
Fast Boosting Trees for Classification, Pose Detection, and Boundary Detection
on a GPU

Neil Birkbeck† Michal Sofka‡ S.Kevin Zhou‡

†Department of Computing Science
University of Alberta, Canada

‡ Siemens Corporate Research
775 College Road East, Princeton NJ, USA

Abstract

Discriminative classifiers are often the computational
bottleneck in medical imaging applications such as fore-
ground/background classification, 3D pose detection, and
boundary delineation. To overcome this bottleneck, we pro-
pose a fast technique based on boosting tree classifiers
adapted for GPU computation. Unlike standard tree-based
algorithms, our method does not have any recursive calls
which makes it GPU-friendly. The algorithm is integrated
into an optimized Hierarchical Detection Network (HDN)
for 3D pose detection and boundary detection in 3D med-
ical images. On desktop GPUs, we demonstrate an 80×
speedup in simple classification of Liver in MRI volumes,
and 30× speedup in multi-object localization of fetal head
structures in ultrasound images, and 10× speedup on 2.49
mm accurate Liver boundary detection in MRI.

1. Introduction

Efficiency of algorithms for automatic detection and seg-
mentation is of central importance in many medical imaging
applications, especially when these algorithms are mapped
to embedded and mobile devices with fewer computational
resources. Several fast and robust algorithms for detection
and segmentation are based on machine learning techniques
such as random forests [11], cascades of Adaboost classi-
fiers [14], and boosting trees [13]. These algorithms have
been accelerated by hierarchical methods [12] and by reduc-
ing the set of hypotheses the classifier needs to test [16]. In
addition to these optimizations, adapting these algorithms
for a GPU computation is becoming more attractive since
the graphics hardware on desktop computers (e.g., nVidia
480 GTX), embedded (e.g., Radeon E4690 MXM), and mo-
bile devices (e.g., nVidia Tegra 3) is becoming more general
purpose. Yet, mapping algorithms to the GPU is often non-
trivial because of the challenge to distribute the processing
into many parallel tasks to achieve the highest speedups.

In this work, we accelerate detection and segmentation
algorithms based on Probabilistic Boosting Trees (PBT)

Figure 1. Discriminative boosting tree classifiers are applicable to
a range of applications: naive per-pixel classification of Liver in
MRI (left), pose detection of fetal head structures in ultrasound
(middle), to accurate liver boundary detection in MRI (right).

[13] by taking advantage of GPU processing power. Boost-
ing trees are binary discriminative classifiers trained using a
large annotated database of images. Each node of a boosting
tree is a strong classifier (AdaBoost) and the whole tree tests
each pixel for presence of an object (in detection or pixel-
wise segmentation) or for presence of an object boundary
(in object segmentation). See Fig. 1 for examples. The de-
cision at each node is probabilistic, i.e., both tree branches
are descended when the strong classifier confidence is low.
Traditionally, tree-based algorithms are implemented with
recursive calls that are not possible on a GPU. We propose
a stack-based technique to enable a GPU implementation.
Features used by the classifier at each node are computed on
the GPU, ensuring data transfer to the GPU is minimized.

The parallel power of the GPU has already been ex-
ploited for machine learning algorithms, including boost-
ing [1, 3] and random forests [11]. Many of the implemen-
tations are application specific, with applications ranging
from 2D object detection [5, 15] and motion gesture recog-
nition [1] to classification [11]. The speedups depend on
application, generation of graphics card, and also reference
CPU implementation, with reported speedups being lower

1

for already optimized cascaded detection [5].
Unlike trees in random forests [11, 4], the Probabilistic

Boosting Tree is more general with the following character-
istics: (1) boosting on the decision nodes, (2) support for
cascading, and (3) fuzzy decision at each node. In contrast
to many existing approaches, our focus is on 3D images
which is harder due to larger data sets that need to be trans-
ferred to the graphics card. Furthermore, the existing ap-
proaches typically present only a single feature type (e.g.,
one of ZNCC [3], LRD [7], and Haar-like features [11]).
Our framework supports multiple feature types, the ability
to add new features, and is integrated into an optimized hi-
erarchical 3D detection pipeline.

