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(57) ABSTRACT 
A method and system for automatic multi-organ segmenta 
tion in a 3D image. Such as a 3D computed tomography (CT) 
Volume using learning-base segmentation and level set opti 
mization is disclosed. A plurality of meshes are segmented in 
a 3D medical image, each mesh corresponding to one of a 
plurality of organs. A level set in initialized by converting 
each of the plurality of meshes to a respective signed distance 
map. The level set optimized by refining the signed distance 
map corresponding to each one of the plurality of organs to 
minimize an energy function. 

29 Claims, 5 Drawing Sheets 
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1. 

METHOD AND SYSTEM FOR MULTI-ORGAN 
SEGMENTATION USINGLEARNING-BASED 

SEGMENTATION AND LEVEL SET 
OPTIMIZATION 

This application claims the benefit of U.S. Provisional 
Application No. 61/451,371, filed Mar. 10, 2011, the disclo 
sure of which is herein incorporated by reference. 

BACKGROUND OF THE INVENTION 

Discriminative segmentation approaches are capable of 
providing reliable, fully automatic, and fast detection of ana 
tomical landmarks within Volumetric (3D) medical images. 
Discriminative segmentation approaches are also capable of 
providing accurate determination of organ boundaries. Such 
as boundaries of the inner and outer walls of the heart or a 
boundary of the liver, in Volumetric medical images. Typi 
cally, a Surface segmented using Such discriminative segmen 
tation techniques is represented by a relatively low number of 
control points, such that the control points can be used in 
Active Shape Models (ASM). 

In addition to restrictions in topology, another disadvan 
tage of Such point-cloud based shape representations is the 
dependence of the local detailedness on the local density of 
control points. The control points are often non-homoge 
neously distributed across the shape boundary, and thus yield 
varying levels of segmentation accuracy. Level set based 
shape representations, on the other hand, are capable of 
encoding segmented boundaries at a homogenous resolution, 
with simple up-sampling and down-sampling schemes, and 
may provide other advantages over point cloud shape repre 
sentations as well. 

BRIEF SUMMARY OF THE INVENTION 

The present invention provides a method and system for 
fully automatic segmentation of multiple organs in computed 
tomography (CT) data using learning based segmentation and 
level set optimization. Embodiments of the present invention 
combine the advantages of learning-based and level set seg 
mentation approaches and their employed shape representa 
tions. In particular, in various embodiments of the present 
invention, point-to-point correspondences, which are esti 
mated during the learning-based segmentation, are preserved 
in the level set segmentation. Furthermore, embodiments of 
the present invention provide novel terms for level set energy 
minimization which allow region-specific non-overlap, coin 
cidence, and/or shape similarity constraints to be imposed. 

In one embodiment, a plurality of meshes are segmented in 
a 3D medical image, each mesh corresponding to one of a 
plurality of organs. A level set in initialized by converting 
each of the plurality of meshes to a respective signed distance 
map. The level set optimized by refining the signed distance 
map corresponding to each one of the plurality of organs to 
minimize an energy function. 

These and other advantages of the invention will be appar 
ent to those of ordinary skill in the art by reference to the 
following detailed description and the accompanying draw 
1ngS. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 illustrates a method for automatic multi-organ seg 
mentation method according to an embodiment of the present 
invention; 
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2 
FIG. 2 illustrates a method for learning-based multi-organ 

segmentation in a medical image Volume according to an 
embodiment of the present invention; 

FIG. 3 illustrates imposing geometric constraints on the 
level set segmentation; 

FIG. 4 illustrates an exemplary weight map of the regions 
specific weights for the outward template constraint; 

FIG. 5 illustrates exemplary multi-organ segmentation 
results; 

FIG. 6 illustrates the effect of the geometric constraints on 
exemplary segmented organs; and 

FIG. 7 is a high level block diagram of a computer capable 
of implementing the present invention. 

DETAILED DESCRIPTION 

The present invention is directed to a method for fully 
automatic segmentation of multiple organs in a medical 
image Volume, such as a computed tomography (CT) Volume. 
Embodiments of the present invention are described hereinto 
give a visual understanding of the multi-organ segmentation 
method. A digital image is often composed of digital repre 
sentations of one or more objects (or shapes). The digital 
representation of an object is often described herein in terms 
of identifying and manipulating the objects. Such manipula 
tions are virtual manipulations accomplished in the memory 
or other circuitry/hardware of a computer system. Accord 
ingly, is to be understood that embodiments of the present 
invention may be performed within a computer system using 
data stored within the computer system. 

