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Abstract. Point of care ultrasound (POCUS) consists in the use of ul-
trasound imaging in critical or emergency situations to support clinical
decisions by healthcare professionals and first responders. In this setting
it is essential to be able to provide means to obtain diagnostic data to
potentially inexperienced users who did not receive an extensive medi-
cal training. Interpretation and acquisition of ultrasound images is not
trivial. First, the user needs to find a suitable sound window which can
be used to get a clear image, and then he needs to correctly interpret
it to perform a diagnosis. Although many recent approaches focus on
developing smart ultrasound devices that add interpretation capabilities
to existing systems, our goal in this paper is to present a reinforcement
learning (RL) strategy which is capable to guide novice users to the cor-
rect sonic window and enable them to obtain clinically relevant pictures
of the anatomy of interest. We apply our approach to cardiac images
acquired from the parasternal long axis (PLAx) view of the left ventricle
of the heart.

1 Introduction

Ultrasound (US) is a flexible, portable, safe and cost effective modality that finds
several applications across multiple fields of medicine. In particular, ultrasound
is widely used to assess the functionality of the heart due to its capability of
showing motion in real time allowing clinicians evaluate the overall health of the
organ.

The characteristics of ultrasound make it extremely suitable for applications
related with emergency medicine and point of care (POC) decision making.
Recently, several ultra-portable and lightweight ultrasound devices have been
announced and commercialized to enable these applications. These products have
been envisioned to be extremely inexpensive, have a long battery life, a robust
design and to be operated by inexperienced users who have not received any
formal training. In order to reach the latest goal, images need to be interpreted
by a computer vision based system and accurate instruction for fine manipulation
of the ultrasound probe need to be provided to the user in real time.

Machine learning (ML) and in particular deep learning (DL) have been re-
cently employed to solve a diverse set of problem in medical image analysis. The
performances of image segmentation, interpretation, registration and classifica-
tion algorithms were significantly boosted by the usage of deep learning based
techniques which reached or even surpassed the accuracy of human raters.
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In this paper we show how to use deep learning and in particular deep rein-
forcement learning to create a system to guide inexperienced users towards the
acquisition of clinically relevant images of the heart in ultrasound. We focus on
acquisition through the parasternal long axis (PLAx) sonic window on the heart
which is one of the most used views in emergency settings due to its accessibility.

In our acquisition assistance framework the user is asked to place the probe
anywhere on the left side of the patient’s chest and receives instructions on how
to manipulate the probe in order to obtain a clinically acceptable parasternal
long axis scans of the heart. Every time an image is produced by the ultrasound
equipment, our deep reinforcement learning model predicts a motion instruction
that is promptly displayed to the user. In this sense, we are learning a control
policy that predicts actions (also called instructions) in correspondence of ob-
servations, which makes reinforcement learning a particularly suitable solution.
This problem has several degrees of freedom. Apart from instructions regarding
left-right and top-bottom motions, the user will also receive fine-grained manip-
ulation indications regarding rotation and tilt of the probe.

Our reinforcement learning approach is trained end to end, meaning that
differently from other techniques we train our model to solve the acquisition as-
sistance task directly. For this reason we need to capture exemplary training data
in a way that allows us to simulate acquisition assistance offline, since it would
be impractical to do this in real time on real people while training. We build
environments to simulate offline any (reasonable) acquisition trajectory the user
may take while scanning the patient by making use of tracked video sequences.
The paradigm we choose for deep RL is DQN coupled with an epsilon greedy
exploration strategy and delayed updates. In [7] a similar approach, making use
of a simpler network architecture, has shown excellent performances on arcade
video-games.

We compare the performances of our method with the ones obtained by
training a classifier to learn a policy on the same data in a fully supervised
manner.

2 Related Work

Reinforcement learning has been recently employed to solve several computer
vision related problems and specifically to achieve superhuman performances in
playing ATARI games and 3D video-games such as ”Doom” [3].

In [7,8] a convolutional deep neural network has been employed together with
Q-learning to predict the expected cumulative reward Q(s, a) associated with
each action that the agent can perform in the game. In [5] a learning strategy
that employs two identical networks, updated at different paces, is presented. In
this paper, the target network is used for predictions and is updated smoothly
at regular intervals, while the main network gets updated batch-wise through
back-propagation. This is particularly useful in continuous control. In [12] the
network architecture used to predict the Q-values is modified to comprise two
different paths which predict, respectively, the value V (s) of being in a certain
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state and the advantage of taking a certain action in correspondence to that
state. This strategy has resulted in increased performances. In [11] target Q-
values, which are learned during training, are computed differently than in [7].
Instead of having the network regress Q-values computed as the reward rt plus
γ arg maxaQ

∗(st+1, a), they use rt + γQ∗(st+1, at+1). The main difference is
that, in the latter, the action at+1 is the one that is selected by the network
in correspondence of the state st+1, and not a which is the one yielding the
maximum Q-value. This yields increased stability of the Q-values.