Our technique is built on a stack-based transformation of
the PBT that is suitable for GPU implementations (Section
2). The boosting tree data structure is mapped to a texture
for efficient access that allows for re-use of tree evaluation
code with different features and makes a shader-based im-
plementation feasible (Section 3). The GPU-PBT imple-
mentation is integrated into a multi-structure hierarchical
detection framework where results are sorted on the GPU
to reduce data transfer. On desktop GPUs, we demonstrate
30× speedups for automatic fetal head structure detection,
and we obtain 10× speedup for accurate (2.49 mm) Liver
MRI boundary detection. Also, in simpler classification
tasks, speedups of 78× are possible (Section 4).

2. Discriminative classifiers in Medical Imag-
ing Applications

Many medical imaging algorithms are intimately cou-
pled to the output of a discriminative model. For example,
the PBT, has been successfully deployed as the classifier in
a variety of medical imaging applications, including auto-
matic measurement of fetal brain structures [12] and auto-
matic organ detection and segmentation (e.g., liver [9] and
heart [16]). The following list gives a few examples of how
these discriminative models are used in such imaging appli-
cations (Fig. 1):

Classification: In its most direct use, discriminative clas-
sifiers can be trained to detect anatomical structures on a
per-pixel basis (e.g., as in [8]).

Single object localization: Object localization can be
efficiently performed by decomposing the 9-dimensional
search space of similarity transformations into a series of
smaller search spaces [16]. During detection, the discrim-
inative classifier is evaluated on pixels in the volume to
determine a small set (e.g., 100-1000) of candidate posi-
tions. Orientation is detected by evaluating each of these
positions with a set of hypothesis orientations and simi-
larly for scale. The final list of candidates is aggregated to
obtain a single pose estimate.

Coupled object localization: Joint multi-object detec-
tion is decomposed into sequential single-object detections
with spatial priors used for prediction of dependent struc-
tures [12]. Thus composed Hierarchical Detection Net-
work (HDN) consists of a network of nodes for detecting
position, orientation, and scale, for each structure; spatial
dependencies are represented as arcs.

Boundary detection: Given an initialization of a triangu-
lated mesh (e.g., a mean mesh placed at a detected loca-
tion), a discriminative model can be trained to identify the
boundary of the structure [9]. The mesh surface is itera-
tively deformed along the normal in order to maximize the
value of the classifier evaluated at the surface points.

Each of these problems are computationally dependent on
the discriminative classifier. Although the features used in
the algorithms may be different, each application evaluates
the same classifier on several pixel locations (in classifica-
tion), several candidate poses (in pose detection), or several
mesh displacements (in boundary detection). These data
parallel problems can be efficiently evaluated on the GPU.

2.1. Probabilistic Boosting Tree Classifier

The Probabilistic Boosting Tree (PBT) models the pos-
terior distribution of a data set [13], enabling its uses as a
discriminative model for all of the above listed applications.
A PBT is a binary decision tree with a fuzzy decision taken
at each internal node of the tree depending on the output of
the node’s strong classifier. Each node,N , contains a strong
classifier, q̂N (y|x), and the empirical distribution of its leaf
nodes qN (y), where y ∈ {−1,+1}, and x is an input point.
The posterior value of a node is determined by recursively
combining the posterior values of its children nodes; the
weight used in the combination comes from evaluating the
node’s strong classifier, q̂N (y|x).

The strong classifier can be any classifier that uses any
problem specific feature. We use an AdaBoost classifier for
the strong classifier, which combines several binary weak
classifiers to produce a strong estimate.

