings of the International Conference on Multimedia. pp. 93–102. ACM (2010)


