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In the clinical workflow for lung cancer management, the comparison of nodules between CT scans from
subsequent visits by a patient is necessary for timely classification of pulmonary nodules into benign and
malignant and for analyzing nodule growth and response to therapy. The algorithm described in this
paper takes (a) two temporally-separated CT scans, I; and I, and (b) a series of nodule locations in I,
and for each location it produces an affine transformation that maps the locations and their immediate
neighborhoods from I; to L. It does this without deformable registration and without initialization by
global affine registration. Requiring the nodule locations to be specified in only one volume provides
the clinician more flexibility in investigating the condition of the lung. The algorithm uses a combination
of feature extraction, indexing, refinement, and decision processes. Together, these processes essentially
“recognize” the neighborhoods. We show on lung CT scans that our technique works at near interactive
speed and that the median alignment error of 134 nodules is 1.70 mm compared to the error 2.14 mm of
the Diffeomorphic Demons algorithm, and to the error 3.57 mm of the global nodule registration with
local refinement. We demonstrate on the alignment of 250 nodules, that the algorithm is robust to
changes caused by cancer progression and differences in breathing states, scanning procedures, and
patient positioning. Our algorithm may be used both for diagnosis and treatment monitoring of lung can-
cer. Because of the generic design of the algorithm, it might also be used in other applications that require
fast and accurate mapping of regions.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

combination of CAD and manual screening techniques, are auto-
matically located in a scan taken at a different time. The regions

Lung cancer is the deadliest of all cancers worldwide with an
estimated 1.3 million deaths and 1.5 million new cases in 2007
(Garcia et al., 2007). This high prevalence makes systems for diag-
nosis and treatment monitoring particularly important, as re-
flected in the number of techniques being proposed by the
computer vision and medical imaging communities (Ginneken
et al., 2001; Sluimer et al., 2006). In the clinical workflow for lung
cancer management, follow-up scans are necessary for timely clas-
sification of pulmonary nodules into benign and malignant (Fig. 1).
Central to this workflow is the comparison of nodules between
scans from subsequent visits by a patient.

In our work, we are concerned with the question of volumetric
registration tools to assist in longitudinal monitoring of pre-can-
cerous and cancerous locations in the body. The idea is that nod-
ule locations, having been selected within a CT scan using a
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surrounding the nodule and its corresponding location in the sec-
ond scan are aligned (rigid or affine) with the first scan in prep-
aration for display to the radiologist, or for subsequent
quantitative analysis such as comparative measurement of nodule
volumes (Fig. 2). Stating the problem more precisely: given are
image volumes I; and I, a set of locations £ = {Xy,...,Xy} from
I;, and a set of surrounding 3D neighborhoods, {NV(x,)}. The goal
is to find, for each x,, the affine transformation T, : R> — R® that
best aligns A/ (x,) with a region of I. Importantly, implicit in this
problem statement is a decision about the neighborhood of I; that
forms the co-domain of the transformation. In essence, the prob-
lem requires recognizing N'(X,) as part of the registration process.
We refer to this problem as the Location Registration and Recogni-
tion or LRR problem. A solution to this problem will become
important with continuing increases in the number and size of
CT scans and with increasing use of longitudinal studies that re-
quire alignment of scans (Sluimer et al., 2006).

Previous techniques for serial analysis of the lung nodules as-
sume that the nodule locations are specified in both volumes in ad-
vance (Betke et al., 2003; Kawata et al., 2001; Reeves et al., 2006).
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Fig. 1. Timely differentiation of pulmonary nodules into benign and malignant is important for diagnosis and treatment planning. The diagram (top) shows a clinical
workflow for lung cancer management. Follow-up scans are necessary to determine treatment according to the growth of the nodules. The table (bottom) shows
recommendations for follow-up and management of nodules detected incidentally at non-screening CT (MacMahon et al., 2005). Surgery (the treatment of choice for stages I
and II non-small cell lung cancer Walter et al., 2007) may directly follow the initial scan and nodule discovery.

The LRR problem is more challenging since the nodules are indi-
cated only in one of the volumes. This gives the clinician greater
flexibility in analyzing the condition of the lung. The immedi-
ately-obvious solution to the LRR problem is application of global
deformable registration techniques, followed by local affine regis-
tration to produce the final local transformations. We choose a dif-
ferent approach for several important reasons: (1) deformable
registration tends to be slow, whereas a useful solution to the
LRR problem will run at interactive speeds for many scans in suc-
cession, (2) deformable registration is not necessary because our
interest is a sparse set of local alignments, and (3) a solution to
our LRR problem could provide highly-reliable interest-point cor-
respondences for deformable registration. This is not to say, how-
ever, that advances in the speed, reliability and accuracy of
deformable registration will not eventually be useful in solving
the LRR problem. Instead, in this paper, we propose and explore
an alternative approach. An important part of our approach is a
decision component to ensure with high-confidence that particular
neighborhoods are correctly matched. This verification has been
left to manual assessment in both the global deformable tech-
niques (Matsopoulos et al., 2005; Sluimer et al., 2006) and nodule
matching and registration algorithms (Shi et al., 2007; Wiemker
et al., 2008).

Our method is feature-based, involving a preprocessing step to
extract a variety of features distributed throughout the scan vol-
umes. The main algorithm is applied separately for each location
X, and its surrounding neighborhood AN (x,). The processing at each
location consists of steps of hypothesis generation, hypothesis
refinement, and decision. Hypothesis generation involves match-
ing keypoint locations taken from inside A/(x;) using 3D Shape-
Context methods (Belongie et al., 2002; Mori et al., 2005). Hypoth-
eses are rank-ordered and then refined using the Iterative Closest
Point (ICP) algorithm (Besl and McKay, 1992; Chen and Medioni,
1992). The decision step computes a vector of measures on the
estimated transformations and on the ICP correspondences and
combines them to form a decision function based on a Support
Vector Machine (SVM). All steps of the algorithm are designed to
be robust to differences between scans caused by changes in scan-
ning procedures, patient positioning, and physical changes in the
lung caused by breathing state differences and progression of the
cancer. This includes robustness to intensity differences, that
may be caused by the introduction of a contrast agent, although
we did not explicitly test this here.

Two types of experiments are presented here, one to guide spe-
cific design decisions and the second to validate the overall result-
ing algorithm. Comparisons are made to a global registration
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Fig. 2. Given a location with a surrounding neighborhood in one CT scan (top), the
goal of the Location Registration and Recognition (LRR) algorithm is to find the
corresponding location in another scan (bottom) and align the local regions
surrounding the locations. The location in the bottom volume is not known in
advance. Locations of non-calcified solid nodules are shown in the axial slices
without aligning the volumes.

technique with local refinement (Betke et al., 2003; Kawata et al.,
2001; Shi et al., 2007; Wiemker et al., 2008) and to a state-of-the
art deformable registration algorithm, Diffeomorphic Demons
(Vercauteren et al., 2007). The overall results show that LRR is in
most cases in agreement with the resulting deformation fields
and it provides better alignment in several cases involving changes
to the neighborhood surrounding x,. The algorithm finishes on
average in 6 s per initial location and is able to report whether
the registration produced an accurate alignment or not.

The new Location Registration and Recognition (LRR) algo-
rithm may be used to align regions surrounding lung nodules
for subsequent analysis of nodule growth (Betke et al., 2003;
El-Baz et al., 2009; Kostis et al., 2003; Reeves et al., 2006). The
nodule locations can be obtained from an automatic nodule
detection algorithm (Agam et al., 2005; Kostis et al., 2003) ap-
plied to time-separated CT scans. Initializing LRR at nodules
found only in one of the volumes can help discover misdetec-
tions. Alternatively, the LRR algorithm might be used in an inter-
active registration algorithm, in which user selects points (or
nodules) in one of the volumes with a mouse click. This would
greatly improve workflow in those systems where the user is
currently required to find two corresponding points (Azar
et al., 2006).

Our main contributions are as follows:

(1) The overall algorithm that maps a local image region from
one scan to a corresponding region in another scan and
aligns the two regions.

(2) Evaluation of shape-context methods for indexing and for
generating an initial transformation estimate in CT scans.

(3) Development of a decision criteria for determining when a
region of one scan has been correctly recognized and aligned
against a second scan.

(4) Open source implementation of a clinically-relevant method
for aligning regions containing pulmonary nodules.

Part of this work and an earlier version of the system have been
reported in our conference publication (Sofka and Stewart, 2008).
In this paper, we include experiments with pulmonary nodules,
show how to handle multiple independent motions inside the
alignment regions, add more evaluation of the decision step, pres-
ent analysis of the affine transformation and the local deformation,
compare against global nodule registration followed by local
refinement, add multiresolution hierarchy to the keypoint index-
ing, and provide an open source implementation of the entire
algorithm.

The paper is organized as follows. The relevant literature is re-
viewed in Section 2. The Location Registration and Recognition
algorithm is proposed in Section 3. The experimental results are
presented in Section 4. The paper concludes in Section 5.

2. Background

Our background overview focuses on feature-based registration
methods related to the proposed LRR algorithm (Section 2.1), on
nodule matching and registration approaches (Section 2.2), and
on deformable registration algorithms (Section 2.3).

2.1. Feature-based registration

Feature-based registration starts with a preprocessing step to
extract various image quantities, such as keypoints, descriptors,
and features. Keypoint extraction algorithms have been widely
studied in both medical imaging and computer vision (Hartkens
et al., 2002; Lowe, 2004). Typically, keypoints are distributed
throughout a volume at distinctive locations such that they can
be detected at the same distinctive locations in another volume
(repeatability). Perhaps the most widely-used 2D keypoints are de-
tected as local extrema in the Laplacian-of-Gaussian pyramid in
both spatial and scale dimensions (Yang et al., 2007; Lowe,
2004). Complementary to these keypoints are Harris corners (Mi-
kolajczyk and Schmid, 2004). We use similar keypoints in our
work.