When evaluating a PBT node, the value of the strong
classifier, q̂N (+1|x), determines which children of the node
will be descended. If the strong classifier is fairly certain
(e.g., q̂N (+1|x) ≥ 1−ε1 or q̂N (−1|x) = (1−q̂N (+1|x)) ≤
ε1), then only one child is descended. However, if the value
is close to 0.5, then recursive calls are made to both chil-
dren. The algorithm is highlighted in the pseudo-code of
Algorithm 1, where we assume that the context necessary
to evaluate the posterior is available to the classifiers. The
constants are set as e1 < 1−6 and e2 = 0.1.
Non-recursive Probabilistic Boosting Tree: As the GPU
does not support recursive calls, we need to remove the re-
cursion from Algorithm 1. If this were a simple decision

Algorithm 1: PbtPosterior
Data: N node of the tree
Data: L = left(N), R = right(N)
Result: pN (+1|x) the posterior prob. for subtree N
if Leaf(N) then return qN (+1)
p = q̂N (+1|x)
if p > (1− e1) then return PbtPosterior(R)
else if p < e1 then return PbtPosterior(L)
else if p > 0.5 + e2 then

return (1− p)qL(+1) + pPbtPosterior(R)
else if p < 0.5− e2 then

return (1− p)PbtPosterior(L)+p qR(+1)
else

return (1− p)PbtPosterior(L)+p PbtPosterior(R)

tree evaluation with one recursive call, then the single re-
cursive call could be replaced with an iterative descent.

In the PBT, the base case of the recursion simply returns
the empirical distribution of the node, qN (+1), and the re-
sults of recursive calls are combined with a convex combi-
nation of the strong classifier value. As such, the final re-
sult is just a sum of weighted empirical distributions of the
nodes. The total weight given to any node’s empirical distri-
bution is the product of the weights associated with the path
from the root to the node. Therefore, a non-recursive im-
plementation uses a stack that holds a list of to-be traversed
nodes and their respective weights. When a leaf node is vis-
ited, it simply adds its empirical distribution with the weight
to the accumulator (Algorithm 2).

3. Cuda PBT implementation
In the Cuda programming model [10], a parallel problem

is decomposed into a grid of thread blocks, with each block
containing many threads. Blocks are assigned to the GPU’s
multi-processors, which breaks down the block and sched-
ules it in groups of 32 threads. In detection or classification,
the grid of thread blocks overlay the input (e.g., all pixels in
the volume), and each thread evaluates the classifier for a
different voxel or a different orientation/scale hypothesis.

The memory architecture includes a 16kb low-latency
shared memory (accessible from threads within the same
block), high-latency local memory (per-thread) and global
memories (accessible by all threads), and cached global ac-
cesses through texture memory. Use of these memory types
appropriately is key to efficiency.

3.1. Memory Layout

On a GPU implementation, several threads will be de-
scending the tree in parallel. Neighboring threads may ac-
cess the tree data structure in different regions, meaning us-
ing global memory to store the tree would cause slow unco-

Algorithm 2: PbtPosteriorStackBased
Data: N node of the tree
Result: p(+1|x) the posterior of the tree
S = {〈root, 1.0〉}
total← 0
while ‖ S ‖ 6= 0 do
〈N,w〉 = pop(S)
if isLeaf(N) then

total← total + w ∗ qN (+1)
continue;

p← q̂N (+1, x)
if p > (1− e1) then

S.push(〈 right(N), w〉)
else if p < e1 then

S.push(〈 left(N), w〉)
else if p > 0.5 + e2 then

L = left(N)
total = total + w ∗ (1− p)qL(+1)
S.push(〈right(N), w ∗ p〉)

else if p < 0.5− e2 then
R = right(N)
total = total + w ∗ p ∗ qR(+1)
s.push(〈left(N), w ∗ (1− p)〉)

else
// Descend down both nodes
S.push(〈right(N), w ∗ p〉)
S.push(〈left(N), w ∗ (1− p)〉)

return total;

alesced memory access. The tree data structure is too large
to fit in the 16kb shared memory; therefore, to guarantee ef-
ficient/cached access to the tree data structure, we arrange
the tree data structure in a texture image (see Fig. 3). Node
pointers are replaced with 2D location indices that reference
the node’s 2D region in the texture image as in [11].