Embodiments of the present invention provide fully auto 
matic multi-organ segmentation in Volumetric medical 
images, such as 3D CT images, using learning-based segmen 
tation and level set optimization. Embodiments of the present 
invention combine advantages of learning-based segmenta 
tion approaches on point cloud-based shape representations, 
Such as speed, robustness, and point correspondences, with 
advantages of partial differential equation (PDE) optimiza 
tion based level set approaches. Such as high accuracy and 
straightforward prevention of segment overlaps. 

FIG. 1 illustrates a method for automatic multi-organ seg 
mentation method according to an embodiment of the present 
invention. At Step 102, a medical image Volume is received. In 
an advantageous embodiment, the medical image Volume is a 
CT Volume, but the present invention is not limited thereto 
and the method of FIG. 1 may be similarly applied to other 
imaging modalities as well. The medical image Volume may 
be received directly from an image acquisition device, such as 
a CT scanning device, or the medical image Volume may be 
received by loading a stored medical image Volume, for 
example, from a memory or storage of a computer system. 
At step 104, multiple organs are segmented in the medical 

image Volume using learning-based segmentation, resulting a 
segmented mesh for each organ. “Learning-based segmenta 
tion” refers to any segmentation technique that utilizes 
trained machine learning-based classifiers or detectors to 
detect or segment one or more organs in medical image data. 
For example, the method described for segmenting bound 
aries of multiple organs in a full body CT scan in U.S. Pat. No. 
2010/0080434, which is incorporated herein by reference, 
may be used to implement step 104. According to an advan 
tageous aspect of the present invention, explicitly represented 
boundary Surfaces resulting from a learning-based detected 
framework will be used to initialize a multi-region level set 
segmentation. Such a learning-based detection framework 
may include multiple stages, as shown in FIG. 2. 
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FIG. 2 illustrates a method for learning-based multi-organ 
segmentation in a medical image Volume according to an 
embodiment of the present invention. As illustrated in FIG. 2, 
at step 202, in a first stage, anatomical landmarks related to 
target organs are detected in the medical image Volume using 
trained landmark detectors. The anatomical landmarks may 
include organ center points as well as other anatomical land 
marks that have clinical importance or help to constrain the 
search for the organs. For example, the anatomical landmarks 
detected in the medical image Volume may include organ 
centers of the heart, liver, both kidneys, spleen, bladder, and 
prostate, as well as the other anatomical landmarks such as 
the left and right lung tips, left and right humerus heads, 
bronchial bifurcation, left and right shoulderblade tips, inner 
left and right clavicle tips, sternum tip bottom, aortic arch, left 
and right endpoints of one or more particular rib (e.g. rib 11), 
bottom front and back of one or more particular vertebra (e.g., 
Verteba L5), coccyx, pubica Symphysis top, and left and right 
corners of the hip bone, but the present invention is not limited 
thereto. A respective landmark detector is trained for each 
anatomical landmark based on annotated training data. Each 
landmark detector may be training based on the training data 
using a probabilistic boosting tree (PBT) and Haar features. 
The anatomical landmarks can be detected sequentially, Such 
that as landmarks are detected, the detected landmarks are 
used to constrain the search space for those landmarks not yet 
detected. For example, such a landmark detection strategy 
can be implemented using the method described in Lui et al., 
“Search Strategies for Multiple Landmark Detection by Sub 
modular Maximization’, Computer Vision and Pattern Rec 
ognition 2010, 0:2831-2838, 2010, which is incorporated 
herein by reference. 

At Step 204, in a second stage of learning-based segmen 
tation, bounding boxes are estimated each of the target organs 
using marginal space learning (MSL)-based detectors initial 
ized from a subset of the detected anatomical landmarks. For 
example, the MSL-based detectors provide reliable estimates 
of bounding boxes for the liver, the left and right lungs, the 
heart, the left and right kidneys, as well as other organs Such 
as the spleen, bladder, and prostate. The search space for 
MSL-based detection of each organ's bounding box may be 
constrained by the detected anatomical landmarks. MSL is 
used to estimate the position, orientation, and scale of each 
organ in the 3D volume using a series of detectors trained 
using annotated training data. In order to efficiently localize 
an object using MSL, parameter estimation is performed in a 
series of marginal spaces with increasing dimensionality. 
Accordingly, the idea of MSL is not to learn a classifier 
directly in the full similarity transformation space, but to 
incrementally learn classifiers in the series of marginal 
spaces. As the dimensionality increases, the valid space 
region becomes more restricted by previous marginal space 
classifiers. A 3D object detection (object pose estimation) is 
split into three steps: object position estimation, position 
orientation estimation, and position-orientation-scale estima 
tion. A separate classifier is trained based on annotated train 
ing data for each of these steps. Each classifier may be trained 
using a PBT. The MSL-based detection results in an estimated 
transformation (position, orientation, and scale) defining a 
bounding box for each organ, and a mean shape of each organ 
(learned from training data) is aligned with the 3D volume 
using the estimated transformation. MSL-base object detec 
tion is described in greater detail in U.S. Pat. No. 7,916,919, 
issued Mar. 29, 2011, and entitled “System and Method for 
Segmenting Chambers of a Heart in a Three Dimensional 
Image', which is incorporated herein by reference. 
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4 
At step 206, in third stage of learning-based segmentation, 

