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FIELD 

[ 0002 ] The present disclosure relates generally to gener 
ating magnetic resonance ( MR ) images from input MR 
spatial frequency data and , more specifically , to machine 
learning ( e.g. , deep learning ) techniques for processing input 
MR spatial frequency data to produce MR images . 

BACKGROUND 

[ 0003 ] Magnetic resonance imaging ( MRI ) provides an 
important imaging modality for numerous applications and 
is widely utilized in clinical and research settings to produce 
images of the inside of the human body . MRI is based on 
detecting magnetic resonance ( MR ) signals , which are elec 
tromagnetic waves emitted by atoms in response to state 
changes resulting from applied electromagnetic fields . For 
example , nuclear magnetic resonance ( NMR ) techniques 
involve detecting MR signals emitted from the nuclei of 
excited atoms upon the re - alignment or relaxation of the 
nuclear spin of atoms in an object being imaged ( e.g. , atoms 
in the tissue of the human body ) . Detected MR signals may 
be processed to produce images , which in the context of 
medical applications , allows for the investigation of internal 
structures and / or biological processes within the body for 
diagnostic , therapeutic and / or research purposes . 
[ 0004 ] MRI provides an attractive imaging modality for 
biological imaging due to its ability to produce non - invasive 
images having relatively high resolution and contrast with 
out the safety concerns of other modalities ( e.g. , without 
needing to expose the subject to ionizing radiation , such as 
X - rays , or introducing radioactive material into the body ) . 
Additionally , MRI is particularly well suited to provide soft 
tissue contrast , which can be exploited to image subject 
matter that other imaging modalities are incapable of satis 
factorily imaging . Moreover , MR techniques are capable of 
capturing information about structures and / or biological 
processes that other modalities are incapable of acquiring . 

system . The method comprises : obtaining input MR spatial 
frequency data obtained by imaging the subject using the 
MRI system ; generating an MR image of the subject from 
the input MR spatial frequency data using a neural network 
model comprising : a pre - reconstruction neural network con 
figured to process the input MR spatial frequency data ; a 
reconstruction neural network configured to generate at least 
one initial image of the subject from output of the pre 
reconstruction neural network ; and a post - reconstruction 
neural network configured to generate the MR image of the 
subject from the at least one initial image of the subject . 
[ 0006 ] Some embodiments provide for a magnetic reso 
nance imaging ( MRI ) system , comprising : a magnetics 
system having a plurality of magnetics components to 
produce magnetic fields for performing MRI ; and at least 
one processor configured to perform : obtaining input MR 
spatial frequency data obtained by imaging the subject using 
the MRI system ; generating an MR image of the subject 
from the input MR spatial frequency data using a neural 
network model comprising : a pre - reconstruction neural net 
work configured to process the input MR spatial frequency 
data ; a reconstruction neural network configured to generate 
at least one initial image of the subject from output of the 
pre - reconstruction neural network ; and a post - reconstruction 
neural network configured to generate the MR image of the 
subject from the at least one initial image of the subject . 
[ 0007 ] Some embodiments provide for a system compris 
ing at least one processor configured to perform : obtaining 
input MR spatial frequency data obtained by imaging the 
subject using the MRI system , generating an MR image of 
the subject from the input MR spatial frequency data using 
a neural network model comprising : a pre - reconstruction 
neural network configured to process the input MR spatial 
frequency data ; a reconstruction neural network configured 
to generate at least one initial image of the subject from 
output of the pre - reconstruction neural network ; and a 
post - reconstruction neural network configured to generate 
the MR image of the subject from the at least one initial 
image of the subject . 
[ 0008 ] Some embodiments provide for at least one non 
transitory computer readable storage medium storing pro 
cessor - executable instructions that , when executed by at 
least one processor , cause the at least one processor to 
perform a method for generating magnetic resonance ( MR ) 
images of a subject from MR data obtained by a magnetic 
resonance imaging ( MRI ) system . The method comprises : 
obtaining input MR spatial frequency data obtained by 
imaging the subject using the MRI system ; generating an 
MR image of the subject from the input MR spatial fre 
quency data using a neural network model comprising : a 
pre - reconstruction neural network configured to process the 
input MR spatial frequency data ; a reconstruction neural 
network configured to generate at least one initial image of 
the subject from output of the pre - reconstruction neural 
network ; and a post - reconstruction neural network config 
ured to generate the MR image of the subject from the at 
least one initial image of the subject . 
[ 0009 ] Some embodiments provide a method for generat 
ing magnetic resonance ( MR ) images of a subject from MR 
data obtained by a magnetic resonance imaging ( MRI ) 
system . The method comprising : obtaining first input MR 
data obtained by imaging the subject using the MRI system ; 
obtaining second input MR data obtained by imaging the 
subject using the MRI system ; generating a first set of one 