Recent work in computer vision has emphasized the computa-
tion of descriptor vectors at keypoint locations. The vectors sum-
marize the local image content and serve as signatures at
keypoint locations. The descriptors are compared between images
using indexing methods (Lowe, 2004). Given a descriptor vector of
a keypoint detected in one volume, the goal is to find the most sim-
ilar descriptor of a keypoint in another volume. The corresponding
keypoints can then be used for computing an approximate local
transformation at various keypoint locations throughout the vol-
ume, not just at predetermined anatomical points (W6rz and Rohr,
2006). Two sets of descriptor vectors are the SIFT (Lowe, 2004; Lai
and Hua, 2008) and Shape-Context descriptors (Belongie et al.,
2002; Frome et al., 2004; Mori et al., 2005; Liu and Chen, 2004),
both of which emphasize the distribution of points and gradients.
The primary differences between these descriptors, once gradient
information is added to Shape-Contexts, are the spatial organiza-
tion of the bins and the choice of points — all points in a region
or just the edge points. In Kelman et al. (2007), we showed that
it is possible to construct repeatable descriptors from points found
by a feature extraction algorithm. In Section 3.2, we will show how
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to use Shape-Contexts computed from generic features to generate
an initial transform between two 3D image regions in lung CT
scans.

In comparison to keypoints, features are much more dense and
less distinctive and often include other attributes computed from
the image intensities (Shen and Davatzikos, 2002; Xue et al.,
2004). We use feature correspondences to drive the estimation
process of image registration. To detect features in medical images,
Rohr (1997) extended four 2D differential operators to 3D. Hart-
kens et al. (2002) presented a careful evaluation of these operators
for the detection of anatomical landmarks in Magnetic Resonance
(MR) and Computed Tomography (CT) images. In our previous
work on registration of 2D images (Sofka et al., 2007; Yang et al.,
2007), we successfully used generic edge-like and corner-like fea-
tures (similar to the differential operators of Rohr (1997)). Here, we
extend our generic features to 3D and use them to drive the
registration.

One of the most widely-adopted approaches for correspondence
matching and transformation estimation is the Iterative Closest
Point (ICP) algorithm (Besl and McKay, 1992; Chen and Medioni,
1992). Many ICP enhancements have been proposed to improve
convergence properties, increase efficiency, and enhance robust-
ness (Rusinkiewicz and Levoy, 2001). In our algorithm, constraints
generated by matching generic features are used in a robust ICP
objective function to refine a transformation estimate between
two local regions. Final decisions on the alignment accuracy are of-
ten left to manual assessment. Since this is not always practical,
there is a need for reliable automatic methods. The technique in
Brown et al. (2007) for aligning 2D images applies statistical tests
of randomness based on the number of overall and consistent key-
point matches. The algorithm in Yang et al. (2007) combines mea-
sures of accuracy, consistency, and stability. Similar methods have
not yet been applied to 3D medical imaging. In our approach, the
measurement vectors of successful and unsuccessful alignments
are used in a Support Vector Machine (SVM) to construct a separat-
ing hyperplane in the measurement space Duda et al., 2001, Chap-
ter 5. SVMs have been used for feature selection and feature-based
classification of normal and abnormal regions by Fan et al. (2005)
and for pooling results of multiple registrations of 2D endoscopy
images by Seshamani et al. (2009).

2.2. Nodule matching and registration

In serial data analysis — the application of the LRR algorithm —
the goal is to locally align regions surrounding two corresponding
nodules. Some techniques assume that the corresponding nodule
pairs are known (Reeves et al., 2006), others determine the pairing
by nodule matching (Betke et al., 2003) or interactively (Kawata
et al,, 2001). The primary disadvantage of these techniques is that
they require the nodule locations to be known in both volumes in
advance. Conversely, LRR starts from nodules specified in only one
of the volumes and the algorithm automatically finds the corre-
sponding nodules in the other volume.

In the work by Reeves et al. (2006), the alignment of two pre-
determined corresponding nodules is refined by minimizing
mean-squared difference of the intensity volumes of interest. The
paper proposes a nodule segmentation method for nodule growth
analysis and techniques for removing pleural surfaces and vessels
attached to nodules. These steps could be applied after the LRR
algorithm to quantify nodule growth.

The algorithms for automatically pairing nodules begin by glo-
bal registration of lung volumes (Kawata et al., 2001) or segmented
structures (Betke et al., 2003; Shen et al., 2002; Shi et al., 2007). In
Kawata et al. (2001), a technique for analyzing evolution of pul-
monary nodules over time starts by manually specifying two cor-
responding regions of interest. The initial global rigid registration

is followed by local refinement and displacement field computa-
tion. In the algorithm of Betke et al. the global transform is used
to find nodule correspondences by mapping each nodule from
one volume and finding the closest nodule in the other volume.
The approach in Okada and Huang (2007) finds a single point-wise
correspondence to a given point by relative configurations to pre-
computed stable features. In contrast to LRR, neither of the two
algorithms (Betke et al., 2003; Okada and Huang, 2007) aligns
the local regions.

Very few techniques attempt to find and align the correspond-
ing nodule regions automatically using nodules specified only in
one of the scans. In Shi et al. (2007), the alignment of a volume
of interest around a candidate nodule is initialized by registration
of the ribs and refined by template matching. The technique might
fail due to poor template matching when a nodule is missing in one
of the scans or due to inconsistent rib segmentation when one of
the scans does not cover the entire lung. In Wiemker et al.
(2008), the corresponding nodule locations are found by a coordi-
nate transform derived from the relative positions of segmented
lung volumes. Only translation parameters are computed (simi-
larly to Shen et al. (2002)) and the approach fails in the presence
of large cardiac motion or in neighborhoods with changes due to
lung motion relative to the rib cage. The final decision on align-
ment accuracy in both of these algorithms (Shi et al., 2007; Wiem-
ker et al., 2008) is done manually.

The major advantage of the proposed Location Registration and
Recognition (LRR) algorithm is that it starts from nodule locations
in one of the volumes without pairing the nodules first. It does not
rely on global registration of the lung volumes or segmented struc-
tures, which might fail when one of the scans does not cover the
entire lung. The proposed solution to the LRR problem also in-
cludes an automatic decision of the final alignment accuracy which
has been previously left to manual assessment.

2.3. Deformable registration

Global deformable registration algorithms provide a mapping at
each image location. This way, these algorithms solve the Location
Registration and Recognition (LRR) problem for all locations in a gi-
ven volume. Such a solution is expensive and not necessary, since
we are only interested in a sparse set of locations. In this paper, we
use a result of a deformable registration technique, Diffeomorphic
Demons, for an experimental analysis of the LRR algorithm. Diffe-
omorphic Demons gave the most accurate results in a comparative
evaluation on the inter-subject thoracic registration (Urschler
et al., 2007). The algorithm is four times more computationally
expensive than the original Demons algorithm (Thirion, 1998),
which was second in this evaluation.

Deformable registration techniques have been widely used for
the alignment of lung CT data. Boldea et al. (2003) ran experi-
ments with the Demons algorithm using breath holding tech-
niques. Matsopoulos et al. (2005) use correspondences between
points around bone structures to fit radial basis functions to the
entire scans of patients with non-small cell lung cancer. Other
techniques have been based on volumetric B-splines (Camara
et al., 2007; Gorbunova et al., 2008; Kaus et al., 2004; Murphy
et al,, 2008; Vik et al., 2008; Yin et al., 2009), hybrid of intensity
and feature-based approaches (Urschler et al., 2006b), alignment
of surfaces (El-Baz et al., 2009; Kaus et al., 2004; Vik et al,,
2008), and thin-plate spline (TPS) mappings (Urschler et al.,
2006a). Some of these algorithms are initialized by matching pul-
monary (Li et al., 2003) or bone (Matsopoulos et al., 2005) struc-
tures. Others use point correspondences during the registration to
compute the final alignment (Urschler et al., 2006a). Many of
these techniques could benefit from the LRR algorithm that we
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propose. One possibility is to use LRR to initialize a global
deformable registration.

The image-wide mapping provided by the global deformable
registration is not necessary to solve the LRR problem. One diffi-
culty of the deformable techniques is that local constraints, such
as those that ensure diffeomorphism (Vercauteren et al., 2007;
Cootes et al., 2004), rigidity, smoothness (Vercauteren et al.,
2007; Cahill et al., 2009; Gorbunova et al., 2008; Pock et al.,
2007; Yin et al., 2009), and mass and weight preservation (Gorbu-
nova et al., 2008; Yin et al., 2009) need to be included. Since the
LRR algorithm provides a local affine mapping, it is possible to di-
rectly evaluate the local regions by a quantitative comparison. A
set of local alignments provided by LRR might be used to initialize
deformable registration.