trained organ-specific boundary detectors are used to adjust 
organboundaries. In particular, trained organ-specific bound 
ary detectors may be used first at a coarse resolution to correct 
the organ boundaries and then Subsequently at a fine resolu 
tion. In addition, principal-component analysis a (PCA)- 
based statistical shape model can be used for each organ to 
regularize the boundary shape on the coarse resolution. This 
step results in the segmented boundaries for each organ being 
represented by a triangulated mesh, i.e., a connected point 
cloud, as used in Active Shape Models. 

Returning to FIG. 1, at step 106, a level set is initialized by 
converting the segmented mesh for each organ into a signed 
distance map. Although the learning-based segmentation pro 
vides accurate individual organ segmentations, the seg 
mented organs sometimes exhibit Small overlaps between 
adjacent organ boundaries or gaps where true organ bound 
aries coincide. Given the representations of only the adjacent 
segments’ boundaries such deficiencies are difficult to detect 
and remove. Instead, signed distance functions (maps) 
(b, R=> Rare initialized from each of the segmented meshes 
C. for i=1,... N organs by employing a fast mesh voxeliza 
tion algorithm. The fast mesh Voxelization algorithm Voxel 
izes each mesh in order to create a binary mask in which 
Voxels inside a segmented organboundary have one value and 
Voxels not inside the segmented organboundary have another 
value. A distance transformation is then applied to the binary 
mask for each mesh to generate a distance map in which the 
value of each point is distance of that point from the boundary. 
Accordingly, the boundary information for a segmented 
organis encoded implicitly in the Zero crossings of the signed 
distance map (p, i.e., C:={xp(x)=0, IVcp=1}, with IVcp=1 
denoting the so-called distance property, and (p-0 inside the 
object boundary and (p<0 outside of the object boundary. The 
distance maps (p, are discretized on a regular grid, which is 
assumed to be the same for all organs. Furthermore, a narrow 
band level set scheme may be employed, which maintains the 
distance property in a small narrow-band oft2 VOXels from 
the Zero crossing. 
At step 108, the level set is optimized by refining the signed 

distance maps representing the organboundaries to minimize 
and energy function. In an advantageous embodiment, the 
energy function can be a sum of a plurality of energy terms, 
with each energy term representing a different constraint 
imposed on the signed distance map representing the organ 
boundaries. The energy function can be minimized by itera 
tively adjusting each of the signed distance maps using a 
gradient descent algorithm. 
Once the triangulated boundary meshes {C}, resulting 

from the learning-based detection are converted to level set 
functions {{p,}, detecting and removing local overlaps and 
gaps between adjacent organ boundaries can be realized 
much easier. The goal is to find the correct separating bound 
ary between two neighboring organs. To that end, embodi 
ments of the present invention provide a level set segmenta 
tion approach that not only refines the segmentation boundary 
in detailedness and removes local overlaps and gaps, but also 
finds the true separating boundary given that enough image 
information is available. 

For each organ O, this refining level set segmentation is 
realized by employing gradient descent iterations to converge 
to a minimum of an associated energy function E,(cp.), given 
the initial distance maps as starting points. A data dependent 
energy term of the energy function can be expressed as: 
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with H denoting the Heaviside step function, and prefer 
ring to the non-parametric probability estimates of the inten 
sities inside and outside of the current segment (p using a 
Parzen density estimator with a Gaussian kernel, and C. being 
a constant weight that can be set by one skilled in the art based 
on experimental data. In order to add robustness against noisy 
data, a boundary Smoothness regularization energy term may 
also be incorporated into the energy function. The boundary 
Smoothness regularization energy term can be expressed as: 

which is weighted at various strengths depending on the 
region of the organ Surface. Thereby, the boundary specific 
weights Yi are associated with a set of boundary points 
Pl, . . . . eR, which are tracked along with the evolving 
Zero-crossing of the current distance map (p and thus provide 
shape correspondences. According to an advantageous 
implementation, these correspondence points are initialized 
directly by Vertices of the segmented organ meshes resulting 
from the learning-based segmentation, since point-to-point 
correspondences are estimated in the segmented meshes as 
well. 