SUMMARY 

[ 0005 ] Some embodiments provide for a method for gen 
erating magnetic resonance ( MR ) images of a subject from 
MR data obtained by a magnetic resonance imaging ( MRI ) 
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or more MR images from the first input MR data ; generating 
a second set of one or more MR images from the second 
input MR data ; aligning the first set of MR images and the 
second set of MR images using a neural network model to 
obtain aligned first and second sets of MR images , the neural 
network model comprising a first neural network and a 
second neural network , the aligning comprising : estimating , 
using the first neural network , a first transformation between 
the first set of MR images and the second set of MR images ; 
generating a first updated set of MR images from the second 
set of MR images using the first transformation ; estimating , 
using the second neural network , a second transformation 
between the first set of MR images and the first updated set 
of MR images , and aligning the first set of MR images and 
the second set of MR images at least in part by using the first 
transformation and the second transformation ; combining 
the aligned first and second sets of MR images to obtain a 
combined set of one or more MR images ; and outputting the 
combined set of one or more MR images . 
[ 0010 ] Some embodiments at least one non - transitory 
computer - readable storage medium storing processor - ex 
ecutable instructions that , when executed by at least one 
processor , cause the at least one processor to perform a 
method for generating magnetic resonance ( MR ) images of 
a subject from MR data obtained by a magnetic resonance 
imaging ( MRI ) system . The method comprises : obtaining 
first input MR data obtained by imaging the subject using the 
MRI system ; obtaining second input MR data obtained by 
imaging the subject using the MRI system ; generating a first 
set of one or more MR images from the first input MR data ; 
generating a second set of one or more MR images from the 
second input MR data ; aligning the first set of MR images 
and the second set of MR images using a neural network 
model to obtain aligned first and second sets of MR images , 
the neural network model comprising a first neural network 
and a second neural network , the aligning comprising : 
estimating , using the first neural network , a first transfor 
mation between the first set of MR images and the second set 
of MR images , generating a first updated set of MR images 
from the second set of MR images using the first transfor 
mation ; estimating , using the second neural network , a 
second transformation between the first set of MR images 
and the first updated set of MR images ; and aligning the first 
set of MR images and the second set of MR images at least 
in part by using the first transformation and the second 
transformation ; combining the aligned first and second sets 
of MR images to obtain a combined set of one or more MR 
images ; and outputting the combined set of one or more MR 
images . 
[ 0011 ] Some embodiments provide for a magnetic reso 
nance imaging ( MRI ) system , comprising : a magnetics 
system having a plurality of magnetics components to 
produce magnetic fields for performing MRI ; and at least 
one processor configured to perform : obtaining first input 
MR data by imaging the subject using the MRI system ; 
obtaining second input MR data by imaging the subject 
using the MRI system ; generating a first set of one or more 
MR images from the first input MR data ; generating a 
second set of one or more MR images from the second input 
MR data ; aligning the first set of MR images and the second 
set of MR images using a neural network model to obtain 
aligned first and second sets of MR images , the neural 
network model comprising a first neural network and a 
second neural network , the aligning comprising : estimating , 

