
Learning detector of malicious network traffic
from weak labels

Vojtech Franc12, Michal Sofka1, and Karel Bartos1

1 Cisco systems,
Prague, Czech Republic,

2 Czech Technical University in Prague,
Faculty of Electrical Engineering,

Department of Cybernetics

Abstract. We address the problem of learning a detector of malicious
behavior in network traffic. The malicious behavior is detected based on
the analysis of network proxy logs that capture malware communication
between client and server computers. The conceptual problem in using
the standard supervised learning methods is the lack of sufficiently rep-
resentative training set containing examples of malicious and legitimate
communication. Annotation of individual proxy logs is an expensive pro-
cess involving security experts and does not scale with constantly evolv-
ing malware. However, weak supervision can be achieved on the level of
properly defined bags of proxy logs by leveraging internet domain black
lists, security reports, and sandboxing analysis. We demonstrate that
an accurate detector can be obtained from the collected security intel-
ligence data by using a Multiple Instance Learning algorithm tailored
to the Neyman-Pearson problem. We provide a thorough experimental
evaluation on a large corpus of network communications collected from
various company network environments.

Keywords: computer security, malware detection, multiple-instance learn-
ing, support vector machines

1 Introduction

Recent report has revealed that 100 percent of all investigated corporate net-
works had malicious traffic going to web sites that host malware [1]. Detecting
malware infections is challenging since malware is rapidly evolving, the complex-
ity of the attacks is increasing, and the number of different variants is rising.
This security challenge creates a need for an automated analysis and detection
of malware. We propose a learning-based system leveraging publicly available
blacklists of malware domains to train a detector that automatically finds mali-
cious communication.

Traditional approaches to network analysis rely on extracting communication
patterns from HTTP proxy logs that are distinctive for malware [11]. The pattern
matching is fast but it is difficult to keep up with constantly changing malware.

2 Learning detector of malicious network traffic from weak labels

Behavioral techniques extract features from the proxy log fields and build a
detector that generalizes to the particular malware family exhibiting the targeted
behavior [10]. Previous algorithms were engineered to specific types of malicious
activity such as spam [6], phishing [4], or communication with a command and
control server of the attacker [9].

Our system extracts a number of generic features from proxy logs of HTTP re-
quests and trains a detector of malicious communication using publicly-available
blacklists of malware domains [7]. Since the blacklists contain labeling only at
the level of domains while the detector operates on richer proxy logs with a
full target web site URL, the labeled domains only provide weak supervison
for training. We propose a variant of the Multiple Instance Learning algorithm
(MIL) [5] that uses bags of proxy logs describing communication of users to the
black-listed domains instead of manually labeled positive examples of network
communication. The proposed MIL algorithm seeks for the Neyman-Pearson
detector with a very low false positive rate that is necessary in the real-life de-
ployment of the system. The resulting non-convex learning problem is solved by
Averaged Stochastic Gradient Descent [13].

The algorithm results in a generic system that can recognize malicious traffic
by learning from weak annotations. This simplifies the update process based
on newly discovered threats since the detector of malicious HTTP requests can
be reliably trained from domain blacklists. We show on an extensive dataset of
traffic logs obtained from a large corporate network that the algorithm reliably
detects new malware while keeping low false positive rates.

The paper is organized as follows. The malware detection problem is briefly
described in Section 2. Formulation of the learning problem and its solution is
presented in Section 3. Section 4 details the used database of the network traffic
and the data representation. Experiments are given in Section 5 and Section 6
concludes the paper.

2 Malware Detection

The initial computer infection with a malware begins by executing a malicious
program, for example by clicking on a link embedded in a website or an email.
The reasons behind the infections are different (usually prompted by financial
gain through ex-filtrating and abusing sensitive data) but in all cases the attacker
(and the malware) needs to communicate over the network connection. The
communication can involve scanning for potential targets, initial download of
the malicious binary or library, or connection to the command and control server
maintained by the attacker.