Another energy term may be incorporated into the energy 
function to provide a disjoint constraint to remove overlaps 
between adjacent organs. Let C," and C.” represent two 
closed Surfaces which are imperfect approximations of the 
outer boundaries of two adjacent organs, and assume that 
partial overlaps are present. FIG. 3 illustrates imposing geo 
metric constraints on the level set segmentation. As shown 
image (a) of FIG. 3, region A (302) and region B (304) 
partially overlap. Given the implicit level set representation of 
the two surfaces, p" and p", locations & inside of the over 
lapping region are exclusively characterized by both (p(X)>0 
and (p(X)0, and thus provide a much simpler overlap indi 
cator as compared to any other based on an explicit shape 
representation. Accordingly, the disjoint constraint energy 
term, which explicitly penalizes overlaps, can be expressed 
aS 

where the first product (of the step functions H for p and (p) 
in the integrand is unequal to Zero only inside the overlap 
regions. According to an advantageous implementation, the 
second distance function cp is also multiplied to the product 
of step functions, which makes E. Smoother at the presence 
of Small overlaps, and thereby decease oscillations during 
gradient descent. The corresponding energy gradient can be 
expressed as: 

Image (b) of FIG.3 shows the distance maps (p. 322 and (p. 
324 for regions A (302) and B (304) along a 1D cut along line 
308 in image (a). As shown in image (b) of FIG.3 the disjoint 
constraint energy E (326) is only unequal to Zero in the 
overlap region between A and B, and thus results a gradient 
step &E, for each of the distance maps (p. 322 and (p.324 to 
eliminate the overlap region. 

Another energy term may be incorporated into the energy 
function to provide a local proximity constraint to fill errone 
ous gaps between adjacent organ boundaries. In particular, 
the following local proximity energy term can be added to the 
energy function to remove erroneous gaps: 
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1 2 (5) Ed (dA, iB) := ?pace () + etx)+D) dy 

where D is a constant that can be changed to enforce neigh 
boring boundaries being a certain distance apart. In a possible 
implementation, D–0 to enforce that no gap exists between 
the neighboring boundaries. However, the present invention 
is not limited thereto, and it is possible to enforce the two 
boundaries to not touch but stay in a predefined distance D-0 
from each other. B, denotes correspondence points-bound 
weights with B, 0 at correspondence points where no bound 
ary coincidence ought to be enforced, and some f>0 at cor 
respondence points where the boundary coincidence with the 
neighboring region should be enforced. Accordingly, the 
weight {f, changes depending on where on the boundary 
this energy term is being evaluated. This allows the local 
proximity constraintenergy term to only be applied to certain 
predetermined points on aboundary for which it is known that 
no gap should exist. 

Image (c) of FIG.3 shows the distance maps (p. 332 and (p. 
334 for regions A (302) and B (304) along a 1D cut along line 
310 in image (a). As shown in image (c) of FIG. 3 the local 
proximity constraintenergy E (336) due to p332 and p334 
will cancel each other out if their Zero crossings coincide 
since the integrand in Equation (5) becomes Zero. The gradi 
ent descent partial differential equation (PDE) of E with 
respect to p. can be expressed as: 

which shows that at Zero crossings C of the distance trans 
form (p, the distance map (p. is increased and thus C expands 
at locations where (p<D, the distance map (p. is decreased 
and thus C shrinks at locations where (p<D. 
A template constraint energy term can also be added to the 

energy function to enforce similarity of the level set result to 
an initial shape from the learning-based segmentation. This 
term ensures that the refined boundary is sought only in the 
vicinity of its initialization and prevents a region representing 
an organ from leaking it neighboring organs. The template 
constraint energy term can be expressed as: 

1 7 
Es(d), pp) := i?e. Hero) - d(x)) + (ORCH(d)(x) - d p(x)).dx. (7) 

{w," and {w," are region-specific weights (i.e., weights 
that vary based on the correspondence points) that are applied 
the shape dissimilarity measures between the current distance 
map (p and the template distance map (p (which is the initial 
distance map generated from segmented organ mesh). {w,"} 
and {w,' represent different weights applied for deviations 
inside of the template shape C, and outside of the template 
shape C, respectively. FIG. 4 illustrates an exemplary weight 
map 400 of the regions specific weights {w," for the out 
ward template constraint. As shown in FIG. 4, the weights in 
then weight map 400 vary along with correspondence points 
on the boundary of the segmented organ, with correspon 
dence points 402 having a maximum weight and correspon 
dence points 404 having a minimum weight. 