3. Location registration and recognition

The LRR algorithm finds the alignment of regions surrounding
the locations £ = {Xi,...,Xy} in I; with the corresponding regions
in I, using correspondences between image features. Denoting
f: R* — R as the image-wide mapping function, the following dis-
tance-based energy functional is at the minimum when all regions
are correctly aligned:

Far =y d(f(p).q), (1)

(pi.qj)eC

where C is a set of all point correspondences, d is the distance be-
tween a fixed feature point q; from I, and a moving feature point
p; from I;, mapped with the function f. Abusing the notation, p;
and q; represent both the feature points and their locations. The
correspondences are found by matching moving feature points
{p;} to the corresponding fixed feature points {q;} while rejecting
outliers (Yang et al., 2007; Sofka et al., 2007; Chui et al., 2004). Find-
ing the function f, which is generally non-linear, is an ill-posed
problem. Moreover, the image-wide mapping is not necessary for
solving the LRR problem. The LRR algorithm uses the first-order
approximation at X;:

fP) = f (%) +J (%) (i — X)) (2)
= by + Ar(p; — Xk)
= T (p;; 0k)- (3)

The Jacobian J of the function f is evaluated at the location x, and
becomes locally the affine component A, of the transformation T,.
The parameters 0, are the parameters of the affine transformation
Ty, i.e. elements of the matrix A, and the vector b,, mapping the re-
gion N (x) surrounding the location x,. The region size is fixed for
all locations and its size is determined experimentally for the par-
ticular application. The energy (1) can now be rewritten:

Location Xp
Neighborhood

F(X1,. -, Xn;01,..., 05 d(Ty(p;; k), 9))

o
Mz

1 (pi.G))<Ck

[
M=

£(6y), (4)

—_

where Cy is a set of correspondences between feature points {p;} in
the neighborhood of X, and feature points {q;} in the neighborhood
of X, = Tx(X). For the purposes of the current work, each local affine
transform is independent of the others. Therefore, each £(6y) is ap-
plied separately. The overall system diagram is depicted in Fig. 3.
The initialization estimation step provides an approximate trans-
form T, which is valid in the neighborhood of x;. Subsequently, this
estimation transformation is refined into an accurate alignment
using correspondences C, between image points. The decision step
determines whether the final transform accurately aligns the two
local regions. The algorithm is outlined in Fig. 4, with the details de-
scribed below.

3.1. Feature extraction

Features are detected at the surface boundaries of anatomical
regions, intersections of organs, and at the centers of tubular struc-
tures (e.g. airways and vessels). This way, the features represent
the structural content of the image volumes and are used in all as-
pects of the LRR process. In order to ensure that features are avail-
able to drive the LRR algorithm anywhere in the volume, the
emphasis is to extract multiscale features distributed throughout
the volumes (coverage) without missing anatomical structures
(completeness). During the alignment process, we rely on robust
statistical estimation to ensure that correspondences generated
when a feature in one volume has no analog in the other are
ignored.

The datasets are often anisotropic, i.e. they have sample spacing
in the X and Y dimensions different from the spacing in the Z
dimension. Therefore, they are processed in physical coordinates
and resampled to be isotropic when necessary (using implementa-
tion provided in ITK Ibafiez et al., 2003). At each voxel location X,
the intensity gradient VI(x) is computed. The outer product
(auto-correlation) matrix M(x), also known as the structure tensor
(Jdhne, 1993), is then computed as a Gaussian-weighted average of
(VI(x))(VI(x))" over the neighborhood of x. A strength is assigned
to each point: m(x) = trace(M(x)) (Fig. 5(a)). Other measures could
be used as well (Hartkens et al., 2002). The features are locally
pruned by discarding those that have strength smaller than
Wy + ko, k=1, where u,, and ¢, are median and std. dev.
strength values computed in overlapping volume neighborhoods
(30 x 30 x 30 mm). Fig. 5(b) shows features obtained after this
step.

Region surrounding
X[ is aligned

Feature Initialization: | | Estimation:
Extraction Approx. Ty, | | Refine Ty,
Section 3.2 Section 3.3

Feature
9 Extraction

Section 3.1

Section 3.5

Fig. 3. Diagram of the Location Registration and Recognition system. The initial transform T, maps the region A/(x,) surrounding the location x, from image I, into image I,.
The transform Ty is refined into accurate alignment in the estimation stage using correspondences between image features. If the decision step determines that the alignment

is correct, the algorithm finishes. Otherwise, a new initialization is generated.
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Input: Image volumes I; and I and a set of locations £ = {x1,...,xx}, pre-
selected manually or semi-automatically from I;.

Output: Set {@1, éN}, where each 0y, is a vector of affine parameters or the
zero-vector 0 indicating that no transformation was found.

Preprocessing: Extract features (Sec. 3.1), extract keypoints, and compute
descriptor vectors (Sec. 3.2) in both volumes. Compute over-segmentations of
the volumes. Form a k-d tree storing all descriptors from I5. These steps may
be done offline. (A) Repeat for each pre-selected location xy:

(1)
(2)

®3)

(4)

(®)

(6)

(7)

Establish a local 3D neighborhood N (x) surrounding location x.

Gather keypoints from I; within the neighborhood N (x) into a set U
(Sec. 3.2).

Indexing: for each keypoint in U, search the k-d tree to find the keypoint
in Iy with the closest descriptor. The two keypoints form a hypothesized
match (Sec. 3.2).

Order the hypothesized matches by increasing descriptor distance. Con-
sider the best M = 20.

Compute an initial rigid transform for each of the M hypotheses by align-
ing local keypoint coordinate axes.

Reorder the list of hypotheses to put the initializations that provide the
best initial alignments at the top.

Repeat

(a) Pick the next match from the list and its computed initial rigid trans-
form. Initialize the affine mapping function T} ,, r =1,..., M and es-
tablish 3D feature neighborhoods M(x;) and M(x},), x), = Tj,,(x)-

(b) Gather features in the neighborhoods M(xy,) and M(x},) belonging to
the same anatomical regions as determined by the over-segmentations.

(c¢) Estimate affine transformation parameters 0y of the mapping function
T}, using feature correspondences in a robust generalization of ICP
(Sec. 3.4).

(d) Apply the decision classifier (Sec. 3.6): If 8y, is correct, save it and
proceed to the next pre-selected location (A). Otherwise continue to

the next match (Step 7a).

Until all matches from the list have been processed.

(8) No transformation has been found for xy, so set ék =0.

Fig. 4. LRR algorithm outline.

Features are classified as 1D (sheet-like), 2D (tube-like) or 3D
(corner-like) according to the number of maxima of the strength
measures along each of the feature orientation axes. The local ori-
entation is assigned to each feature-based on the eigen-decompo-
sition of M(x) : M(x) = 35, Aa(X)Ta(X)Ta(x) ", with 2;(X) < 42(x) <
/3(X). The decomposition will produce eigenvectors {T'y(X)} which
are defined up to a sign. In order to assign an orientation to each
feature, sign ambiguities are resolved by choosing the sign that
makes the derivative in direction I'q(X) positive. The resulting vec-
tors {I'y(x)} define the local orientation axes of each feature.

According to the feature type, non-maximum suppression is ap-
plied in all three dimensions when the feature is corner-like, in 2D
(in a plane spanned by T', and I';) when the feature is tube-like,
and in 1D (along direction of the eigenvector I'; when the feature
is sheet-like). Surviving locations are interpolated to subvoxel
accuracy by finding a peak of the parabolic surface fitted to the lo-
cal intensity neighborhood. Therefore, features can be located be-
tween voxels, rather than strictly at voxel coordinates. See
Fig. 5(c) for an example.

One more filtering step is applied to select the final set of fea-
tures. Candidate features are sorted by m(x) values. Then, they

are accepted one-by-one starting with the highest strength and
continuing until the list is exhausted. When a feature (at location
X) is accepted, each remaining point whose strength is less than
tm(X) (T =0.8) and whose position is within distance Q of x
(Q = 4 mm, currently) is eliminated. This provides a semi-dense
set of features (31 per cm? on average). The filtering parameters
were found experimentally with the emphasis on coverage and
completeness (see the discussion at the beginning of this section).
An example of a feature extraction result is shown in Fig. 5(d).
Fig. 16 shows features as part of a checkerboard mosaic of X-Y
slices taken from aligned volumetric neighborhoods.

3.2. Keypoints and indexing

Corner-like features are used to form keypoints and compute
descriptors for matching and indexing. This section gives an over-
view of this process. Section 3.3 shows how keypoint indexing is
used to generate initial matches for a nodule (or any other location
of interest).

Keypoints are found by repeating the foregoing process with
Q = 6 mm. The larger spacing for filtering the points reduces the
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(a)

(b)

Fig. 5. An example showing the feature and keypoint extraction steps on an axial slice of a source volume centered on the lung. First, the strength is computed as the trace of
the outer product of the intensity gradient at each voxel location (a). The locations with the highest strength after local contrast filtering are shown in (b). Second, non-
maximum suppression is applied and feature locations are refined to subvoxel accuracy (c). Finally, the feature extraction result is obtained after spatial filtering (d). The
features are widely distributed throughout the image. Occasionally, features are missing along the boundaries of structures because they are detected in 3D and might get
suppressed in this slice while being present in the neighboring slices. Corner-like features are spatially filtered once more with a larger filtering radius to produce keypoints

(e). On average, 800,000 features and 50,000 keypoints are extracted per volume.

size of the feature set, making matching more efficient. Keeping
only corner-like features (Fig. 5(e)), an associated descriptor vector
is computed for each feature to form a keypoint.

Descriptors are computed by adapting the Shape-Contexts
(Belongie et al., 2002; Mori et al., 2005) approach, previously used
for 2D images and range data (Frome et al., 2004). Specifically, at
each keypoint location x,, we form a local spherical coordinate
system centered at X,,. The region radius is r = 30 mm, which we
found to be a good balance among cost, distinctiveness, and loca-
tion accuracy. Each feature with the location x; within r from x,,
has a strength m(x;) and an orientation given by the basis vectors
{T4(x;)} (Section 3.1). The coordinate system of a keypoint at

location x,, is formed as the weighted average of the feature orien-
tations: @y(Xn) = S m(x)Ta(x;)/S;m(x;), for each dimension d
(Fig. 6).