In our case, the node data contains the AdaBoost classi-
fiers, which are made up of several weak classifiers. Each of
which contains either a simple threshold classifier or a his-
togram classifier whose decision is made on a single feature.
Therefore, the PBT node data in the texture image needs to
store the sum of alpha values (for AdaBoost), the number
of weak classifiers, and the data for each of the classifiers.
These weak classifiers are stored in adjacent columns of the
texture (Fig. 3) and each column contains the associated
weight (αi). The relevant data for the weak classifiers de-
pends on the features used by the PBT (§3.2).

The transformation from Algorithm 2 to Cuda is then
straightforward (Fig. 2). The stack used to replace the re-
cursion is local to each thread, and each thread has 16kb of
local memory (in Cuda 1.1-1.3). Using float4 for ele-

template
<f l o a t feature_func (float3 pos , f l o a t nx , f l o a t ny)>

__device__ f l o a t
pbt_evaluate_tree (c o n s t float3& pos) {
float4 stack [kMaxQueueSize] ;
i n t numInStack = 1 ;
/ / I n s e r t r o o t (@ 0 , 0) wi th we ig h t 1 .
stack [0] = float4_make (0 , 0 , 0 , 1 . 0) ;
w h i l e (numInStack > 0) {
−−numInQueue ;
float4 node = stack [numInQueue] ;
f l o a t prob =
pbt_eval_classifier

<feature_func>(pos , node .x , node .y) ;
i f (prob > 1 . 0 − e1)
. . . / / Analogous t o Algo r i t hm 2 ; Nodes a r e ←↩

i n s e r t e d by p o s i t i o n
}

}

Figure 2. The Cuda implementation of the stack-based Algorithm
2. Templating the PBT evaluation function on the feature evalua-
tion function allows re-use of the higher level PBT code by simply
re-writing a new feature func.

Weak classiers
Node data

weak
Σiαi

Left

Right

0 1 22

...

...

...

N
od

e
0

N
od

e
1

N
od

e
2

t hreshold
minBound
maxBound

α
cubes
haarType
maxx maxy

minx miny
minz maxz

bounds
weight

bin0
bin1

C
ub

es
(2

te
xe
ls
/c
ub

e)

Histogram classier
(/ w haar feature)

H
aa
r
fe
at
ur
e
da

ta

Figure 3. The PBT data structure is stored in a texture. Left: weak
classifiers are arranged along the columns, and the PBT nodes
store 2D texture indices to their children. Right: layout for Haar
features with a histogram classifier. The 64-bin histogram is stored
in the 64-bits of two float components.

ments of the stack implies a maximum of 1024 elements in
the stack. However, the traversal of the tree is depth-first,
so the stack only needs to be as large as the depth of the
tree. We limit kMaxQueueSize = 32, which is more than
enough for our shallow trees (e.g., depth 10 or less).

The Cuda PBT evaluation function is templated on a
feature func, allowing new feature types to be added.
Both the 3D sample box and the 2D texture location of the
feature data are passed to the feature evaluation function.

3.2. Features

During detection or classification the PBT tree is eval-
uated with the context surrounding a specific location (and
pose). Position detection use Haar features; orientation/s-

I,
√
I, I0.333, I2, I3,max(0.001, log(I)), Ix, Iy, Iz

|∇I|2

f = 〈|∇I|,d〉, |f |,
√
|f |, f2, |f |3, log(max(10−3, |f |))√

|∇I|2 − f2

θ = cos−1(〈 ∇I
|∇I|

,d〉), θ2, θ3, log(max(10−3, θ))

Table 1. Steerable features used in our system: image intensity, I ,
∇I = [Ix, Iy, Iz], and d is an input sample direction.

cale, and boundary detection use steerable features [16].

Haar features are weighted combinations of the sums of
cubic regions of an image. These sums are efficiently cal-
culated using the integral image. Our features use no more
than 4 cubes. The gamut of features possible for a given
location consists of various translated and scaled versions
of these boxes. Each possible feature can be described by
the size, weights, and locations of these cubes (relative to a
testing point). Fig. 3 illustrates how this information is en-
coded into a column of the texture for a histogram classifier.