In a network analysis system, the HTTP communication is captured by net-
work proxy logs (also called flows) that contain several fields specific to the
HTTP protocol. Since the logs are recorded for every elementary action on the
network (e.g. click on a link and downloading parts of a website), they only
contain basic information about the data transfer and do not include the target

Learning detector of malicious network traffic from weak labels 3

website content or the malicious binary file. Despite their simplicity, the logs can
be used to detect communication corresponding to malicious behavior.

The detection of malicious communication is done based on features extracted
from the proxy log fields, such as the URL, flow duration, number of bytes
transferred from client to server and from server to client, user agent, referer
(address of the previous web page that was followed to this page), MIME-Type,
and HTTP status. The URL is the most informative and has been tradition-
ally represented by n-grams and their statistics. The resulting n-dimensional
feature vector represents each proxy log and is used to discriminate between
malicious and legitimate HTTP request. In this work, we train a binary classi-
fier and process the logs individually. Although this ignores important high level
information since the malicious communication is sometimes periodic and could
therefore benefit from temporal features, we will show that our low level model
can already detect malware reliably.

The problem of supervised training in network security is the lack of suf-
ficiently large and representative dataset of labeled malicious and legitimate
samples. The labels are expensive to obtain since the process involves forensic
analysis performed by security experts. Sometimes, the labels are not even pos-
sible to assign, especially if the context of the network communication is small
or unknown and the assignment is desired at a proxy-log level. Furthermore, the
labeled dataset becomes obsolete quite quickly, as a matter of weeks or months,
due to constantly evolving malware. As a compromise, domain-level labeling
has been frequently adopted by compiling blacklists of malicious domains regis-
tered by the attackers. The domain blacklists can then be used to block network
communication based on the domain of the destination URL in the proxy log.
However, the malicious domains typically change frequently as a basic detection
evasion technique. Even though the domains might change, the other parts of the
HTTP request (and the behavior of the malware) remain the same or similar.
This is exploited in our behavioral model of malicious traffic.

Our semi-supervised training takes the advantage of security intelligence cap-
tured in the form of domain blacklists collected from various security reports,
data feeds, and sandboxing analysis. Since our goal is to detect malicious behav-
ior at the level of individual flows, the domain blacklists offer a weak supervision
in the classification task. The proxy logs originating at a particular user ma-
chine are grouped into bags based on the domains in the URL. Therefore, the
bags are constructed for each user machine and all flows to a domain visited
in a particular time window (24 hours). The bags are labeled according to the
domain: if the domain was marked as positive in any of the blacklists, the bag
has a positive label. Otherwise, the bag is labeled as negative.

Leveraging the labels at the level of bags has the advantage that publicly
available sources of domain blacklists can be used for the classifier training. The
problem is then formulated as weakly supervised learning since the bag labels
are used to train a classifier of individual flows. We propose to solve the problem
by Multiple Instance Learning (MIL) which we describe next.

4 Learning detector of malicious network traffic from weak labels

3 Multiple Instance Learning of Neyman Pearson
detector

We start with defining a statistical model of the data. A flow is described
by a vector of features x ∈ X ⊆ Rd and a label y ∈ Y = {+1,−1} where
y = +1 means the malicious and y = −1 the legitimate flow, respectively.
The network traffic monitored in a given period is fully described by the com-
pletely annotated data Dcmp = {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m assumed
to be generated from i.i.d. random variables with an unknown distribution
p(x, y). Obtaining the complete annotation is expensive hence we collect a
weaker annotation by assigning labels to bags of flows. The weakly annotated
data Dbag = {x1, . . . ,xm, (B1, z1), . . . , (Bn, zn)} are composed of the flow fea-
tures {x1, . . . ,xm} ∈ Xm along with their assignment to labeled bags

{(B1, z1), . . . , (Bn, zn)} ∈ (P × Y)n

where P is a set of all partitions 1 of indices {1, . . . ,m}. The i-th bag is a set
of flow features {xj | j ∈ Bi} label by zi ∈ Y. The weakly annotated data
Dbag carry a partial information about the completely annotated data Dcmp. In
particular, we assume that:

1. The flow features {x1, . . . ,xm} in Dcmp and Dbag are the same.
2. The negative bags contain just a single instance and its label is correct, that

is, zi = −1 implies |Bi| = 1 and yi = −1.
3. The positive bags have a variable size and at least one instance is positive,

that is, zi = +1 implies ∃j ∈ Bi such that yj = +1.