The descriptor is represented relative to the keypoint orienta-
tion (Lowe, 2004). In the local spherical coordinate system, four
angular bins and four radial bins are formed, together with an
additional central bin (Fig. 7). Major orientation inside each bin
is computed as the weighted average of feature orientations
(Fig. 8). The major orientations are concatenated into a 195-com-
ponent descriptor vector ([4 elevation x 4 azimuth x 4 radial + 1
central] x 3 dim. normal = 195 bins). This is nearly the size of 2D
image descriptors (Lowe, 2004) and much smaller than descriptors
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Fig. 6. Local coordinate system centered at a keypoint location x,, is formed from
features with locations {x;} within the distance r from x,,. The coordinate system
O(x,,) is established as the average of feature orientations {I'(x;)} weighted by the
feature strengths {m(x;)}.

used for range data (Frome et al., 2004). This smaller descriptor re-
sults in faster matching and is sufficient for 3D volumes due to
more distinctive spatial distribution of points than in range data.
The range points are located only on surfaces visible to the scanner,
so many 3D bins will be empty, whereas in a CT volume, the fea-
tures are detected in all directions, resulting in a richer descriptor.

Keypoints — we are not yet discussing nodule locations — are
matched by finding the keypoint in the fixed image I, that mini-
mizes the Euclidean distance between descriptor vectors. The
search is accelerated by storing the descriptor vectors in k-d trees,
one for each image I,.

3.3. Initial matching for a nodule

For a given nodule location x; in image I;, we gather the key-
points and their descriptors in a surrounding region A (X,) and
match them against the keypoints and descriptors from image I,
and from these matches we generate a series of initial transforma-
tion estimates between I; and I,. We use all the keypoints in the

Fig. 8. The feature orientations in the rotated coordinate system, i.e. relative to the
keypoint orientation, are denoted {lN“’d(x,v)}. Features that fall into each bin and the
neighboring bins along each dimension are gathered into a set By. The weighted
average of the feature directions is then computed as 7 = ‘gﬁleggkbifg(x,-) /
> xen, Di- The direction I'; was derived from the eigenvector corresponding to the
largest eigenvalue of the intensity outer product matrix at the feature location
(Section 3.1). The weight b; = 1 at the center of the bin and linearly decreases to 0 at
a distance equal to the bin size along each dimension. This reduces the boundary
effects since each feature can contribute to multiple bins with the weight
distributed by b;. The resulting orientation # is recorded as the major orientation
for each bin.

region because (a) indexing is fast and (b) it is difficult to predict
in advance which keypoint will produce a good match. The region
size was chosen to produce a sufficient number of matches without
sacrificing the accuracy of the initial estimates.

When two keypoints are matched, the rigid transform T, be-
tween the two keypoint neighborhoods is obtained by aligning
the keypoint coordinate axes as follows. Let the location and orien-
tation of a matched keypoint from I; be X, and Ry, (®1(Xmn), ©2(Xp),
0;(Xn)), respectively. Let the location and orientation of a keypoint
from I, be y, and Ry, (©1(y,). ®2(¥,), ®s(y,)), respectively. Then,
the initial rigid transform Ty(Ry,t;) is obtained as: R, = Ry"RIm
and t, =y, — Xn-

3.4. Transformation estimation

The indexing of keypoints produces a list of matches ordered
based on the descriptor distances, which means that the most sim-
ilar descriptors are near the top of the list. Each match is used to
generate an initial rigid transform by aligning local keypoint coor-
dinate axes. The degree to which the structures are aligned using
the initial transform varies. The ordering of matches is changed

™

9.7 |17.0 30.0

L)

Fig. 7. The keypoint descriptor is computed by forming a local spherical coordinate system oriented along the keypoint’s axes. A cross-section through the descriptor along
the plane of the red circle is shown on the right. Four angular bins and four radial bins are formed, (up to radius r = 30 mm), together with an additional central bin. One such
bin is highlighted with a black line. Following Belongie et al. (2002), the partitioning is uniform in the log-polar space, which corresponds to a linearly increasing positional
uncertainty with distance from the keypoint location. (For interpretation of references to color in this figure legend, the reader is referred to the web version of this article.)



M. Sofka, C.V. Stewart/Medical Image Analysis 14 (2010) 407-428 415

to place those that provide the best initial alignments near the top.
The reordering is based on the initial alignment error of features
from the initial matches.

Starting from the initializations, the estimation procedure finds
the transformation T, with parameters 0, that best aligns the
neighborhoods M (x,) and M (X} ), X}, = Ty(X), by applying a robust
form of ICP:

E0) = > vip(dp;, a5 00)/0), (5)
(pi.9;)€C

where C is a set of correspondences, each established between a
moving point p; from M(x;) and a fixed point q; from M (x;). Func-
tion p(-) is the Beaton-Tukey M-estimator robust loss function
(Stewart, 1999):

« {1 - (1- (%)2>3} ul<a (6)

e, [ul > a.

p(u) =

The constant a is set to 4, which means that normalized alignment
error distances beyond 4¢ have a fixed cost. Spatial weight
v = 1/(1 +c(x, — qj)2>, with ¢ =5, increases the influence of the
matches close to the region center and decreases the influence
when approaching the region boundaries. This improves the accu-
racy of the estimate at x;.

The error distance d is computed as follows. The residual vector
is e =Ty(p;; 0x) — q;. The squared error is computed from e as
d* = e"Me, where M =1 for point-to-point, M =1 —tt" for point-
to-tube, and M = nn" for point-to-sheet distance. Here, I is the
identity matrix and t and n are the unit tangent and the unit nor-
mal at the fixed point location q;. The distance d is normalized by
error scale o.

The objective function (5) is minimized using Iteratively
Reweighted Least-Squares (IRLS) (Stewart, 1999; Meer, 2004)
which alternates two steps: (1) establishing correspondences C
and recomputing weights {w;} and (2) finding parameters 6, by
minimizing the squared errors after applying robust function and
weights {w;}:

0,( = Z U]Wu

(Pi))C

%Py, G: O)- (7)

The distance-based robust weight w; is computed as:

wi= Y w(d(p,.q;:0,)/0)/0?, (8)

(pi.g;)eC

where w(-) is the robust M-estimator weight function (Stewart,
1999):

R P 0

0, [ul > a.

At the first iteration, the scale ¢ is estimated using the MUSE algo-
rithm (Miller and Stewart, 1996). The MUSE algorithm extracts the
best fit from the data by minimizing objective function of unbiased
scale estimates. After the first iteration, the scale is computed as:

= > ywd (P 00/ Y ywy (10)

(pi.ay)eC (Pi))C

The estimation is symmetric, which means that constraints from
forward and backward directions are used together to estimate 0.
This increases the stability of the estimation.

Parameter estimation is the most computationally expensive
part of the algorithm. Speedups are achieved by efficient matching
and by a multi-resolution scheme. The feature matching is acceler-
ated by using Voronoi maps Duda et al., 2001, Chapter 4 for effi-
cient nearest neighbor search. The multi-resolution starts by

randomly sampling the moving points in the neighborhood
M(Xy) to obtain at most F = 1500 initial features — enough to com-
pute an accurate affine transformation estimate. The estimation is
then run until convergence while randomly selecting F features at
each iteration. The final transformation is used to initialize the esti-
mation at a finer resolution. The computation at the finer level
starts by setting F < 2F and resampling points in M (Xy). The mul-
ti-resolution scheme stops when the finest resolution is reached,
i.e. all available points from M(x,) are used. The transformation
estimate at the finest resolution is the final estimate .

3.5. Independent motions

The affine transformation model used by LRR is not accurate in
regions, such as near bones, where different tissues that appear in
the region may be moving independently during the breathing cy-
cle. In this case matching all features in the region can lead to mis-
alignments. Filtering feature matches by finding independent
motions or using robust estimation (Cech et al., 2008; Ferrari
et al., 2004; Lhuillier and Quan, 2005; Yang et al., 2007) is difficult
because the error distances (Eq. (5)) for separately moving features
can be quite small (smaller than four standard deviations, see Eq.
(6)). Instead, we use an oversegmentation of the lung CT volume
computed using the watershed segmentation algorithm (Ibafiez
et al., 2003) to select features from I; to match during transforma-
tion estimation. An example of two segmented volumes is on the
bottom of Fig. 9.

Using the segmentations, LRR starts by collecting all moving
features in the segment at X, into P and all fixed features at X;, into
0. If the sets P and Q contain enough features (|P| > 1500, |Q| >
1500), the estimation starts according to the multi-resolution
scheme (Section 3.4) using the features in P and Q. Otherwise,
the segments in the moving and fixed images are sorted according
to the Euclidean distance of the nearest segment boundary point
from x and x;, respectively. The features from the first closest seg-
ment in each sorting are included in 7 and Q. More features are
added from farther segments until the desired size (1500 features)
is reached. Once the estimation starts, no additional features are
added. Therefore, the foregoing process indirectly selects which
features are used at the finest resolution.

In the example in Fig. 10, the lung volume moves differently
from the surrounding tissue and bone. LRR is initialized at a nodule
location close to the lung wall. Only features that are within the
same anatomical region surrounding the query point X, and the
mapped query point X; are used during estimation. The accuracy
of the final estimate is improved because the feature matches out-
side the lung volume are not included. Deformable registration
(Section 2.3) uses a smoothness constraint (Vercauteren et al.,
2007), essentially producing an average of the lung motion and
the motion of the surrounding tissue and bone. This causes inaccu-
racies near the boundaries of the two motions. The problem has
been addressed by using an L1 regularizer term instead of the L2
term (Pock et al., 2007) but the evaluation on the clinical datasets
is limited (only four examples studied). In Cahill et al. (2009) an
improvement of 10% in the median alignment error is achieved
by using a locally adaptive regularizer.