Evaluation on the GPU is then straightforward: we sim-
ply look up the cubes for the feature, evaluate the integral
image, and combine the results. Our 3D computation of the
integral image is based on a previous technique for comput-
ing 2D integral images [6].

Steerable features consist of 24 basic types (Ta-
ble 1) [16]. For a given location, the features are trans-
formations on either the gray value, the gradient, or the
projection of the gradient onto an input direction. During
pose detection, the input direction comes from the x-axis of
the pose, and for boundary detection it is the normal of the
mesh point. The possible feature locations lie on a grid of
discrete 3D locations around a sample point, and each fea-
ture can be calculated on one of several image resolutions
of an image pyramid. Each feature is completely described
by its position in the 3D sampling pattern (3 integers), its
type (1 integer), and the discrete image scale it is computed
at (1 integer). By packing the type and scale into a single
value (e.g., scale×32 + type), this data can be packed into
as few as 1 RGBA pixels of a texture image.

During evaluation, first, the initial datum to be modified
(either I , Ix,∇I , etc.) is extracted. This requires a group of
5 conditionals corresponding to the rows of Table 1. Then
subsequent modifiers (a power, an absolute value, or a log-
arithm) are applied. The type of data and the subsequent
modifiers are stored as flags in a table of length 24 (simi-
larly for the powers). The multiple scales of the image are
stored into a single texture, and an offset table stores the
lower left corner of each of the resolutions in this texture.

Accuracy CPU1 CPU8 GPU CPU1
GPU

CPU8
GPU

PBT 6.4±2.2 mm 24.4s 4.53s 0.31s 78.4× 14.5×
Tree 8.0±2.9 mm 24.9s 4.55s 0.22s 114.9× 21.0×

Table 2. Accuracy and timing results for per-pixel classification
in Liver MRI volumes. The Tree row gives timings for the non-
probabilistic implementation of the boosting tree.

4. Experiments
We have validated our implementation on the applica-

tions outlined in Section 2. For evaluation, we used a
1.5GB nVidia 480 GTX on a Intel Core quad with 16GB
of RAM. All timing results compare the GPU version to a
CPU only version with either a single thread or an 8 thread
OpenMP implementation1 and do not include time to load
the volumes from disk. Load times for 1mm resolution vol-
umes, including building the 4mm and 2mm pyramid, takes
0.15-0.35s (resp. 0.05-0.18s) for the single-threaded (resp.
multi-threaded) implementation.

4.1. Classification

For classification evaluation, we use Liver annotations
on 59 MRI volumes of 3 mm resolution, with sizes of 107×
80× 60 to 140× 101× 144 voxels. Using three-fold cross-
validation, we trained PBT classifiers to depth 6 with Haar
features to recognize the inside of human labeled meshes.

During detection, we evaluate the classifier at each
pixel, giving p(x, y, z). The resulting probabilities are
then regularized to produce binary labels, l(x, y, z), by
minimizing:

∫ ∫ ∫
V
|p(x, y, z) − l(x, y, z)|dV +

∫ ∫
A
dA.

The optimization is performed with a discrete graph-cut ap-
proximation to the continuous problem [2]. The labels are
then converted into a mesh for comparison to ground truth.

Table 2 shows the accuracy compared to ground truth,
the average timings for the CPU (single- and 8-threaded)
and GPU implementations, and the speedups (see left Fig. 1
for qualitative result). The GPU version achieves a speedup
of 78× over the single-threaded CPU implementation.

We also evaluated the non-probabilistic version of the
tree (e1 = 0.5 in Algorithm 2) on both the CPU and GPU.
This change hardly affects the CPU version, but causes a
dramatic change in timing of the GPU implementation. It
is possible to achieve a higher speedup in this case (115×
over 1-thread CPU), as the Cuda program does not need to
maintain the stack. However, this results in worse accuracy.