Our ultimate goal is to construct the Neyman-Pearson detector (see e.g. [12])
h∗ ∈ H ⊆ YX which attains the minimal false negative rate

FN(h) = Ep(x|y=+1)[h(x) = −1]

among all detectors with the false positive rate

FP(h) = Ep(x|y=−1)[h(x) = +1]

not higher than a prescribed threshold β > 0. That is, we want to find h∗ such
that FP(h∗) ≤ β and

FN(h∗) = inf
h∈H

FN(h) s.t. FP(h) ≤ β . (1)

In practice it can be more convenient to solve an equivalent problem infh∈H
[
FN(h)+

β′FP(h)
]

where β′ is the Lagrange multiplier of (1) whose value depends on β.
The Neyman-Pearson problem (1) cannot be solved directly since the distri-

bution p(x, y) is unknown and hence also the key quantities FN(h) and FP(h)

1 A partition of {1, . . . ,m} is a sequence of sets B1, . . . ,Bn such that ∪n
i=1Bi =

{1, . . . ,m}, ∩n
i=1B = ∅ and Bi 6= ∅, ∀i ∈ {1, . . . , n}.

Learning detector of malicious network traffic from weak labels 5

cannot be computed. We use the weakly annotated data Dbag to solve the prob-
lem approximately via the empirical risk minimization approach. To this end,
we have to concretize the hypothesis space H and to approximate FN(h) and
FP(h) by empirical estimates computed from the weakly annotated data Dbag:

– We consider the hypothesis space H composed of the linear decision rules

h(x;w, w0) =

{
+1 if 〈x,w〉+ w0 ≥ 0 ,
−1 if 〈x,w〉+ w0 < 0 ,

(2)

parametrized by w ∈ Rd and w0 ∈ R.
– The number of false positives is approximated by

FP(w, w0) =
∑
i∈I−

max
{

0, 1 + 〈w,xBi
〉+ w0

}
where I− = {i ∈ {1, . . . , n} | zi = −1} are indices of negatively labeled
bags. Recall that the negative bags contain just a single instance, hence xBi

denotes the single xj , j ∈ Bi. It is seen that FP(w, w0) is a convex upper
bound of the number of false positives which the linear rule with parameters
(w, w0) makes on the completely annotated data Dcmp.

– The number of false negatives is approximated by

FN(w, w0) =
∑
i∈I+

max
{

0, 1− w0 −max
j∈Bi

〈w,xj〉
}

(3)

where I+ = {i ∈ {1, . . . , n} | zi = +1} are the indices of the positive bags.
Let

FNoptim(w, w0) =
∑
i∈I+

[[h(xj ;w, w0) = −1 ,∀j ∈ Bi]]

be the most optimistic estimate (that is, the minimal possible) of the number
of false negatives made by the linear rule with the parameters (w, w0) on
the completely annotated data Dcmp. It is seen that FN(w, w0) is an upper
bound of FNoptim(w, w0) obtained by replacing the step-function with the
hinge loss.

With these approximations, we formulate learning of the Neyman-Pearson de-
tector as the following optimization problem

(w∗, w∗0) = argmin
w∈Rd,w0∈R

[
α · FP(w, w0) + (1− α) · FN(w, w0)

]
, (4)

where α ∈ R++ is a cost factor used to tune the trade-off between the number of
false negatives and false positives. The optimization problem (4) is not convex
due to the term FP(w, w0). We solve the problem (4) approximately by the
averaged stochastic gradient descent described in the next section.

6 Learning detector of malicious network traffic from weak labels

Note that the task (4) is a straightforward modification of the Multiple-
Instance Support Vector Machines (mi-SVM) algorithm [5]. The original mi-
SVM optimizes the classification error (meaning that α is fixed to 1

2), the objec-

tive function contains an additional regularization term λ
2 ‖w‖

2 used to prevent
overfitting and, finaly, the negative bags can contain more than a single instance.
We dropped the regularization because the chance of over-fitting is very low in
our case. In particular, the ratio of the number of examples and the parameters
to be learned is m/d > 400.