3.6. Alignment decision process

A crucial step in the LRR algorithm is the decision process that
determines whether the final alignment is sufficiently reliable to
be called “correct”. This decision process discards alignments that
were produced from incorrect initializations (using non-corre-
sponding neighborhoods) and rejects estimation results with mis-
aligned regions. By relying on this decision criteria, we can truly
recognize the nodule location x, and its surrounding neighborhood
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Fig. 9. Top: The lung is expanding due to breathing which results in a different relative position between the nodule and the neighboring rib (indicated by an arrow) in the
images. LRR estimates the motion at the nodule location inside the lung volume while ignoring the other motions. Accuracy of the estimate is improved since only feature
matches from one motion are used. Bottom: Over-segmented volumes are used to add only features from the moving (left) and fixed (right) regions of the same anatomy.
Each segment produced by the watershed algorithm is shown with a different color. (For interpretation of references to color in this figure legend, the reader is referred to the

web version of this article.)

N (X;) in the entire volume I,. When the decision step does not ac-
cept the alignment, the next match from the rank-ordered list is
used to initialize a new estimation process. The algorithm contin-
ues until an alignment is accepted or until the list is exhausted. In
the latter case, LRR exits with a statement that no transformation
has been found for the location x.

The decision process computes an eight-dimensional vector
®, = {¢1,..., g} from the forward (T;) and backward (T,"') trans-
formations and the final ICP feature correspondences. In the fol-
lowing, we show how to compute ¢,,...,$, using the forward
transform (Ty). The measures ¢s,...¢g are computed similarly
using the backward transform (T,'). Each of these measures is in-
tended to be small when the alignment is correct and large when it
is incorrect.

The first measure is the average mapping error between fixed
and mapped moving points. It is calculated from the final ICP
feature correspondences C. Using the notation above, the map-
ping errors are weighted by the IRLS robust weights and
averaged:

¢r=> widP ;00 / D wy (11)

(Pi.gj)eC (pi.qj)C

The second measure uses only the subset C; of correspondences
involving sheet features. For correspondence (p;,q;), let m; and n;
be vectors normal to the local sheet structure at p; and q;, respec-
tively. Each normal vector m; at a moving point location is mapped
with the transform T, producing a vector m;. The average of angles
between each m; and n; is then evaluated:

b= 3 s (mion) /5w 12
(

(Pi,9j)€Cs Pi.4;)<Cs

Random (incorrect) alignments produce large values of these nor-
mal angles.

Using a subset C; with correspondences (p;,q;) formed from
tubular features and replacing the normal vectors {m;} and {n;}
by vectors {s;}, {t;} tangent to the tubular structures, the previous
steps are modified to compute the third measure as:

> wy (13)

(P;.4j)€Ct

$3= > wicos (Is; )

(Pi4j)€Ct

The fourth and final measure is based on the transfer error covari-
ance of the transformation parameters Hartley and Zisserman,
2000, Chapter 4. The neighborhood M(xy) is sampled in 3D at reg-
ular intervals to obtain the set of locations {I;}. The measure, which
characterizes the stability of the parameter estimate, is then calcu-
lated as:

¢4 = max trace(J,, (1)SoJ,, )", (14)

where J, (I;) = 0T,/90, evaluated at ..

The vector ®, is used to train a soft-margin SVM classifier with
a radial basis kernel (Vapnik, 1998). The classifier has a binary out-
put: aligned or misaligned. It is trained only once for each applica-
tion using a training set of neighborhood alignments. The vector is
computed for all initializations from the training set, even those
that did not provide a correct final alignment. Alignments with
changes are left out. The decision boundary is shifted (Chang and
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Fig. 10. By using features only within the same anatomical regions, LRR alignment near the boundaries of two independent motions is more accurate than the alignment by
the Diffeomorphic Demons algorithm. The smoothness constraint in the deformable registration algorithms essentially averages the two motions.

Lin, 2001) to bias the classifier towards the vectors of the misa-
ligned results. This causes the decision process to limit the cases
when an incorrect result would be accepted. On the other hand,
correct alignments are occasionally rejected. This is less of a prob-
lem because the next match is tried from the rank-ordered list. The
algorithm can still produce a correct and successfully verified
alignment. See Section 4.3 for the experimental analysis of the
decision algorithm.

3.7. Speedup by multiresolution indexing

Features, keypoints, and descriptors are precomputed for each
image so that LRR processing at different locations {x,} is fast in
an interactive application. In the case when the number of locations
{x,} is small and an additional computational cost when applying
LRR at each location can be afforded, most of the precomputation
time can be saved. To achieve this efficiency, we experimented with
a simple multiresolution indexing scheme motivated by a recent
technique applied to 2D images (Liu et al., 2009).

A multiresolution hierarchy of image volumes I, and I, is cre-
ated by subsampling the original volumes. At resolution i, only
the descriptors in I within region R; of size r?, centered at ¢;
are used for matching (Fig. 11). When matching a keypoint from
I;, we find the keypoint from I, within R; that minimizes the in-
ter-descriptor distance. The best match of keypoints from N (xy)
produces an initial transform Ty ;. At the next resolution, i+ 1,
the matching is repeated but this time only the descriptors in
I, within the region of size r;;, centered at ¢;q = Ti1(X,) are
used (ri;; < ;). This produces a new match with refined location
and orientation. At the coarsest resolution, the size ry equals the
size of the volume I, and the center ¢, corresponds to the vol-
ume center. We used two resolutions in our tests and we set
the size r{ = 30 mm.

The multiresolution indexing achieves computation savings in
applications where only few locations {x,} are processed in batch
processing. Features, keypoints, and descriptors need to be com-
puted within NV(x;) in I; and only within the region R; of size r;
in I, at each resolution i, which is much smaller than the whole
volume size I, at the finest resolution. However, to obtain the



418 M. Sofka, C.V. Stewart/Medical Image Analysis 14 (2010) 407-428

Resolution I

N(Xk)

Resolution 7 + 1

I

match

|

Fig. 11. Multiresolution indexing scheme. At resolution i, only descriptors within
region R; of size r}, centered at ¢; are used for matching. Features, keypoints, and
descriptors only need to be computed within the neighborhood N (x,) in I; and
within the region R; which is smaller than the size of the volume I, at the finest
resolution.

highest interactive speed, precomputing the features, keypoints,
and descriptors is desirable.

4. Experiments

Our experimental evaluation starts by testing each of the LRR
stages: the assessment of keypoint indexing is in Section 4.2 and
the estimation and the decision steps are tested in Section 4.3.
We will then turn to studying the overall algorithm performance.
In Section 4.4, LRR is initialized at nodule locations and the final
alignments are evaluated qualitatively and quantitatively. Section
4.5 analyzes the local affine alignments of regions with respect
to the deformation fields obtained by the Diffeomorphic Demons
algorithm. In Section 4.6, LRR is compared to a global nodule reg-
istration technique with local refinement. LRR alignments on a
database to evaluate response to therapy in lung cancer are evalu-
ated in Section 4.7. Timing results are presented in Section 4.8, and
the experimental results are summarized in Section 4.9.

4.1. Data sets

The data for our first set of experiments in Sections 4.2-4.6 are
screening and diagnostic lung CT scans, with two scans for each pa-
tient taken approximately one year apart. The scans were obtained
with a GE Healthcare LightSpeed CT scanner with a tube current
from 30 mA to 60 mA (screening scans) and from 250 mA to
440 mA (diagnostic scans), peak voltage from 120 kV to 140 kV,
reconstruction diameter from 180 mm to 441 mm, and exposure
time from 0.6 s and 1.1 s. After masking out the background, the
size of the volumes ranges from 478 x 382 x 106 voxels to
511 x 422 x 122 voxels. Their slice spacing ranges from 2.5 to
5 mm and the voxel width ranges from 0.63 to 0.91 mm. Most of
our thoracic scans were reconstructed using the lung kernel, but
several of them using the soft kernel as well. Soft kernels produce
images with lower spatial resolution, but higher contrast (Prokop
et al., 2000).

An expert annotated 12 volume pairs (lung kernel) containing
35 nodule pairs. Using additional 10 volumes of the soft kernel
CT reconstruction yields 22 volume pairs with a total of 67 nodule
pairs available for experiments. Throughout the experiments, one
nodule from each nodule pair is used for the initialization and
the result of an experiment is compared to the corresponding

nodule from the pair. The reference nodule annotations are accu-
rate for comparative evaluation of several methods for nodule
alignment since any annotation errors will affect the accuracy of
all techniques. The nodules are non-calcified and have different as-
pect (i.e. solid, partial solid, and non-solid). Of the 67 nodules, 19
have diameter from 1 to 4 mm, 22 have diameter from 4 to
8 mm, 16 have diameter from 8 to 12 mm, and 10 have diameter
from 12 to 20 mm. Several examples are in Fig. 12. Notice the var-
iability in their shape and location and the different amounts of
noise in the images.

The experiments in Section 4.7 are on The Reference Image
Database to Evaluate Response (RIDER) to therapy in lung cancer
(Armato et al., 2008). The scans were obtained with a GE Health-
care Systems LightSpeed CT scanner with a tube current from
180 mA to 441 mA, peak voltage of 120 kV, reconstruction diame-
ter from 260 mm to 466 mm, and exposure time from 0.5 s to 1.1 s.
After masking out the background, the size of the volumes ranges
from 510 x 318 x 46 to 511 x 511 x 321. Their slice spacing is
1.25 and 5mm and the voxel width ranges from 0.49 to
0.91 mm. Of the 52 nodules in the pilot dataset (RIDER1), 4 have
diameter from 2 to 10 mm, 23 have diameter from 2 to 15 mm,
and 25 have diameter from 16 to 31 mm. Of the 32 nodules in
the second dataset (RIDER2), the tumor sizes ranges from 11 to
93 mm, with a mean of 38 mm.