In equation (7), it can be noted that the first term of the 
integrand is non-Zero only if the Zero crossing of p resides 
inside the Zero crossing of p, that is, the current boundary C 
is Smaller than the template boundary C. The second term in 
the integrand measures local expansions relative to the C by 
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becoming non-Zero only where p(x) (p(x). The correspond 
ing energy gradient clearly shows that the proposed energy 
term has the desired effect: 

3p3t=-3E/6(p=w"8.(pp(x)-p(x))-wie,”“Ö(p 
(x)-(p(x)), (8) 

as p is increased at locations where (p<p and is decreased 
when p>p. 

Image (d) of FIG. 3 shows the distance maps (p. 342 and 
(po 344 for region B (304) and template region B (306) 
along a 1D cut along line 312 in image (a). As shown in image 
(d) of FIG.3, the template constraint energy E is reduced by 
gradient step 3E for the distance map (p.342 towards (pro 
344. 

In an advantageous embodiment, all of the energy terms 
described above are combined into energy minimizations for 
each organ O, v. 

nin E(t)+E (b)+ X Eoch, b)+ X Eich, b)+E, (8) () jeN: (i) jeP: (i) 

which are mutually coupled by the disjoint and proximity 
terms (N, denotes the indices of organs adjacent to O, and P, 
denotes indices of organs with which O, shares a mutual 
proximity constraint). Consequently, minimizers {p, of 
these individual energies depend on each other. An advanta 
geous implementation utilizes interleaved gradient descent 
iterations to refine the distance maps of the organs in order to 
improve the multi-organ segmentation results. In particular, 
decent is carried out along the negative gradients of the N 
per-organ energies in lockstep, while using the level set seg 
mentation results {p,'} of the previous joint iteration to 
calculate the coupled energy gradients GE,(b, {p,'})/&p, 
The descent for a particular energy (i.e., for a particular 
organ) is terminated if a maximum number of iterations has 
been reached, or if the maximum norm of its gradient fall 
below a given threshold, i.e., the segmentation boundary (p, 
changes less than a certain tolerance. 

Returning to FIG. 1, at step 110, the revised level set 
distance maps for the organs are converted back to 3D 
meshes. The 3D mesh for each organ can be extracted from 
the respective revised level set map using the well known 
marching cubes algorithm. At step 112, the multi-organ seg 
mentation results are output. For example, the multi-organ 
segmentation results can be output by displaying the seg 
mented organ meshes on a display device of a computer 
system. The multi-organ segmentation results can also be 
output by saving the segmentation results to a memory or 
storage of a computer system. 

FIG. 5 illustrates exemplary multi-organ segmentation 
results. As illustrated in FIG. 5, image 500 shows initial 
segmentation results for the left lung 502, right lung 504, 
heart 506, liver 508, left kidney 510, and right kidney 512 
resulting from learning-based segmentation. Image 520 
shows refined segmentation results for the left lung 522, right 
lung 524, heart 526, liver 528, left kidney 530, and right 
kidney 532 resulting from the level set optimization of the 
learning-based segmentation results. 

In a series of experiments, the present inventors studied the 
effect of the energy terms described herein qualitatively on a 
number of data sets, and thereby manually selected parameter 
values that are advantageous, especially for the correspon 
dence-bound local weights, with respect to the overall seg 
mentation accuracy and robustness. FIG. 6 illustrates the 
effect of the geometric constraints on exemplary segmented 
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organs. Image (a) of FIG. 6 shows the effects of the disjoint 
constraint on adjacent heart and liver boundaries 602 and 604, 
respectively. Image (b) shows the effects of the disjoint con 
straint on left and right lung boundaries 606 and 608, respec 
tively. Image (c) shows the effects of the template constraint 
on a segmented lung boundary 610. Image (d) shows the 
effect of the local proximity constraint on segmented right 
lung and liver boundaries 612 and 614, respectively. 
The benefit of the disjoint constraint is clear, since the true 

organ boundaries do not overlap. When adding highly 
weighted mutual disjoint terms to each organ's energy mini 
mization, overlaps in the initial segments vanish during the 
first iteration. Thereby, the location of the final joint boundary 
interface mainly depends ratio between weights of the mutual 
terms, e.g. those of Eo(p4 (P) in E4 and Eo(p., (pl) in E, 
respectively. This ratio may be different from 1 however, in 
case the initial boundary of one organ is known to be more 
accurate and robust than that if its neighbor. That, in one 
example, is the case for the heart and the liver boundaries in 
image (a) of FIG. 6. 
Whereas a single weight for E within each organs total 