4.2. Hierarchical PBT detection

The classification results illustrate the potential benefit
of using a GPU accelerated PBT evaluation. In such cases
there is enough work for the GPU, and the same program
is being run on all voxels in an image. We now evaluate
the PBT in the context of an already optimized hierarchical

1The Intel Core quad has hyper-threading, making 8 threads the default.

Figure 4. Qualitative illustration of detected results (top) and
ground truth (bottom) for fetal head structures in 3D ultrasound.
Structures from left: CER, CM, LV.

CPU1 CPU8 GPU CPU1
GPU

CPU8
GPU

CER 12.8s 4.77s 0.77s 16.6× 6.2×
LV 31.1s 7.63s 0.62s 49.9× 12.2×
CM 6.0s 2.60s 0.19s 31.2× 13.3×
Total 49.9s 14.90s 1.60s 31.4× 9.4×

Table 3. Timing for detection of fetal head structures.

CPU1 CPU8 GPU CPU1
GPU

CPU8
GPU

3 mm Pose 4.95s 0.92s 0.43s 11.39× 4.03×
3 mm BndyLow 1.71s 0.26s 0.12s 14.22× 2.11×
3 mm BndyMid 3.41s 0.50s 0.17s 19.79× 2.91×
1 mm BndyHi 10.24s 1.76s 1.01s 10.15× 1.71×

Total 20.41s 3.47s 1.81s 11.30× 2.19×
Table 4. Timing results for MRI Liver boundary detection.

detection system [12]. The system is applied to obtain auto-
matic measurements of brain structures in fetal ultrasound.
We focus here on detecting three structures: Cerebellum
(CER), Cisterna Magna (CM), and Lateral Ventricles (LV).
See Figure 4 for a qualitative example. We used 990 vol-
umes with 1 mm resolution and dimensions 143×90×110
to 231× 161× 208 for training. The network encodes spa-
tial relationships between structures: CER is detected first
and is used to predict initializations for LV and CM [12].
Detection accuracy for these structures is 2.2 mm.

Table 3 shows the timings and speedups for detection
of these 3 structures averaged over 50 volumes. Most of
the execution is in orientation and scale detection. The
speedups are slightly lower than for classification, which is
due to the hierarchical detection algorithm having regions
that are inherently serial and must be done on the host CPU
(e.g., results are read back, candidates are pruned, depen-
dent structures are predicted). Furthermore, some of the
phases of detection evaluate the PBT on as few as 1000s of
elements, meaning the GPU is not fully utilized.

Figure 5. Axial and coronal views of two boundary detection re-
sults (blue) overtop the ground truth (green).

4.3. Boundary Detection

After the initial pose detection, the boundary is detected
by iterative refinement and smoothing [9]. The data is the
same 3 mm MR volumes used in the classification exper-
iment, plus the corresponding 1 mm resolution volumes.
With 3-fold cross validation, the boundary detection aver-
age mesh-to-mesh accuracy was 2.49± 0.85 mm (Fig. 5).

Boundary detection is performed on a mesh hierar-
chy: the first two resolutions BndyLow (602 vertices) and
BndyMid (1202 vert.) are refined on 3 mm volumes; the
highest resolution (2402 vert.) is detected on 1 mm. The
boundary refinement evaluates the PBT classifier, for each
vertex, at several displacements along the normal. The best
displacement is chosen for each vertex, and the resulting
mesh is smoothed. This two step process is iterated several
times. Currently, smoothing is performed on the CPU.

In this case the pose detection also estimates 3-PCA
coefficients of the mesh before boundary detection. This
part is not optimized and takes roughly 50ms, making the
speedups slightly worse (Table 4). The speedup of the over-
all boundary detection is lower than for classifier evaluation,
suggesting that frequent read-back and CPU mesh smooth
operations limit the speedup. Specifically, on BndyHi,
when evaluating the classifier for 32 displacement samples,
the speedups are better: 50× (resp. 7×) for a single (resp
8) thread implementation.