3.1 Averaged Stochastic Gradient Descent

We formulated learning of the Neyman-Pearson detector as a non-convex opti-
mization problem (4). In this section we describe a simple solver based on the
Averaged Stochastic Gradient Descent algorithm [13]. For the sake of simplicity,
we rewrite (4) as

v∗ = argmin
v∈Rd+1

n∑
i=1

ri(v) (5)

where

ri(v) =

{
(1− α) max

{
0, 1−max

j∈Bi

〈v, x̃j〉
}

if zi = +1 ,

αmax
{

0, 1 + 〈v, x̃Bi
〉
}

if zi = −1 ,

v = (w, w0) and x̃i = (xi, 1). The SGD algorithm approximates the sub-gradient
of the objective of the task (5) by the sub-gradient of a randomly selected term
ri(v). A sub-gradient of ri(v) can be computed as r′i(v) = λix̃i∗ where i∗ =
argmaxj∈Bi

〈w, x̃j〉 and

λi =

α− 1 if zi = +1 and 〈w, x̃i∗〉+ w0 < 1 ,
α if zi = −1 and 〈w, x̃i∗〉+ w0 > −1 ,
0 otherwise.

A pseudo-code of the Averaged SGD solver is summarized in Algorithm 1. The
ASGD solver has two free parameters: the fixed step-size γ and the number of
epochs E. There is no generic theory how to set these parameters optimally.
Hence, their values have to be tuned on particular data.

3.2 Baseline SVM detector

We use the standard binary SVM classifier as the baseline solution [14]. A simple
workaround when dealing with the weak annotations is to consider all instances
in the positive bags to be positive. Given the training bags Dbag we define the
sets J+ = ∪j∈I+Bj and J− = ∪j∈I−Bj containing indices of all positive and all
negative flows, respectively. We learn the SVM detector by solving the following

Learning detector of malicious network traffic from weak labels 7

Algorithm 1 Averaged SGD

Require: cost factor α > 0, number of epochs E > 0, step-size γ > 0
Ensure: vector vt approximately solving the problem (5)
1: randomly set v0 ∈ Rd and v0 ← v0, t← 0
2: for epoch in {1, . . . , E} do
3: for i in randperm(n) do
4: vt+1 ← vt − γr′i(vt)
5: vt+1 ← t−1

t
vt + 1

t
vt+1

6: t← t+ 1
7: end for
8: end for

convex program

(w∗, w∗0) = argmin
w∈Rd,w0∈R

[
1

2
‖w‖2 + C · (1− α)

∑
i∈J+

max
{

0, 1− 〈w,xi〉 − w0

}
+C · α

∑
i∈J−

max
{

0, 1 + 〈w,xi〉+ w0

}]
(6)

where α ∈ R++ is a cost factor used to tune the trade-off between the number
of the false negatives and the false positives. The constant C ∈ R++ steers the
strength of the regularization.

4 Specification of the Datasets

This Section provides detailed description of the datasets and features we used in
the experimental evaluation. The datasets are divided into three parts: training,
validation, and testing. All datasets represent real network traffic from 14 days
of a large international company (80,000 seats) in form of proxy logs. These logs
capture HTTP/HTTPS network communication and contain flows, where one
flow represents one communication between a user and a server. More specifically,
one flow is a group of packets with the same source and destination IP address,
source and destination port, and protocol. As flows from the proxy logs are
bidirectional, both directions of a communication are included into each flow.

A flow consists of the following fields: user name, source IP address, destina-
tion IP address, source port, destination port, protocol, number of bytes trans-
ferred from client to server and from server to client, flow duration, timestamp,
user agent, URL, referer, MIME-Type, and HTTP status. The most informa-
tive field is URL, which can be decomposed further into 7 parts as illustrated
in Figure 1. From the flow fields mentioned above, we extracted more than 317
features listed in Table 1. Features from the right column are extracted from all
URL parts, including URL itself and referer.