Reinforcement learning has been applied in medical domain for the first time
in [2] to solve a landmark localization problem in MRI with a game-like strat-
egy as the problem may resemble a maze navigation problem. In [9] a similar
approach has been applied to heart model personalization on synthetic data.

In this work we apply reinforcement learning to a guidance problem whose
goal is to provide instructions to users in order to enable them to scan the left
ventricle of the heart using ultrasound through the parasternal long axis sonic
window. We build our learning strategy to perform end-to-end optimization of
the guidance performances. In this work we show the details of our learning
environment, which allows the agent to obtain simulated ultrasound acquisitions
and we compare our system with supervised policy learning via classification.

3 Method

As previously discussed, reinforcement learning models are usually trained by
letting an agent interact with the environment (Eg. play a game) using the
current policy in order to obtain new observations and rewards. Once new ex-
periences are obtained, the policy can be updated by learning from them. More
formally the reinforcement learning problem is usually formulated as a Markov
decision process (MDP) (Figure 1). At each point in time, the agent observes
a state St and interacts with the environment, using its policy π ∈ Π, through
actions a ∈ A obtaining a finite reward rt together with a new state St+1. Π is
the set of all possible policies while A is the set of all supported actions.

Agent !
Environment

at
St rt

St+1

rt+1

Fig. 1. Schematic representation of the reinforcement learning framework.

The set of supported actions, in our system, contains 9 actions as shown in
table 1.
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Table 1. Set of actions supported by the agent. These action are mapped to the
corresponding effect in the simulated acquisition framework.

Action Effect

NOP Stops the virtual probe. Should be issued at correct view.

Move Lateral Translates the probe towards the patient’s left

Move Medial Translates the probe towards the patient’s right

Move Superior Translates the probe towards the patient’s head

Move Inferior Translates the probe towards the patient’s feet

Tilt Supero-laterally Tilts the probe towards the head of the patient

Tilt Infero-medially Tilts the probe towards the feet of the patient

Rotate Clockwise Rotates the probe clockwise

Rotate Counter-Clockwise Rotates the probe counter-clockwise

In this section we present the details of our implementation. First we discuss
the implementation of the acquisition simulation environment which is necessary
for learning a policy via reinforcement learning. Then we give the details of our
DQN implementation and of the convolutional architecture we employ in this
work. Last we introduce the fully supervised strategy which is used in this work
to obtain means of comparison.

3.1 Simulated acquisition environment

In order to learn from experience, our reinforcement learning agent needs to col-
lect data according to its policy by physically moving the probe on the chest of
the patient in order to obtain data and rewards. It is unfortunately impossible
to implement such a system in practice due to the fact that acquiring the tra-
jectories would take an enormous amount of time and a person would need to
be scanned for the whole duration of learning.

We have resorted to acquiring, independently from our learning procedure, a
large number of spatially tracked video frames from patients. By drawing spatial
relationships between the frames, we are able to navigate the chest area offline
and obtain simulated trajectories. We have defined, for each participant in the
study, a work area covering a large portion of their chest. We have divided this
area into 7 × 7 mm spatial bins. The bins from which it is possible to obtain a
valid PLAx view by fine manipulation of the probe, are annotated as ”correct”
while all other bins remain unmarked. This annotation is necessary to implement
the reward system.

Our system offers guidance for 4 out of the 5 degrees of freedom of probe
motion (Figure 2). We get data for the first two degrees of freedom, left-right
and top-bottom translations, by moving the probe in a regular and dense grid
pattern over the chest in order to ”fill” each bin of the grid with at least 25
frames. In correspondence of the bins marked ”correct”, the sonographer is also
asked to acquire 50 ”correct” frames, showing the best view and 50 frames from
each of the following scenarios: the probe is rotated by an excessive amount in
the (i) clockwise or (ii) counterclockwise direction, or the probe is tilted by an
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Fig. 2. Degrees of freedom of the probe during acquisition. We cover all degrees of
freedom apart from rotations about the short horizontal axis (rocking).

excessive amount in the (iii) infero-medial or (iv) supero-lateral direction. In this
way data for the last two degrees of freedom is obtained.