4.2. Keypoint indexing

Since our approach hinges on effective keypoint matching, it is
important to examine some empirical tests that motivate the ap-
proach and guide several design decisions. These experiments are
based on a small set of CT volume pairs. For each pair, the Diffeo-
morphic Demons algorithm (Vercauteren et al., 2007), currently
the best algorithm for global lung CT registration (Urschler et al.,
2007), is applied to produce a transformation T; (Fig. 14). For
any keypoint match, if, after application of T; to the keypoint from
I, the keypoints are within 9 mm of each other and their axes are
within 20°, then this is considered a “good” candidate match. This
distance and orientation tolerance is defined to categorize as
“good” those matches, that can provide initial transform accurate
enough to be successfully refined into the final estimate. The toler-
ance therefore defines the acceptable level of inaccuracy for the
estimation stage rather than characterizing the quality of the
matches in the absolute sense. We use the rule to examine the re-
sults of keypoint matching at a random sampling of 1000 locations
in and around the lung in each scan. Here is a summary of the
results:

e Consider the closest keypoint u; to location x;. On aver-
age, X, has a good match, independent of the descriptor
distance, 72% of the time. Also on average, the best
descriptor match for x, is “good” 40% of the time.
Together, these show the promise of the indexing
approach, but also clearly indicate that more than just
matching the closest keypoint is needed.

e The next issue is how far we need to look before finding a
good keypoint match. On average, a good match exists
within 10 mm of x; for 20% of the locations, within
20 mm for 65%, and within 30 mm for 98%. When requir-
ing the good match to be the best descriptor match, these
values are 2%, 18%, and 96% for 10 mm, 20 mm, and
30 mm, respectively. This shows much greater promise.

e Since there may be many keypoints in A/(x;) (on average
160 within 30 mm), knowing that a good one exists is not
sufficient. Many incorrect initializations might be gener-
ated before the good keypoint match is encountered. We
must therefore consider the effects of rank-ordering of
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Fig. 12. Examples of nodule pairs in neighborhoods of size 100 x 100 mm. The red circle with 30 mm radius illustrates the size of the region used to compute the keypoint
descriptors. The keypoint locations, however, might not be exactly at the nodule centers and in the same slice. Notice the variability in the nodule shape and location within
the thoracic cavity. Also notice the different amounts of noise in the images. Independent motions of the lung volume and the bone (brightest) are clearly visible in several
cases (1st row, 3rd and 4th column, and 2nd row, all columns). (For interpretation of references to color in this figure legend, the reader is referred to the web version of this

article.)

the matches. Indexing followed by rank-ordering based
on descriptor distance must put good matches near the
top. Experiments show that when the top 20 matches
are considered for all keypoints within 30 mm, 65% are
good. More importantly, 95% of the x, have at least one
good match within the top 20. These encouraging results
justify the design path taken here. It is crucial to realize
that this 95% figure does not represent an upper bound
on the overall success rate of the algorithm since the
alignment process can often overcome initial misalign-
ments from keypoint matches that are not considered
“good”. As a final note, if we replace our ordering by
descriptor distance with Lowe’s widely-used distance
ratio (first to second best match for a keypoint), the pre-
vious percentages drop slightly to 62% and 93%.

4.3. Estimation and decision

Testing of the estimation and decision components of the algo-
rithm is done by a visual assessment of the algorithm output. The
schematic diagram of the experimental setup is in Fig. 15. Estima-
tion is initialized by keypoint descriptor matches and is run until

convergence (or stopped when an invalid transformation is pro-
duced). A set of 600 initializations at random locations in six vol-
umes is tested and the result of every estimation presented as a
panel of nine images (Fig. 13). Each panel contains an axial, sagit-
tal, and coronal slice through the fixed and mapped moving vol-
ume neighborhood. It also contains a checkerboard image with
alternating fixed and mapped moving slices. An independent ob-
server visually examined each panel and marked each alignment
as successful, unsuccessful, or undefined. The successful and
unsuccessful estimation results were divided based on the initial-
ization being good (using a good match) or bad. In this evaluation,
the categorization of matches is determined by the Diffeomorphic
Demons deformable registration algorithm. As a reminder a “good”
match is defined by applying the deformable registration to the
keypoint from I; and requiring the mapped keypoint to be within
9 mm and its axes within 20° of the matched keypoint (Section
3.2). The decision algorithm is trained as described in Section 3.6
and the classification results are evaluated using the successful/
unsuccessful labels of the estimation results.

Several examples of final alignments are shown in Fig. 16.
They represent both cases where LRR is in agreement with the
deformable registration and cases where the location registration
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Fig. 13. A panel of nine images for each result presented to an independent observer for the alignment evaluation. The rows show axial, coronal, and sagittal slices. The
columns show mapped moving slices, fixed slices, and checkerboards alternating mapped moving and fixed slices. The features are superimposed onto the images.

I

Matched keypoint

=

Mapped keypoint

Fig. 14. Empirical analysis of keypoint matching using the Diffeomorphic Demons
mapping (transformation T¢). The location and orientation of a corresponding
match in I, for a keypoint from the moving image I; is compared to the location and
orientation after mapping the keypoint from I; with Tc. See text for the results.

alignment appears to be more accurate. The algorithm correctly
handled breathing state differences close to the lung wall which
tend to cause misalignments in the deformable registration. After
counting the successful and unsuccessful alignments, we have
learned that for two volume pairs, all good (and several bad) ini-
tializations produced successful alignment (Table 1). Correspond-
ing neighborhoods with partial alignment but visible changes (see
Fig. 16) were marked as undefined. The estimation did not pro-
duce a successful alignment in seven cases for one volume pair
and in two cases in each of the remaining three volume pairs.
Such cases are automatically identified and a different initializa-
tion is tried. The overall algorithm succeeds on 97.3% of all initial
locations.

The decision algorithm is tested for each volume pair using the
leave-one-out procedure. The decision classifier is first trained
using all but one volume pair using the steps described in Section

3.6. The testing on the left-out pair then produces counts for two
types of errors: false positives (FP) and false negatives (FN). False
positives are estimation results deemed aligned by the decision
algorithm but manually graded as misaligned. False negatives are
results deemed misaligned by the algorithm but classified as
aligned by the grader. On the rest of the alignments, the grader
and the algorithm are in agreement, i.e. they both identify the
same results as correctly aligned (true positives) or misaligned
(true negatives).

Out of 574 neighborhood pairs, the total number of false posi-
tives was 2, while the number of false negatives was 29. This
shows that the algorithm is not likely to accept an incorrect align-
ment. Rejection simply means that another initialization is tried.
The bias towards misalignments was introduced during training
(Section 3.6) by shifting the decision boundary of the SVM classi-
fier. The most ambiguous cases for the decision algorithm (and
manual grading) are those with local regions containing changes
between them (marked as undefined).

We have also compared the classification capability of each of
the six decision components. The results using the full 8-compo-
nent measurement vector are used as a reference. The soft-margin
SVM classifier trained with different parameters, scale of the radial
basis kernel and a penalty cost for mislabeled examples, produces
different false positive and true positive rates for each parameter
setting. The training and testing procedure is repeated with a 5-
component measurement vector leaving out each of the compo-
nent in turn. The true positive and false positive rates from each
experiment and parameter setting are used to compare the classi-
fiers in an ROC analysis.
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Transformation estimation
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Keypoint indexing:
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421

Fig. 15. Schematic diagram of the experimental evaluation of the estimation. The match (u;,v;) is used to initialize the estimation and the result is visually assessed as
aligned, misaligned, or undefined. The keypoint u; from the neighborhood of the query location x is mapped using the deformable registration Ts. The match (u;, v;) provides
a “good” initialization if the matched keypoint v; and the mapped keypoint T¢(u;) are within 9 mm and their axes within 20°. The results in Table 1 are grouped based on the

initialization being good or bad.

Fig. 16. Examples of LRR (1st and 3rd column) vs. deformable registration (2nd and 4th column). Agreement of both results (a) and examples where LRR alignment is better
(b). Features detected in fixed (blue) and moving (red) images drive the registration. The robust estimation ensures that the outliers (i.e. feature points that do not have a
direct match in the other volume) are ignored. The outliers might be caused by a difference in the breathing state as in the bottom right example (upper half of the volume).
The regions are still well aligned in the lower half. (For interpretation of references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 1

Estimation results using 100 random initializations per volume pair grouped based on
whether the initialization was good or bad (see schematic diagram of the
experimental setup in Fig. 15). Numbers indicate successful/unsuccessful alignments
that were initialized with a good (2nd/4th column) or a bad (3rd/5th column) match.
Estimation succeeds in many cases where the initialization is poor (3rd column) and
the number of estimation failures is small (4th column). The volume pairs for this
experiment were randomly selected.

Initialization Good Bad Good Bad

Estimation Success Success Failure Failure Undef.
Pair 1 63 10 2 16 9

Pair 2 81 5 2 9 3

Pair 3 86 3 0 11 0

Pair 4 78 6 2 11 3

Pair 5 92 6 0 2 0

Pair 6 43 17 7 22 11
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Fig. 17. Testing the classification power of each of the decision measure compo-
nents. Varying the two SVM parameters, each curve is plotted by averaging all true
positive rates for a given false positive rate. (This averaging causes the curves to be
non-monotonic.) The classifier with the full 8-component measurement vector
gives the best results. The highest decrease in performance was in a classifier
without the measure of angles between sheet structures. The trace of the transfer
error covariance is the least indicative so the ROC curve was left out of the plot.