Flows were grouped into bags, where each bag contains flows with the same
user (or source IP) and the same second-level domain. Thus, each bag repre-
sents communication of a user with a particular domain. As the datasets were

8 Learning detector of malicious network traffic from weak labels

�����������	
��
������	���������������������������
��	
���
	�����������

�������� ��������������	
�� ��� �
�� ������
	� ����� ��
�	���

Fig. 1: URL decomposition into seven parts.

Features Features extracted from all URL parts & referer

duration length
HTTP status digit ratio
is URL encrypted lower case ratio
is protocol HTTPS upper case ratio
number of bytes up vowel changes ratio
number of bytes down has repetition of ’&’ and ’=’
is URL in ASCII starts with number
client port number number of non-base64 characters
server port number has a special character (one feature per character)
user agent length max length of consonant stream
MIME-Type length max length of vowel stream
number of ’/’ in path max length of lower case stream
number of ’/’ in query max length of upper case stream
number of ’/’ in referer max length of digit stream
is second-level domain rawIP ratio of a character with max occurrence

Table 1: List of features extracted from proxy logs. Features from the right
column are extracted from all URL parts, including URL itself and referer.

originally unlabeled, we used available blacklists and other malware feeds from
Collective Intelligence Framework (CIF) [7] to add positive labels to the training
dataset. All bags with domains marked as malicious in CIF were labeled as pos-
itive. Negative samples were acquired from the list of popular domains (Alexa
top 250,000 domains [2]). Bags with domains that were not in CIF nor in Alexa
were discarded from the training set. Note that some popular domains are used
very frequently, which may outweigh the importance of rarely-used domains.
For this reason, each domain has at most 1000 flows in the training set. Flows
with domains which appear in the positive training samples are removed from
the testing dataset. We also removed all flows with second-level domains in IP
(4-tuple digit) format (e.g. 192.168.0.0) due to the lack of negative samples of
this type. Summary of the datasets is described in Table 2.

Each flow is described by 317 real valued features described above. The linear
decision rule (2) operates on a binary representation of these features which
is created as follows. Range of values of each feature observed in the training
data is split into p = 8 bins of equal size. Each real valued feature is then
represented as a binary vector with 8 elements all set to zero but one encoding
the active bin. Stacking the binary vectors for all 317 features gives the final
feature representation x ∈ {0, 1}d with dimension d = 317 · 8 = 2536.

Learning detector of malicious network traffic from weak labels 9

Training Samples
Validation Samples Test Samples

Positive Negative

Number of Flows 21,873 999,819 1,943,980 9,696,453
Number of Bags 3,918 999,819 — —
Number of Domains 207 38,463 46,970 45,046

Table 2: Summary of datasets used for training, validation, and testing.

5 Experiments

In this section we empirically evaluate detectors of malicious communication
learned from weakly labeled data that were described in Section 4. We compare
two detectors learned from the same data by different methods:

1. SVM detector learned by solving the problem (6) is used as a baseline.
This method considers all instances in the positive bags to be positive and
similarly for instances in the negative bags. To solve (6) we used an open-
source implementation of the optimized cutting plane solver [8] available at:
http://cmp.felk.cvut.cz/~xfrancv/ocas/html/index.html.

2. MIL detector learned by solving the problem (4). We solved (4) by the ASGD
Algorithm 1 implemented in C++. We found empirically that setting the
step-size γ = 1

n (where n is the number of training bags) and the number
of epochs E = 100 works consistently well on our data. The results also
depend on the initial estimate v0. Hence, for each data we run the ASGD
algorithm 10 times from randomly generated v0 and selected the result with
the smallest value of the training objective.

The source data contain only weak labels. The model selection and the final
evaluation of the detectors require the ground truth labels for a subset of flows
from the validation and the testing subset. The ground truth labels are obtained
via submitting the flows’ URL to the VirusTotal service [3]. For each submit-
ted URL, the VirusTotal provides a report containing analysis of a set of URL
scanners. The number of scanners at the time of evaluation was 62. The report
is summarized by the number of positive hits, that is, the number of scanners
which marked the URL as malicious. If at least three scanners mark the URL
as malicious the flow is labeled as the true positive.