energy is sufficient, the local proximity term E is designed to 
be active, i.e. its weight unequal Zero, at specific boundary 
locations that are to coincide (or stay in fixed proximity) to 
that of an adjacent organ. This localization, as described 
above, is realized by the tracking a discrete set of correspon 
dence points on the border of an organ, to which local energy 
term weights are associated with (see FIG. 4 for an example of 
associating weights with correspondence points). In an 
advantageous implementation, E is used to enforce a top 
portion of the boundary of the liver to coincide a bottom 
portion of the right lung, as shown in image(d) of FIG. 6. This 
is often not achieved by a data term alone doe to a smoothed 
edge Stemming from partial Voluming effects. 
As for the employment of template constraints, we found 

them most useful in constraining the refinement boundary to 
the initial boundary with locally-varying degrees of strength 
in addition, deviations inside or outside the initial shape can 
be constrained separately, which can be seen in the example 
of image (d) of FIG. 6. 
The above-described methods for multi-organ segmenta 

tion and level set optimization may be implemented on a 
computer using well-known computer processors, memory 
units, storage devices, computer Software, and other compo 
nents. A high level block diagram of Such a computer is 
illustrated in FIG. 7. Computer 702 contains a processor 704 
which controls the overall operation of the computer 702 by 
executing computer program instructions which define Such 
operation. The computer program instructions may be stored 
in a storage device 712 (e.g., magnetic disk) and loaded into 
memory 710 when execution of the computer program 
instructions is desired. Thus, the steps of the methods of 
FIGS. 1 and 2 may be defined by the computer program 
instructions stored in the memory 710 and/or storage 712 and 
controlled by the processor 704 executing the computer pro 
gram instructions. An image acquisition device 720. Such as 
an CT scanning device, can be connected to the computer 702 
to input the 3D images (volumes) to the computer 702. It is 
possible to implement the image acquisition device 720 and 
the computer 702 as one device. It is also possible that the 
image acquisition device 720 and the computer 702 commu 
nicate wiredly or wirelessly through a network. The computer 
702 also includes one or more network interfaces 706 for 
communicating with other devices via a network. The com 
puter 702 also includes other input/output devices 708 that 
enable user interaction with the computer 702 (e.g., display, 
keyboard, mouse, speakers, buttons, etc.) One skilled in the 
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art will recognize that an implementation of an actual com 
puter could contain other components as well, and that FIG.7 
is a high level representation of some of the components of 
Such a computer for illustrative purposes. 
The foregoing Detailed Description is to be understood as 

being in every respect illustrative and exemplary, but not 
restrictive, and the scope of the invention disclosed herein is 
not to be determined from the Detailed Description, but rather 
from the claims as interpreted according to the full breadth 
permitted by the patent laws. It is to be understood that the 
embodiments shown and described herein are only illustra 
tive of the principles of the present invention and that various 
modifications may be implemented by those skilled in the art 
without departing from the Scope and spirit of the invention. 
Those skilled in the art could implement various other feature 
combinations without departing from the scope and spirit of 
the invention. 

The invention claimed is: 
1. A method for multi-organ segmentation in a 3D medical 

image comprising: 
segmenting a plurality of meshes each corresponding to 
one of a plurality of organs in the 3D medical image: 

initializing a level set by converting each of the plurality of 
meshes to a respective signed distance map; and 

optimizing the level set by refining the respective signed 
distance map corresponding to each one of the plurality 
of organs to minimize a respective energy function. 

2. The method of claim 1, further comprising: 
generating a respective refined 3D mesh for each one of the 

plurality of organs from the respective refined distance 
map corresponding to each one of the plurality of 
Organs. 

3. The method of claim 1, wherein the respective energy 
function for each one of the plurality of organs includes a data 
energy term, a regularization energy term, and at least one 
energy term that imposes a geometric constraint on the 
respective signed distance function. 

4. The method of claim 1, wherein the energy function 
includes a disjoint constraint energy term to remove overlaps 
between signed distance maps corresponding to adjacent 
Organs. 

5. The method of claim 4, wherein the disjoint energy term 
is expressed as: 

where dB and (p are signed distance maps corresponding to 
adjacent organs, and H is a Heaviside step function. 

6. The method of claim 1, wherein the energy function 
includes a local proximity constraint energy term to remove 
gaps between portions of signed distance maps correspond 
ing to portions of adjacent organs that stay in fixed proximity. 