ROC curves are typically obtained by varying a single discrimi-
nation threshold. Since the soft-margin SVM has two parameters,
we plot each curve by averaging all true positive rates for a given
false positive rate. The results in Fig. 17 show that the full 8-com-
ponent measure achieves the smallest false positive rate at a high
true positive rate. The measure based on the trace of the transfer
error covariance is the least indicative so the ROC curve was left
out of the plot. Considering the remaining components of the mea-
surement vector, the most decision power is in the measure of an-
gles between sheet structures. The classifier without this measure
performs the worst. Less substantial decrease can be seen by
removing the alignment error component. The classifier without
the measure of angles between tubular structures produces higher
true positive rates than the full 8-component classifier if we toler-
ate higher false positive rates.

4.4. Nodule locations
Our next set of experiment uses the manually-matched loca-

tions of nodules in two time-separated CT volumes to evaluate
the complete LRR algorithm. The LRR algorithm was initialized at

Table 2

Quantitative analysis of mapping errors computed according to the figure above.
Given is a nodule location in one volume (Nodule A). The error between the
corresponding nodule location (Nodule B) and the location of the Nodule A aligned
with Diffeomorphic Demons (dge,, 2nd column) and LRR (dig, 3rd column) was
computed. Median, 25th, and 75th percentile errors computed for all nodules are
lower for the LRR algorithm. The last column shows errors between the nodule
locations mapped using the Demons algorithm and the locations mapped with LRR
(deom)- On average, the differences agree with the amount of improvement by LRR.

Nodule A LRR drn

a
com 3 Nodule B

T (demons) Qe

Error [mm]/algorithm aam dirr deom
25th percentile 143 1.25 0.33
Median 2.14 1.70 0.55
75th percentile 3.40 2.94 1.63

nodule locations in a scan from one of the time points (e.g. the first
volume from the pair). The algorithm was run without any user
intervention and the final transformation was saved. This was re-
peated for nodule locations from the other time point (the second
volume from the pair). This produced a total of 134 alignments
using both time points of our 67 nodule pairs for the initialization.
The locations from one volume were mapped using the final trans-
forms and also using the Diffeomorphic Demons deformation field.
The mapped locations were then compared to the locations of the
corresponding nodules in the other volume.

Table 2 reports 25th percentile, median, and 75th percentile of
the nodule location mapping error for LRR and the Diffeomorphic
Demons algorithm as compared to the nodule annotations. The
mapping error of nodule locations for the Demons algorithm is
small (the median error is 2.14 mm), but the mapping error for
the LRR algorithm is smaller (the median error is 1.70 mm). The
low mapping error is achieved through robust estimation in a fea-
ture-based registration algorithm with features detected to sub-
voxel accuracy (Section 3.1). The accuracy is especially important
for small nodules (1-4 mm), where high mapping errors could re-
sult in the estimated location being outside of the nodule volume.
Table 2 also compares the error distances between the nodule loca-
tions mapped using both algorithms relative to each other.

Generally, the differences between the algorithms correspond
with the amount of improvement by LRR. This means that com-
pared to the Demons-mapped locations, the LRR algorithm maps
the locations closer to the locations of the corresponding nodules.
One cause of the deformation field inaccuracies is the globally en-
forced smoothness constraint (Vercauteren et al., 2007). In the
presence of two independent motions, such as the motions of bone
and the lung volume (Section 3.5), the smoothness constraint tends
to average the two motions (Fig. 10). This can also happen when
the nodule shape or the neighboring structure changes. In other
cases, the deformable registration can fail because of an insuffi-
cient common surfaces between the images or because the struc-
tures are very subtle (Fig. 18). Several nodule alignments are
shown in Fig. 19. The images show a variety of the nodule shapes
and sizes. The nodule neighborhoods have a different structural
complexity. Despite these challenges, all regions are correctly
aligned and recognized by the LRR algorithm.

The LRR algorithm aligned all 134 nodule regions. In one case,
the error between the LRR-mapped location and the annotated
nodule location was 12.3 mm. The alignment was verified as cor-
rect by the algorithm but should have been rejected and the next
initialization tried. The failure was caused by insufficient structure
present in the neighborhoods, which resulted in poor feature
extraction. This example can be seen in Fig. 20.
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. -_J
Fig. 18. The deformable registration can fail when the initialization or large changes due to breathing state differences causes the corresponding structures to be far apart
(left). Another failure might happen when the structural content in the two images is too subtle to produce sufficient constraints for the deformable registration (middle). LRR

deals with these problems by robust estimation and by feature extraction which is adaptive to regions with small intensity gradients. The region neighborhoods around the
given nodule location are correctly aligned by LRR (right).

Fig. 19. Examples of nodule alignments shown as a checkerboard image alternating fixed and mapped moving axial slices. Images in the two left columns have superimposed
fixed features (blue) and mapped moving features (red). LRR correctly aligns nodules of various shapes and sizes in neighborhoods with different structural complexity. (For
interpretation of references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 20. An example of an LRR result with a large error distance between the mapped location and the annotated location. Very subtle vessels in the two regions and not
enough structure resulted in poor feature extraction. This caused a visible misalignment that can be seen from the checkerboard image (right) composed from the mapped
moving slice (left) and from the fixed slice (middle).
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One potential cause of the LRR failure is an incorrect initializa-
tion. It may happen that none of the keypoint pairs in the rank
ordering of 20 matches has keypoints from the corresponding im-
age regions. Or, the initializations provided by those matches are
too far off from the correct alignment which would cause the esti-
mation to fail. In both cases, the decision algorithm would reject
the alignments and no final transformation estimate would be gen-
erated. Another failure, although even less common, might occur
when the decision step rejects an alignment which would be con-
sidered correct based on a manual inspection (false negative) and
no further alignments initialized from the rank ordering are veri-
fied as correct.

4.5. Affine approximation of the local deformation

The next experiment tests how well the affine transform ob-
tained from the LRR algorithm agrees with the local deformation
field (see Eq. (2)). We obtain a set of point locations by regularly
sampling in the neighborhood M x;) around each nodule location
X (using nodules from both time points as before). For each loca-
tion, the average distance between the sampled points mapped
with LRR final transform and with the deformation field is com-
puted. Statistics using 134 nodule neighborhoods show that the
median error of the average distance between the mapped points
is 1.01 mm. Values of the 25th and 75th percentile are 0.84 mm
and 1.34 mm, respectively. This indicates a good approximation
of the local deformation field by the affine transform, especially
when considering that the deformation might be non-linear.

4.6. Nodule registration

We also compared the LRR algorithm to a global nodule regis-
tration technique with local refinement. As in Betke et al. (2003),
Kawata et al. (2001), Shi et al. (2007), the algorithm starts by glo-
bal registration of the two scans. First, a multiresolution hierarchy
with three resolutions is created by subsampling both volumes.
Coarse-to-fine registration algorithm initialized with an identity
transformation then runs at each resolution level in succession.
The estimated affine transform at the coarse level is used to ini-
tialize the registration at the finer level. The error at each itera-
tion is computed as the sum of square intensity differences
(SSD) between fixed and mapped moving volumes. Similarly to
Shi et al. (2007), Wiemker et al. (2008), the alignment of a vol-
ume of interest (100 x 100 x 100 mm) centered at the nodule
location is refined by a local refinement step. The final affine
transformation of the region around each given nodule location
is verified manually. Since LRR starts from locations specified in
only one volume, the corresponding nodule locations in the other
volume are also not used during alignment in this experiment.
The nodule correspondences are only used for the final quantita-
tive evaluations. We used our own implementation based on the
Insight Toolkit (Ibafiez et al., 2003), since publicly accessible code
is not available.

The median initial distance between the corresponding nodules
computed for all nodule pairs is 38.98 mm. After global coarse-to-
fine registration, this distance drops to 6.16 mm. The final mapping
error of nodule locations after local refinement is 3.57 mm, which
is higher than the result of the Demons algorithm (2.14 mm, Table
2, 2rd column) and higher than the result of the LRR algorithm
(1.70 mm, Table 2, 3rd column). The results are summarized in
Table 3.

Examples of nodule alignments compared to LRR are in Fig. 21.
In many cases, the alignment results of the two algorithms are sim-
ilar (1st and 2nd column). However, the nodule registration tech-
nique produces visible misalignments in several regions,
especially neighborhoods with differences due to large breathing

Table 3

Quantitative analysis of mapping errors for the global nodule registration with local
refinement. The initial distances are computed between nodules in one volume and
corresponding nodules in another volume to obtain the overall statistics (2nd
column). The distances after global coarse-to-fine registration are in the 3rd column
and after local refinement of the global mapping in the 4th column. Compared to the
LRR algorithm (Table 2, 3rd column), median, 25th, and 75th percentile mapping
errors computed for all nodules are higher for the nodule registration experiment.

Error (mm)/alignment Initial Global Local
25th percentile 33.52 417 2.03
Median 38.98 6.16 3.57
75th percentile 48.49 8.34 5.29

motion and close to the lung wall (3rd column, 1st row) and due
to independent motion of the lung and nearby bone structures
(3rd column, 3rd row). LRR correctly aligns these regions (4th
column).

The global registration techniques with local refinement in nod-
ule regions are attractive because they are relatively easy to imple-
ment. One difficulty is the initialization by global alignment of the
two volumes. Such initialization might fail when there are large
differences between the two scans (Shi et al., 2007). The differ-
ences are usually caused by the lung not having been scanned en-
tirely in one of the volumes (Shi et al., 2007), or by large breathing
motion. The LRR initialization step computes descriptors from local
image regions and is therefore not affected by such global
differences.