5.1 Main results

Model selection. We learned the MIL detector on the training bags for different
values of the cost factor α which is used to tune the ratio of the false positives
and the false negatives. Each learned detector is evaluated on the validation data
by computing the number of true positive flows (denoted as tpfp=50) obtained
by the detector with the decision threshold set to make the number of false
positive flows on the validation data equal to 50. We also recorded the number

10 Learning detector of malicious network traffic from weak labels

of hits (denoted as hitsfp=50) accumulated for the flows predicted to be positive
by the same detector. This evaluation procedure requires ground true labels for
the first p = 50 + tpfp=50 flows with the highest decision score 〈w,x〉. The
detector with the maximal validation tpfp=50 was selected as the final model. If
more detectors have the same tpfp=50, which happened in our case, the detector
with the maximal hitsfp=50 is selected among them. The same model selection
procedure was used for the SVM detector in which case, however, we also varied
the regularization constant. The results of the model selection procedure are
summarized in Table 3. In the sake of space we show results only for a subset of
values (α, C) selected around the best setting.

Evaluation on test data. The best MIL and SVM detectors were then evaluated
on the test flows. We applied each detector on all test flows and selected top 150
instances with the highest decision score. We used the VirusTotal to obtain the
ground truth labels for the selected flows. In Figure 2 we show the number of
true positives and the precision as a function of increasing decision threshold. In
the top 150 instances selected by the MIL detector out of 9,696,453 testing flows
22 are true positives while the baseline SVM detector found just 6 true positives.
The precision of the MIL detector in the analyzed region varies from 1 to 0.14.
The maximal precision attained by the SVM detector in the same region is 0.08.

We also evaluated the detectors in terms of the number of hits being the
finer annotation used to define the ground true labels. Recall that the flow with
the number of hits greater than 2 is marked as the true positive. The results are
presented in Figure 3. In particular, we show the number of accumulated hits as
a function of the detected flows. We also show the histogram of the number of
hits per instance measured on the first 50 flows. The highest number of flows in
the top 50 instances returned by both detectors has only one hit. However, the
second most frequent flows have no hit in the case of SVM but 3 hits in the case
of the MIL detector.

5.2 Why does MIL work better than SVM?

In this section we provide some intuition why the SVM detector ignoring the bag
annotation performs worse than the MIL detector. The MIL algorithm defined
by problem (4) minimizes a weighted sum of errors made by the detector on the
negative and the positive bags. The errors on the positive bags are expressed
by the function FN(w, w0) defined in equation (3). It is seen from (3) that the
error of each positive bag is determined by a single instance which has the max-
imal distance from the decision hyperplane. Removal of the other non-active
instances from the training set would not change the solution. Hence the MIL
algorithm can be seen as two stage procedure though the stages are executed
simultaneously. First, a new filtered training set is created by copying all in-
stances from the negative bags and picking a single instance from each positive
bag. Second, a supervised SVM algorithm is applied on the filtered training set
which contains only bags of size one. Figure 4 visualizes the original and the
filtered distribution of the training data projected on the normal vector of the

Learning detector of malicious network traffic from weak labels 11

Fig. 2: The figures present results obtained on the first 150 test flows with the
highest decision score computed by the MIL and the SVM detector. The left
figure shows the number of true positives and the right figure the precision of
the detectors as a function of the number of detected flows. We also show results
for a baseline detector selecting the flows randomly.

decision hyperplane of the MIL detector. It is seen that the filtered distribution
of the positive instances is significantly more peaky than the original one. The
shape of the filtered distribution also looks smoother and better separable form
the negative distribution.

