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1 Introduction

Slow acquisitions in Magnetic resonance imaging (MRI) result in reduced patient comfort as well as degraded
image quality, where the latter is largely due to patient motion and a long-term accumulation of system
imperfections. The system imperfections are even more profound in low-field MRI systems that have lower
SNR and are more susceptible to noise interference. In a typical MR imaging technique, k-space is acquired
at Nyquist sampling rate and the image is obtained by applying an inverse Fourier transform. However, more
efficient 2D or 3D sampling patterns may be designed to speed up MR acquisition time [3, 1, 4, 5]. Recently,
deep learning based approaches for accelerated MR image reconstruction have gained popularity due to their
promising performances, often exceeding the quality of the CS approaches [2, 8, 6, 9]. In this work, we present
a convolutional neural network (CNN) architecture based on the generalization of variational network [2]
for non-Cartesian cases, termed nonuniform variational network (NVN). Similar to variational networks, the
proposed method is based on the wunrolling of iterative nonlinear reconstruction used in CS, however, we
generalize the regularization functional as well as adapting the data fidelity term for nonuniform case. The
extensive evaluation reveals that the proposed algorithm is superior over existing deep learning approaches
for nonuniform data. Our extensive evaluation shows that the proposed method outperforms existing state-of-
the-art deep learning methods, hence offering a method that is widely applicable to different imaging protocols
for both research and clinical deployments.

2 Methods

Let € CV denote a complex-valued MR image to be reconstructed, represented as a vector with N = NNy
where N, and N, are width and height of the image. Let y € CM (M << N) represent the undersampled
k-space measurements. Our problem is to reconstruct & from y, formulated as an unconstrained optimization
argming || Az — y||3 + R(z), where A is a nonuniform Fourier sampling operator, R expresses regularization

xr
terms on @ and A\ is a hyper-parameter often associated to the noise level. We propose a new deep learning
algorithm to approximate the solution to this optimization problem. Firstly, we consider a gradient descent
algorithm which provides a locally optimal solution:

xo = finit(A,Y) (1)
i=xi—1 — Ve f(®)|ezz;,_,, Vaof(x) = \AT (Az — y) + Vo, R(x) (2)

where fin;¢ is an initializer, «; is a step size and V f is the gradient of the objective function.

Common choices of the initializer are adjoint finit(A,y) = Ay and gridding reconstruction fini (A, y) =
A"Wy. The idea of variational network (VN) formalism is to first unroll the sequential updates into a
feed-forward model, and approximate the gradient term VR by a series of trainable convolution layers and
non-linearities. Such generalization yields an end-to-end trainable network with Nj; blocks:

Lo = finit—cnn(Aa y|90) (3)
T, =T 1 — N AH(Ami—l - y) - fcnn(xi—lwi) (4)
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Fig. 1. The architecture of Nonuniform Variational Network.

Table 1. Quantitative result for acceleration factor (R) 2 and 4. For each metric, mean and standard deviation is
computed. MSE’s are scaled by 10%. The proposed approaches consistently outperformed the baseline approaches
(U-net and k-space U-net) for both acceleration factors.

R=2 R=4
Methods MSE SSIM PSNR MSE SSIM PSNR

U-net  0.47 (1.55) 0.96 (0.05) 35.68 (3.67) 0.67 (1.13) 0.94 (0.07) 33.71 (3.23)
U-net (k) 0.77 (0.81) 0.89 (0.10) 33.83 (3.62) 1.31 (7.53) 0.87 (0.11) 31.84 (3.35)
NVN  0.40 (0.60) 0.96 (0.06) 36.11 (3.60) 0.66 (1.40) 0.91 (0.12) 34.01 (3.43)

where the learnable parameters are {0y, ...,0n,,A1,..., AN, }. Note that the step size «; is absorbed in the
learnable parameters. In this work, a general non-convex regularization functional is approximated by state-
of-the-art CNN denoisers [7]. A is expressed as GF D, where G is implemented as a sparse GPU matrix
multiplication, F'y is a FFT, and D is a diagonal matrix. The proposed architecture, termed nonuniform
variational network (NVN), is shown in Fig. 1, where the data consistency term is shown in DC-i block and
CNN is shown in CNN-i block.

3 Results

We used 640 randomly selected T1-weighted and T2-weighted brain images from Human Connectome Project
! to evaluate the efficacy of our proposed architecture (600 for training and 40 for testing). We performed the
following pre-processing steps: (1) adding phase information to the magnitude data using two-dimensional
Fourier bases with randomly sampled low order coefficients; (2) multiplying the images by spatially localized
complex coil sensitivity profiles; (3) adding a realistic amount of noise observable for parallel image acquisition;
(4) resampling the images to a field of view (FOV) of 180 x 180 x 180mm?, with the isotrophic resolution
of 1.15 x 1.15 x 1.15mm?, resulting in the matrix size 1923. We generated the sampling trajectory with the
target acceleration factor R € {2,4}.

4 Discussion and Conclusion

In this work, we proposed nonuniform variational network (NVN), a nonuniform extension of variational
network, which performed the state-of-the-art deep learning models for reconstruction.
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Fig. 2. The reconstructions for 192 x 192 T2 weighted image, R = 4. Fig. 3. Linear (left) and NVM (right) recon-
(top) Reconstructions (bottom) error maps. The reconstructions
from NVN resulted in lower error, owing to the data consistency
block.

struction of low-field MRI acquisition.

[4] Knoll, F., et al.: Adapted random sampling patterns for accelerated mri. Magnetic resonance materials in physics,
biology and medicine 24(1), 43-50 (2011)

[5] Lazarus, C., et al.: Sparkling: variable-density k-space filling curves for accelerated t2*-weighted mri. MRM (2019)

[6] Mardani, M., et al.: Deep generative adversarial networks for compressed sensing automates MRI. arXiv preprint
arXiv:1706.00051 (2017)

[7] Meinhardt, T., et al.: Learning proximal operators: Using denoising networks for regularizing inverse imaging
problems. In: ICCV. pp. 1781-1790 (2017)

[8] Qin, C., et al.: Convolutional recurrent neural networks for dynamic MR image reconstruction. arXiv preprint
arXiv:1712.01751 (2017)

[9] Yang, G., et al.: Dagan: Deep de-aliasing generative adversarial networks for fast compressed sensing MRI recon-
struction. IEEE TMI 37(6), 1310-1321 (2018)



	Nonuniform Variational Network: Deep Learning for Accelerated Nonuniform MR Image Reconstruction