7. The method of claim 6, wherein the local proximity 
constraint energy term is expressed as: 

1 
Ed (dA, B) := if (c) + dB(x) + D)' dy, 

where (p and (p are signed distance maps corresponding to 
first and second adjacent organs, D is a constant specifying a 
fixed proximity distance, 1(X) is a set of correspondence 
points that provide shape correspondence, wherein the corre 
spondence points are initialized using vertices of the seg 
mented mesh for the first organ, and f, is a correspondence 
point-bound weight that is greater than Zero for correspon 
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10 
dence points located a portions of the first organ that stay in 
fixed proximity with the second organ. 

8. The method of claim 1, wherein the energy function 
includes a template constraint energy term enforce similarity 
of a refined distance map to the corresponding signed dis 
tance map initialized by converting one of the plurality of 
segmented meshes. 

9. The method of claim 1, wherein the template constraint 
energy term is expressed as: 

where p is a current signed distance map corresponding to a 
first organ, p is an initial signed distance map initialized 
from the segmented mesh of the first organ, H is a Heaviside 
step function, 1(X) is a set of correspondence points that pro 
vide shape correspondence, wherein the correspondence 
points are initialized using vertices of the segmented mesh for 
the first organ, {w," is a set of correspondence point-based 
weights applied to deviations inside a Zero-crossing of p, 
and {w," is a set of correspondence point-based weights 
applied to deviations outside a Zero-crossing of (p. 

10. The method of claim 1, wherein the step of optimizing 
the level set by refining the respective signed distance map 
corresponding to each one of the plurality of organs to mini 
mize a respective energy function comprises: 

for each organ O, , , calculating the energy minimi 
Zation: 

jew: (i) jePi (i) 

where (p, is the signed distance map corresponding to O. 
E(p) is a data energy term, E(p) is a smoothing regulariza 
tion energy term, N, denotes the indices of organs adjacent to 
O, E(t), p.) is a disjoint constraint energy term to remove 
Overlaps between (), and p, P, denotes indices of organs with 
which O, shares a mutual proximity constraint, E(p, q}) is a 
local proximity constraint energy term to remove erroneous 
gaps between (p, and (p. (p," is an initial signed distance map 
initialized from the segmented mesh corresponding to O, and 
Es(p, (p.") is a template constraint energy term to enforce 
similarity in the shapes of p, and (p.". 

11. The method of claim 1, wherein the step of optimizing 
the level set by refining the respective signed distance map 
corresponding to each one of the plurality of organs to mini 
mize a respective energy function comprises: 

minimizing the respective energy function for each of the 
plurality of organs using a plurality of interleaved gra 
dient descent iterations, wherein at each iteration, the 
respective signed distance map corresponding to each 
one of the plurality of organs is refined to reduce the 
respective energy function. 

12. An apparatus for multi-organ segmentation in a 3D 
medical image comprising: 
means for segmenting a plurality of meshes each corre 

sponding to one of a plurality of organs in the 3D medi 
cal image: 

means for initializing a level set by converting each of the 
plurality of meshes to a respective signed distance 
map; and 
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means for optimizing the level set by refining the respective 
signed distance map corresponding to each one of the 
plurality of organs to minimize a respective energy func 
tion. 

13. The apparatus of claim 12, further comprising: 5 
means for generating a respective refined 3D mesh for each 

one of the plurality of organs from the respective refined 
distance map corresponding to each one of the plurality 
of organs. 

14. The apparatus of claim 12, wherein the respective 10 
energy function for each one of the plurality of organs 
includes a data energy term, a regularization energy term, and 
at least one energy term that imposes a geometric constraint 
on the respective signed distance function. 

15. The apparatus of claim 12, wherein the energy function 15 
includes a disjoint constraint energy term to remove overlaps 
between signed distance maps corresponding to adjacent 
Organs. 

16. The apparatus of claim 12, wherein the energy function 
includes a local proximity constraint energy term to remove 20 
gaps between portions of signed distance maps correspond 
ing to portions of adjacent organs that stay in fixed proximity. 

17. The apparatus of claim 12, wherein the energy function 
includes a template constraint energy term enforce similarity 
of a refined distance map to the corresponding signed dis- 25 
tance map initialized by converting one of the plurality of 
segmented meshes. 

18. The apparatus of claim 1, wherein the means for opti 
mizing the level set by refining the respective signed distance 
map corresponding to each one of the plurality of organs to 30 
minimize a respective energy function comprises: 

means for minimizing the respective energy function for 
each of the plurality of organs using a plurality of inter 
leaved gradient descent iterations. 