The SVM and MIL algorithm use only a subset of the examples to define
the decision rule. Namely, the support vectors which are the training examples
with the signed distance to the hyperplane not higher than 1. We projected the
d = 2, 536 dimensional training data onto 2D space and displayed the support
vectors selected from the positive examples by the SVM and the MIL algorithms.
The 2D coordinates are obtained by projecting the original data onto the normal
vector w of the decision hyperplane (x-axis) and the major principal component
computed in the subspace orthogonal to w (y-axis). The visualization is shown
in Figure 5. It is seen that the SVM detector uses a large set of positive support
vectors heavily overlapping with the negative instances many of which probably
belong to the negative class. On the other hand, the MIL algorithm ignores a
large number of these likely negative instances contained in the positive bags.

6 Conclusions

We presented a system that can learn a reliable detector of malware communica-
tion using only weakly labeled data that can be created from publicly available
blacklists and security reports. Relaxing the labeling requirement is important
due to the constantly changing malware and due to the challenges in forensic
analysis caused by increasing complexity of security threats. Our learning al-
gorithm uses bags of proxy logs labeled and grouped according to the network
domain. The resulting detector automatically assigns malicious or legitimate

12 Learning detector of malicious network traffic from weak labels

Fig. 3: The left figure shows the number of accumulated hits with respect to the
number of flows selected by the MIL and the SVM detector. The right figure
shows a histogram of the number of hits computed for the first 50 flows with the
highest decision score. The flows with the number of hits higher than 2 are the
true positives. We also show results for a baseline detector selecting the flows
randomly.

label to each proxy log. We have shown that the use Multiple Instance Learn-
ing (MIL) framework can effectively select the most reliable samples from the
positive bags necessary to define the decision boundary between malicious and
legitimate flows. This improves the results compared to training a baseline SVM
detector trained on individual flows rather than bags. The result follows our
intuition that not all samples in the positive bags are malicious. We have shown
that the detector generalizes well to find new malicious traffic which was not
marked by the blacklists.

Our ongoing work focuses on further improvements to the MIL framework to
better adapt to the weak labels provided by the bags. One such improvement is
to focus on more than the best suitable positive sample from the bag to define
the decision boundary. Another improvement could follow from a normalization
mechanism that takes into account the size of the bags. Finally, there are vast
amounts of unlabeled data that can further improve the training and the final
detector performance.

Acknowledgments

The research was supported by CISCO grant number 8301351C001 and the
Grant Agency of the Czech Republic under Project P202/12/2071.

References

1. Cisco 2014 annual security report. http://www.cisco.com/web/offers/lp/

2014-annual-security-report/index.html.

Learning detector of malicious network traffic from weak labels 13

MIL detector

training validation testing

α fn fp fn bags tpfp=50 hitsfp=50 tpfp=50 hitsfp=50

0.8 4085 (0.19) 10 (1−5) 313 (0.08) 8 50 — —
0.9 4326 (0.20) 3 (3−6) 354 (0.09) 9 65 — —
0.95 4613 (0.21) 1 (1−6) 391 (0.10) 9 97 21 118
0.99 5938 (0.27) 0 (0) 530 (0.14) 9 97 — —

SVM detector

training validation testing

C α fn fp tpfp=50 hitsfp=50 tpfp=50 hitsfp=50

1000

0.6 4020 (0.18) 158 (2e-4) 2 34 — —
0.7 5539 (0.25) 158 (2e-4) 2 29 — —
0.8 5602 (0.26) 158 (2e-4) 4 42 1 37
0.9 6451 (0.29) 57 (6e-5) 3 33 — —

10000

0.6 2068 (0.09) 158 (2e-4) 0 21 — —
0.7 2244 (0.10) 153 (2e-4) 0 27 — —
0.8 2723 (0.12) 148 (1e-4) 0 35 — —
0.9 3736 (0.17) 79 (8e-5) 1 31 — —

Table 3: Summary of the errors on the training, validation and testing data for
the MIL (upper table) and SVM (bottom table) detector. Each row corresponds
to a detector trained with different value of the cost factor α and the regulariza-
tion constant in case of the SVM. We show the number of false negatives flows
fn, the number of false positive flows fp and for the MIL detector also the number
of false negative bags evaluated on the training data (the value in brackets are
the corresponding rates). Note that fn is at the same time the number of false
negative bags because they contain a single instance each. For the validation
and test data we show the number of true positives tpfp=50, and the number of
accumulated hits hitsfp=50, computed on the flows returned by the detector with
the number of false positives fp set to 50. The same statistics were computed on
the test data the best detector selected based on the validation results.