4.7. Tumor progression

During treatment planning, tumor progression or response to
therapy is studied by comparing tumor shapes and sizes across
time. To make this comparison possible, LRR can be used to find
the corresponding tumor locations in subsequent scans and to lo-
cally align the tumor neighborhoods. Our experiments are on RI-
DER1 and RIDER2 datasets (Section 4.1). The parameter settings
remained the same as in the previous experiments.

As in Section 4.4, the LRR algorithm is initialized at nodule loca-
tions and the results quantitatively analyzed. Since in the RIDER1
dataset the corresponding nodules in another volume are not
known, the quantitative evaluation is computed with respect to
the Demons algorithm. The 25th percentile, median, and 75th per-
centile errors were 1.59 mm, 3.32 mm, and 5.77 mm, respectively.
The larger differences when compared to Table 2 are caused by the
changes in the large-sized tumors as shown in Fig. 22. This results
in a non-linear motion which is estimated by the deformable reg-
istration algorithm and causes deviations from the affine mapping.
Example alignments are in Fig. 23.

The tumor locations in the RIDER2 dataset are specified in both
volumes, but the locations are only approximate (Meyer et al.,
2006; Zhao et al., 2009) because of large tumor sizes. The median
distance between locations of LRR-mapped tumors and corre-
sponding tumors in another volume is therefore higher than in pre-
vious experiments, but still below 5 mm for all 64 alignments
(from initialization at both time points).

Figs. 22 and 23 shows that given a tumor location in one scan,
LRR can automatically find the corresponding tumor in another
scan and locally align the two tumors even when the size or shape
of the tumor changes. The result of LRR can be used to initialize the
non-rigid registration of lung tumors (Matsopoulos et al., 2005), to
initialize the local registration by Diffeomorphic Demons (Vercaut-
eren et al., 2007), or for growth analysis after the tumors have been
segmented and separated from the lung wall and vessels (Reeves
et al,, 2006). The LRR failed in two cases with significant changes
in large tumors because the keypoint descriptors computed near
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Fig. 21. Examples of nodule registration alignments (1st and 3rd column) and LRR alignments (2nd and 4th column) shown as a checkerboard image alternating fixed and
mapped moving axial slices. The two techniques produce comparable results for many nodules (first two columns). The nodule registration fails in the presence of large
breathing motion (3rd column, 1st row) and when the motions of the lung region and nearby bone structures are different (3rd column, 3rd row).

Fig. 22. The tumor shapes and sizes change due to cancer progression or as a response to the therapy. The tumor in the 1st row was scanned again after three months and its
size increased as illustrated by a contour of the tumor from the second acquisition (2nd column) overlaying the tumor neighborhood from the first acquisition (1st column).
The tumor in the 2nd row was scanned after six months (2nd column) and then again after 2 months (3rd column). The corresponding tumors were automatically found and

their neighborhoods locally aligned by LRR.

the tumor centers were so different that the keypoint indexing
failed to provide a correct match.

4.8. Timing results
All steps take on average 6 s per location on a laptop PC with

Pentium 4, 2.33 GHz processor, and 2 GB of RAM, which includes
speedup by discarding initializations with high rotations (10% ini-

tializations of the first 20 have rotation more than 45°). Note that
further speedups are possible through code profiling and result-
ing optimizations, running the algorithm on a multi-core or mul-
ti-processor machine parallelizing each component, or trying
multiple initializations concurrently. The feature detection, key-
point extraction, and descriptor computation takes 5 min and
10s per volume (multi-threaded execution on an 8-core
processor).
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Fig. 23. Examples of tumor alignments shown as a checkerboard image alternating fixed and mapped moving axial slices of the RIDER1 dataset (1st and 2nd row) and the
RIDER2 dataset (3rd row). Images have superimposed fixed features (blue) and mapped moving features (red). The tumors of different shapes sizes were correctly recognized

in the other volume and accurately aligned by LRR.

There are two possible workflows when using the LRR algo-
rithm. In an interactive application, the preprocessing is done for
each volume offline. Then, applying LRR at each location takes 6 s
on average. In a batch processing of multiple locations, the multi-
resolution indexing is used (Section 3.2) to save most of the pre-
processing time. The preprocessing is done on the coarsest
resolution only, which takes 38 s per volume. Then, applying LRR
at each location takes 42 s per location, which includes computing
features, keypoints, and descriptors at the finer resolution in a re-
gion obtained from indexing at the coarser level.

In contrast, a multi-threaded implementation of the Diffeomor-
phic Demons can take as much as one hour on a computer with
1.86 GHz Quad Core processor to align. The memory requirements
for the Demons algorithm are substantial and a 64 bit machine
with 8 GB of RAM is recommended (Urschler et al., 2007).

4.9. Results summary

In our experimental evaluation, we have shown the robustness
of each of the LRR components. In 95% of the cases, the indexing of
keypoint descriptors provides at least one good match within the
first 20 sorted based on the inter-descriptor distance. Out of 574
initializations tested, the estimation stage successfully refined
most good and several bad initial transforms. The estimation failed
on only 13 good initializations. Using the same testing set, the
decision stage produced only 2 false positives and 29 false nega-
tives when classifying alignments as successful or unsuccessful.
The strongest classifier components were the average of angles be-
tween sheet structures and the average alignment error. Overall
success rate of the algorithm was 97.3% out of all initial random
locations.

Initialization of LRR at 134 nodule locations produced align-
ments for all nodules. The median mapping error was 1.70 mm

and in only one case, this error was large (12.3 mm). The average
distance between regularly sampled locations surrounding the
nodules mapped with the Diffeomorphic Demons and with LRR
was 1.01 mm. This shows a good agreement of the local affine
mapping and the deformation field. In comparison, the median
mapping error produced by a global registration technique fol-
lowed by local refinement was 3.57 mm. We have shown on a
database of 116 tumors, that LRR initialized at tumor locations pro-
vides accurate alignments which are required for evaluating re-
sponse to therapy and analyzing nodule growth. Furthermore,
the LRR algorithm runs in 6 s per initial location on average.

We computed paired t-tests on the nodule mapping error dis-
tances. For each nodule, the distance is computed between the
mapped location of a nodule from one volume and the location
of a corresponding nodule in another volume. Statistics on the dis-
tances (mean and variance) are calculated for each technique and
the final critical value t is compared against the tabulated distribu-
tion. Doing so, we found out that LRR algorithm provides signifi-
cantly more accurate alignments than the Diffeomorphic Demons
(p < 0.04) and the nodule registration technique (p < 0.0001).

5. Conclusion

We have presented a novel algorithm for Location Registra-
tion and Recognition (LRR) without solving the deformable reg-
istration first or simultaneously. We have shown the
applicability of Shape-Contexts to indexing and how they can
be used to obtain an initial transform. Overall experiments on
the longitudinal CT scans of the lung show that the algorithm
is able to handle changes between the local regions, is more ro-
bust and accurate than a global-to-local registration technique, is
at least as accurate as the deformable registration result, and
runs at interactive speeds. LRR includes a novel decision compo-
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nent which decides whether a region in one scan has been cor-
rectly recognized in another scan and aligned with the corre-
sponding region.

The algorithm is motivated by the need for computer systems
for diagnosis and treatment monitoring of lung cancer. We have
shown the effectiveness of the LRR algorithm in aligning regions
surrounding lung nodules. Given a nodule location in one of the
volumes, the algorithm correctly finds the corresponding nodule
in another volume and successfully and accurately aligns the re-
gions surrounding the nodules. The LRR algorithm is accurate
(median error of 1.70 mm, see Table 2), reliable (tested at 250
nodule locations, see Sections 4.4 and 4.7), and fast (6 seconds
per initial location after preprocessing of 5 min and 10 s per vol-
ume). Due to its robustness, the algorithm ignores changes
caused by cancer progression (Section 4.7) and differences in
breathing states, scanning procedures, and patient positioning.
This makes LRR an effective and efficient tool for aligning regions
surrounding lung nodules in the follow-up CT scans of the lung
(Fig. 1).

Exploring other applications for the LRR algorithm is imminent
since none of the algorithm components makes any assumptions
on any particular anatomy. In current colonoscopy practice, the pa-
tient is scanned in prone and supine positions so that polyps can be
reliably identified by comparing the two scans (Nain et al., 2002).
In thoracic CT scans, correspondences between equivalent parts
of the airway (Tschirren et al., 2005) or vessel trees (Charnoz
et al.,, 2004) can be used for building atlases (Cool et al., 2003),
for atlas-based segmentation and labeling of structures (Chillet
et al., 2003), and for registration (Aylward et al., 2003). Aligning
pre-operative and intraoperative data can be used for the naviga-
tion during surgical procedures (Lange et al., 2004). Many of these
alignment methods could potentially benefit from the solution of
the LRR problem.

Regions lacking structure to drive the registration may pose
difficulty for the algorithm. To correct this, the neighborhood size
might need to be chosen adaptively. Faster computation and in-
creased robustness could be achieved by processing multiple
neighborhoods concurrently. This is possible because nearby re-
gions, each mapped by an affine transformation, will be close to
each other after the mapping. When the neighborhoods are han-
dled sequentially, the earlier results may be exploited in later
processing. LRR results from multiple locations might serve as
an initialization for a deformable registration algorithm. Alterna-
tively, a piecewise affine deformable model may be defined by
interpolating between the LRR affine transformations. This would
be particularly effective in areas where anatomical structures
move independently from one another, each being mapped indi-
vidually by LRR. These areas are the main directions in our future
work.
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