19. A non-transitory computer readable medium encoded 35 
with computer executable instructions for multi-organ seg 
mentation in a 3D medical image, the computer executable 
instructions defining a method comprising: 

segmenting a plurality of meshes each corresponding to 
one of a plurality of organs in the 3D medical image: 40 

initializing a level set by converting each of the plurality of 
meshes to a respective signed distance map; and 

optimizing the level set by refining the respective signed 
distance map corresponding to each one of the plurality 
of organs to minimize a respective energy function. 45 

20. The non-transitory computer readable medium of claim 
19, further comprising: 

generating a respective refined 3D mesh for each one of the 
plurality of organs from the respective refined distance 
map corresponding to each one of the plurality of 50 
Organs. 

21. The non-transitory computer readable medium of claim 
19, wherein the respective energy function for each one of the 
plurality of organs includes a data energy term, a regulariza 
tion energy term, and at least one energy term that imposes a 55 
geometric constraint on the respective signed distance func 
tion. 

22. The non-transitory computer readable medium of claim 
19, wherein the energy function includes a disjoint constraint 
energy term to remove overlaps between signed distance 60 
maps corresponding to adjacent organs. 

23. The non-transitory computer readable medium of claim 
22, wherein the disjoint energy term is expressed as: 

where dB and (p are signed distance maps corresponding to 
adjacent organs, and H is a Heaviside step function. 

12 
24. The non-transitory computer readable medium of claim 

19, wherein the energy function includes a local proximity 
constraint energy term to remove gaps between portions of 
signed distance maps corresponding to portions of adjacent 
organs that stay in fixed proximity. 

25. The non-transitory computer readable medium of claim 
24, wherein the local proximity constraint energy term is 
expressed as: 

where (p and (p are signed distance maps corresponding to 
first and second adjacent organs, D is a constant specifying a 
fixed proximity distance, 1(X) is a set of correspondence 
points that provide shape correspondence, wherein the corre 
spondence points are initialized using vertices of the seg 
mented mesh for the first organ, and f, is a correspondence 
point-bound weight that is greater than Zero for correspon 
dence points located a portions of the first organ that stay in 
fixed proximity with the second organ. 

26. The non-transitory computer readable medium of claim 
19, wherein the energy function includes a template con 
straint energy term enforce similarity of a refined distance 
map to the corresponding signed distance map initialized by 
converting one of the plurality of segmented meshes. 

27. The non-transitory computer readable medium of claim 
19, wherein the template constraint energy term is expressed 
aS 

where p is a current signed distance map corresponding to a 
first organ, p is an initial signed distance map initialized 
from the segmented mesh of the first organ, H is a Heaviside 
step function, 1(X) is a set of correspondence points that pro 
vide shape correspondence, wherein the correspondence 
points are initialized using vertices of the segmented mesh for 
the first organ, {w," is a set of correspondence point-based 
weights applied to deviations inside a Zero-crossing of p, 
and {w," is a set of correspondence point-based weights 
applied to deviations outside a Zero-crossing of (p. 

28. The non-transitory computer readable medium of claim 
19, wherein the step of optimizing the level set by refining the 
respective signed distance map corresponding to each one of 
the plurality of organs to minimize a respective energy func 
tion comprises: 

for each organ O, , , calculating the energy minimi 
Zation: 

jew: (i) jePi (i) 

where (p, is the signed distance map corresponding to O. 
E(p) is a data energy term, E(p) is a Smoothing regulariza 
tion energy term, N, denotes the indices of organs adjacent to 
O. E(p, (p) is a disjoint constraint energy term to remove 
overlaps between (), and (p, P, denotes indices of organs with 
which O, shares a mutual proximity constraint, E(p, q}) is a 
local proximity constraint energy term to remove erroneous 
gaps between (p, and (p. (p," is an initial signed distance map 
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initialized from the segmented mesh corresponding to O, and 
Es(p, (p) is a template constraint energy term to enforce 
similarity in the shapes of (p, and p". 

29. The non-transitory computer readable medium of claim 
19, wherein the step of optimizing the level set by refining the 5 
respective signed distance map corresponding to each one of 
the plurality of organs to minimize a respective energy func 
tion comprises: 

minimizing the respective energy function for each of the 
plurality of organs using a plurality of interleaved gra- 10 
dient descent iterations, wherein at each iteration, the 
respective signed distance map corresponding to each 
one of the plurality of organs is refined to reduce the 
respective energy function. 

k k k k k 15 