When the agent interacts with the environment it is free to move in any
direction and reach any bin within the grid. For the bins that are marked ”cor-
rect” it is additionally able to apply rotations and tilts. This limitation is only
introduced because of the fact that acquiring all rotations and tilts for all grid
bins would be too time consuming to be done in practice. Moreover, such fine
manipulation instructions are meaningful only when the user places the probe
near one of the ”correct” views.

In order to build the environment we need to track both the body of the
patient and the probe as data gets acquired. A schematic representation of
our tracking system is shown in Figure 3. The tracking system, a NDI Po-
laris Vicra optical tracker, produces in real time a tracking stream consisting
of two 4 × 4 transformation matrices Ttrack>probe and Ttrack>body. The trans-
form Tprobe>image, which is necessary to obtain the true pose of each picture
acquired through our system, is obtained by performing calibration with the
open source software fCal, which is provided as part of the PLUS framework [4].
The video frames are acquired through an ultrasound probe and supplied to the
data acquisition system through OpenIGTlink interface [10]. The tracking and
video streams are handled and synchronized using the PLUS framework in order
to obtain tracked frames.

Each bin of the environment contains the necessary data, it is possible to
interact with it by performing actions which result in state changes and rewards.
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Ttrack>body

T
track>probe

Tprobe>image

Fig. 3. Schematic representation of our data acquisition system which comprises a
probe and a tracking system in order to obtain tracked video frames from the patient.

The actions can have the effect of either stopping the virtual probe (”NOP”
action), bringing it closer or further away from the nearest goal point.

At the beginning of each episode the environment is reset and a virtual
”probe” is randomly placed in one of the bins. When the agent request an
action that is incompatible with the structure of the grid, for example by re-
questing grid bins that are outside the work area or request tilts and rotations
in correspondence of bins that have not been marked ”correct”, the environment
supplies a random frame from the current bin and the same reward that would
have been given in correspondence of an action that would have brought the
virtual probe further from the nearest goal point.

A summary of the agent reward scheme used in this paper is provided in
Table 2.

Table 2. Reward strategy for our reinforcement learning agent.

Correct Bin Other Bin

Stop 1 −0.25

Closer — 0.05

Further −0.10 −0.10
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3.2 Deep Q-Network

In this work we implement the Q-learning paradigm already employed by [7,8].
This off-policy learning strategy leverages a convolutional neural network to
regress Q-values which are the expected cumulative rewards associated with each
action in correspondence of a state. As previously stated, the input of the model
are ultrasound images, and its output is represented by nine Q-values, one for
each action. Similarly to [5] we instantiate two copies of the same network. We
have a target network which produces the values Qθ∗(s, a) and a main network
which predicts Qθ(s, a).
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Fig. 4. Schematic representation of the network architecture.

In order to train our agent we interact with the training environments. Each
environment refers and represents to one patient. During an episode, we se-
lect an environment among those available for training and we reset the virtual
probe to a random position. We then use the main network to collect experi-
ence by interacting with the environment. We implement exploration using an
epsilon-greedy strategy which randomly hijacks and replaces the actions chosen
through arg maxa(Qθ(s, a)) with random ones. In this way we are able to bal-
ance the needs for exploring the environment and the follow the learned policy.
All agent’s experiences are collected in an experience replay buffer of adequate
size as previously done in [7]. Since all our data is pre-acquired it is possible
to increase the memory efficiency of the experience replace buffer by storing in
memory image paths on the file system instead of storing uncompressed images.

Once there is enough data in the experience replay buffer, we sample random
training batches from it and we use them to update the parameters θ of the main
network using back-propagation. The objective function that we minimize with
respect to the parameters of the network, using ADAM as our optimizer, is

C(θ, st, at) = ‖Qθ(st, at)− T (st, at)‖22
T (st, at) = rt + γ arg max

a
(Qθ∗(st+1, a))
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The target network network is trained with a different strategy: the param-
eters θ∗ of the target network are updated with the parameters of the main
network once every 250 episodes.

A schematic representation of the network architecture is shown in Figure 4.
This network makes use of global average pooling [6] applied after the output
of the last convolutional layer. All the non-linearities employed throughout the
network are exponential linear units (ELU) [1]. A 9-way fully connected layer
follows the global average pooling and produces the outputs of the network.

During testing, the target network interacts with the environment. All actions
are chosen deterministically through arg maxa(Qθ∗(s, a)) which is, therefore, a
stationary deterministic policy.