2. List of 1 million top web sites. http://www.alexa.com.

3. VirusTotal service. https://www.virustotal.com.

4. Saeed Abu-Nimeh, Dario Nappa, Xinlei Wang, and Suku Nair. A comparison of
machine learning techniques for phishing detection. In Proceedings of the Anti-
phishing Working Groups 2Nd Annual eCrime Researchers Summit, eCrime ’07,
pages 60–69, New York, NY, USA, 2007. ACM.

5. Stuart Andrews, Ioannis Tsochantaridis, and Thomas Hofmann. Support vector
machines for multiple-instance learning. In Proc. of Neural Information Processing
Systems, 2002.

6. Carlos Castillo, Debora Donato, Aristides Gionis, Vanessa Murdock, and Fabrizio
Silvestri. Know your neighbors: Web spam detection using the web topology. In
Proceedings of SIGIR, Amsterdam, Netherlands, July 2007. ACM.

7. Greg Farnham and Kees Leune. Tools and standards for cyber threat intelligence
projects. Technical report, SANS Institute InfoSec Reading Room, 10 2013.

14 Learning detector of malicious network traffic from weak labels

filtered pos. basg

positive bags

negative bags

d
en

si
ty

score
0

0.05

0.1

0.15

0.2

0.25

0.3

Fig. 4: A distribution of the training instances in the positive (red) and the
negative (green) bags projected onto the normal vector w of the decision hy-
perplane of the MIL detector. The black curve corresponds to the distribution
of the instances from the positive bags with the maximal distance to the deci-
sion hyperplane. The dashed blue line marks the decision hyperplane of the MIL
detector.

8. Vojtech Franc and Soeren Sonnenburg. Optimized cutting plane algorithm for sup-
port vector machines. In Andrew McCallum and Sam Roweis, editors, Proceedings
of the 25th Annual International Conference on Machine Learning (ICML 2008),
pages 320–327, New York, USA, July 2008. ACM.

9. Guofei Gu, Junjie Zhang, and Wenke Lee. BotSniffer: Detecting botnet command
and control channels in network traffic. In Proceedings of the 15th Annual Network
and Distributed System Security Symposium (NDSS’08), February 2008.

10. Justin Ma, Lawrence K. Saul, Stefan Savage, and Geoffrey M. Voelker. Identifying
suspicious URLs: an application of large-scale online learning. In Andrea Po-
horeckyj Danyluk, Léon Bottou, and Michael L. Littman, editors, Proceedings of
the 26th Annual International Conference on Machine Learning, ICML 2009, Mon-
treal, Quebec, Canada, June 14-18, 2009, volume 382 of ACM International Con-
ference Proceeding Series, pages 681–688. ACM, 2009.

11. Roberto Perdisci, Wenke Lee, and Nick Feamster. Behavioral clustering of http-
based malware and signature generation using malicious network traces. In Pro-
ceedings of the 7th USENIX Conference on Networked Systems Design and Imple-
mentation, NSDI’10, pages 26–26, Berkeley, CA, USA, 2010. USENIX Association.

12. Michail I. Schlesinger and Václav Hlaváč. Ten Lectures on Statistical and Structural
Pattern Recognition. Kluwer Academic Publishers, Dordrecht, The Netherlands,
2002.

13. Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth opti-
mization: Convergence results and optimal averaging schemes. In Proc. of Inter-
national Conference on Machine Learning, 2012.

14. Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag,
1995.

Learning detector of malicious network traffic from weak labels 15

MIL detector

SVM detector

Fig. 5: A distribution of the training instances projected onto the 2D space and
the support vectors selected from the positive bags by the MIL algorithm (top)
and the SVM algorithm (bottom). The x-axis is a projection of the original data
onto the normal vector w of the decision hyperplane of a corresponding detector
and the y-axis is a projection onto the major principal component in the subspace
orthogonal to w. The dashed blue line shows the decision hyperplane.