5. Conclusion
We have presented an efficient Cuda implementation of

the PBT classifier that can be used in classification or detec-
tion. Speedups of up to 78× were obtained in classification
of Liver in MRI data, to 30× in detection of automatic fetal
head detection in ultrasound images, and 10× in MRI Liver
boundary detection. In the latter two cases, the optimized
detection pipeline makes use of hierarchical pruning.

The use of such optimizations is critical to meet the ef-
ficiency demands of current medical imaging applications.

Furthermore, the proposed stack-based transformation can
be implemented in shader-based GPUs (e.g., mobile de-
vices). With mobile GPU hardware slated to increase ef-
ficiency (up to 50× in a few years), such parallel imple-
mentations become important for advanced mobile medical
imaging solutions.

References
[1] M. Bayazit, A. Couture-Beil, and G. Mori. Real-time

motion-based gesture recognition using the GPU. In IAPR
Conf. on Machine Vision Applications (MVA), 2009. 1

[2] Y. Boykov and V. Kolmogorov. Computing geodesics and
minimal surfaces via graph cuts. In ICCV, pages 26–33,
2003. 5

[3] A. Coates, P. Baumstarck, Q. Le, and A. Y. Ng. Scalable
learning for object detection with GPU hardware. In IROS,
pages 4287–4293, 2009. 1, 2

[4] A. Criminisi, J. Shotton, and S. Bucciarelli. Decision forests
with long-range spatial context for organ localization in ct
volumes. In MICCAI-PMMIA workshop, 2009. 2

[5] H. Ghorayeb, B. Steux, and C. Laurgeau. Boosted algorithms
for visual object detection on graphics processing units. In
ACCV 2006, pages 254–263. 2006. 1, 2

[6] M. Harris, S. Sengupta, and J. D. Owens. Parallel prefix
sum (scan) with CUDA. In H. Nguyen, editor, GPU Gems 3.
Addison Wesley, August 2007. 4

[7] A. Herout, R. Josth, P. Zemcik, and M. Hradis. GP-GPU
implementation of the local rank differences image feature.
In Computer Vision and Graphics, pages 380–390. 2009. 2

[8] V. Lempitsky, M. Verhoek, J. A. Noble, and A. Blake. Ran-
dom forest classification for automatic delineation of my-
ocardium in real-time 3D echocardiography. In Functional
Imaging of the Heart, pages 447–456, 2009. 2

[9] H. Ling, S. K. Zhou, Y. Zheng, B. Georgescu, M. Suehling,
and D. Comaniciu. Hierarchical, learning-based automatic
liver segmentation. CVPR, 2008. 2, 6

[10] NVIDIA. NVIDIA CUDA Programming Guide 2.3. 2009. 3
[11] T. Sharp. Implementing decision trees and forests on a GPU.

In ECCV, volume 5305, pages 595–608, 2008. 1, 2, 3
[12] M. Sofka, J. Zhang, S. Zhou, and D. Comaniciu. Multiple

object detection by sequential Monte Carlo and hierarchical
detection network. In CVPR, 13–18 June 2010. 1, 2, 5

[13] Z. Tu. Probabilistic boosting-tree: Learning discriminative
models for classification, recognition, and clustering. In
ICCV, pages 1589–1596, 2005. 1, 2

[14] P. Viola and M. J. Jones. Rapid object detection using a
boosted cascade of simple features. In CVPR, pages 511–
518, 2005. 1

[15] C. Wojek, G. Dorkó, A. Schulz, and B. Schiele. Sliding-
windows for rapid object class localization: A parallel tech-
nique. In DAGM sym. on Patt. Rec., pages 71–81, 2008. 1

[16] Y. Zheng, A. Barbu, B. Georgescu, M. Scheuering, and
D. Comaniciu. Four-chamber heart modeling and automatic
segmentation for 3-D cardiac CT volumes using marginal
space learning and steerable features. IEEE T. Med. Imag-
ing, 27(11):1668–1681, Nov. 2008. 1, 2, 4