3.3 Supervised policy learning

In order to obtain means of comparison for our approach we have implemented
a supervised policy learning approach which relies on classification and labeled
data to learn the right action to perform in correspondence of each state. When
we acquire data from patients we build environments where the parameters of
the correct view in terms of translation, rotation and tilt are known. This enables
us to label each image in each bin of the grid with one action, which would be
the optimal action to perform in that state if we rely only on the Manhattan
distance abs(x− xgoal) between the bin position x on the grid and the goal bin
position xgoal. In particular, for each bin of the grid, we choose the label for its
images as the action that reduces the distance to the goal on the axis where the
distance is currently the smallest.

We train a classifier with the same architecture shown in Figure 4, with the
only exception that the last layer is followed by a soft-max activation function.
We use all the data that is available to our reinforcement learning agent, shuffled
and organized in batches of the same size of the ones used for our DQN.

During testing we use the same environments used by the reinforcement
learning agent to test the supervised policy end-to-end on the guidance task. In
this way we can compare on fair grounds the performances of the two strategies.

4 Results

We evaluate our method on the end-to-end guidance task described in the previ-
ous sections, using one environment for each patient. We train our approach on
22 different environments corresponding to circa 160 thousand ultrasound im-
ages, and we test our approach on 5 different environments which contain circa
40 thousand scans. During testing with start from each and every grid bin of
each environment and we test the guidance performances of the approach.

As previously explained, we train both a RL-based approach and a supervised
classification-based approach. Results are shown in Table 2.

We perform data augmentation for both the supervised and RL approaches.
Each training sample is slightly rotated, shifted and re-scaled by a random quan-
tity before being presented as input to the network. Also the gamma of the
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images is subject to augmentation. The episodes have a standard duration of
50 steps and ”NOP” operations do not terminate the episode. Instead, a new,
randomly selected, image from the same grid bin is returned to the agent.

Table 3. Summary of performance of RL approach versus supervised approach on the
test data-set.

Reinforcement Learning
Supervised

Performances Continuous

Correct guidance 86.1% 77.8%

Incorrect guidance 13.9% 22.2%

Incorrect NOP percentage 1.6% 25.9%

Behaviour

Avg. number negative rewards 30.3% 36.9%

Avg. number positive rewards 69.6% 63.1%

Our results are summarized in Table 3. The table is split in two parts: the
first part summarizes the performances of the method on the end-to-end guidance
task and inform us on the percentage of correct and incorrect guidance. That is,
the percentage of episodes that have ended in a ”correct” bin. Additionally we
report the percentage of ”NOPs” that have been issued at an incorrect location.
Please note that ”NOP” can be issued multiple times during a single episode.
The agent may have briefly issued an ”incorrect NOP” even during successful
episodes. The evaluation reveals that the supervised approach is less successful
than the RL approach on the guidance task. The second part of the table reveals
information about the behaviour of the reward. Also these results demonstrate
that our RL agent is performing more ”correct” actions than its supervised
counterpart.

5 Conclusion

We have developed a framework to interpret ultrasound images with the objec-
tive of guiding an inexperienced user to acquire adequate images of the heart
from the PLAx sonic window. Our approach has proven to achieve better results
than a supervised approach trained on the same data and tested on the end-to-
end guidance task. The intuition behind this is that RL is able to avoid and go
around areas that are highly ambiguous as the Q-Values in correspondence of
the actions leading to those states should not be very high. Moreover RL im-
plicitly learns the spatial arrangement of the different pictures on the chest. The
Q-values of grid bins that are very far from the goal are much lower than the
Q-values obtained for states nearby the correct sound window. This means that,
although the best actions for these bins may be the same, the network must be
able to distinguish them since in order to produce different Q-values ranges.
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Although the results have shown to be promising there are still issues related
with this method. Scalability of data acquisition strategy is the first issue. In
order to acquire training data it’s necessary to undergo a tedious scanning proce-
dure that can last up to 20 minutes per patient. Moreover, it requires dedicated
and costly tracking equipment which work only when the line of sigh (LoS) be-
tween the tracker and the markers is not occluded. The resulting environments
allow acquisition trajectory simulation but, of course, the images they provide
slightly differ from the ones obtained by a true, live scan.

The training time required by the presented reinforcement learning approach
is also very long, and limits the possibility of experimenting with different sets
of hyper-parameters.

In conclusion, we believe that this method is the one of the first step to
converge towards a solution which aims to solve the guidance task end-to-end in
a more reliable and effective manner.
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