using the first neural network , a first transformation between 
the first set of MR images and the second set of MR images ; 
generating a first updated set of MR images from the second 
set of MR images using the first transformation ; estimating , 
using the second neural network , a second transformation 
between the first set of MR images and the first updated set 
of MR images , and aligning the first set of MR images and 
the second set of MR images at least in part by using the first 
transformation and the second transformation ; combining 
the aligned first and second sets of MR images to obtain a 
combined set of one or more MR images ; and outputting the 
combined set of one or more MR images . 
[ 0012 ] Some embodiments provide for a system , compris 
ing at least one processor configured to perform : obtaining 
first input MR data obtained by imaging the subject using the 
MRI system ; obtaining second input MR data obtained by 
imaging the subject using the MRI system ; generating a first 
set of one or more MR images from the first input MR data ; 
generating a second set of one or more MR images from the 
second input MR data ; aligning the first set of MR images 
and the second set of MR images using a neural network 
model to obtain aligned first and second sets of MR images , 
the neural network model comprising a first neural network 
and a second neural network , the aligning comprising : 
estimating , using the first neural network , a first transfor 
mation between the first set of MR images and the second set 
of MR images ; generating a first updated set of MR images 
from the second set of MR images using the first transfor 
mation ; estimating , using the second neural network , a 
second transformation between the first set of MR images 
and the first updated set of MR images ; and aligning the first 
set of MR images and the second set of MR images at least 
in part by using the first transformation and the second 
transformation ; combining the aligned first and second sets 
of MR images to obtain a combined set of one or more MR 
images ; and outputting the combined set of one or more MR 
images . 
[ 0013 ] Some embodiments provide for a method for gen 
erating magnetic resonance ( MR ) images of a subject from 
MR data obtained by a magnetic resonance imaging ( MRI ) 
system , the method comprising : obtaining input MR data 
obtained by imaging the subject using the MRI system ; 
generating a plurality of transformed input MR data 
instances by applying a respective first plurality of transfor 
mations to the input MR data ; generating a plurality of MR 
images from the plurality of transformed input MR data 
instances and the input MR data using a non - linear MR 
image reconstruction technique ; generating an ensembled 
MR image from the plurality of MR images at least in part 
by : applying a second plurality of transformations to the 
plurality of MR images to obtain a plurality of transformed 
MR images ; and combining the plurality of transformed MR 
images to obtain the ensembled MR image ; and outputting 
the ensembled MR image . 
[ 0014 ] Some embodiments provide for at least one non 
transitory computer - readable storage medium storing pro 
cessor - executable instructions that , when executed by at 
least one processor , cause the at least one processor to 
perform a method for generating magnetic resonance ( MR ) 
images of a subject from MR data obtained by a magnetic 
resonance imaging ( MRI ) system , the method comprising : 
obtaining input MR data obtained by imaging the subject 
using the MRI system ; generating a plurality of transformed 
input MR data instances by applying a respective first 
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plurality of transformations to the input MR data ; generating 
a plurality of MR images from the plurality of transformed 
input MR data instances and the input MR data using a 
non - linear MR image reconstruction technique ; generating 
an ensembled MR image from the plurality of MR images at 
least in part by : applying a second plurality of transforma 
tions to the plurality of MR images to obtain a plurality of 
transformed MR images ; and combining the plurality of 
transformed MR images to obtain the ensembled MR image ; 
and outputting the ensembled MR image . 
[ 0015 ] Some embodiments provide for at least one a 
magnetic resonance imaging ( MRI ) system configured to 
capture a magnetic resonance ( MR ) image , the MRI system 
comprising : a magnetics system having a plurality of mag 
netics components to produce magnetic fields for perform 
ing MRI ; and at least one processor configured to perform : 
obtaining input MR data obtained by imaging the subject 
using the MRI system ; generating a plurality of transformed 
input MR data instances by applying a respective first 
plurality of transformations to the input MR data ; generating 
a plurality of MR images from the plurality of transformed 
input MR data instances and the input MR data using a 
non - linear MR image reconstruction technique generating 
an ensembled MR image from the plurality of MR images at 
least in part by : applying a second plurality of transforma 
tions to the plurality of MR images to obtain a plurality of 
transformed MR images ; and combining the plurality of 
transformed MR images to obtain the ensembled MR image ; 
and outputting the ensembled MR image . 
[ 0016 ] Some embodiments provide for a system , compris 
ing at least one processor configured to perform : obtaining 
input MR data obtained by imaging the subject using the 
MRI system ; generating a plurality of transformed input MR 
data instances by applying a respective first plurality of 
transformations to the input MR data ; generating a plurality 
of MR images from the plurality of transformed input MR 
data instances and the input MR data using a non - linear MR 
image reconstruction technique ; generating an ensembled 
MR image from the plurality of MR images at least in part 
by : applying a second plurality of transformations to the 
plurality of MR images to obtain a plurality of transformed 
MR images , and combining the plurality of transformed MR 
images to obtain the ensembled MR image ; and outputting 
the ensembled MR image . 
[ 0017 ] Some embodiments provide for a method for gen 
erating magnetic resonance ( MR ) images from MR data 
obtained by a magnetic resonance imaging ( MRI ) system 
comprising a plurality of RF coils configured to detect RF 
signals . The method comprising : obtaining a plurality of 
input MR datasets obtained by the MRI system to image a 
subject , each of the plurality of input MR datasets compris 
ing spatial frequency data and obtained using a respective 
RF coil in the plurality of RF coils ; generating a respective 
plurality of MR images from the plurality of input MR 
datasets by using an MR image reconstruction technique ; 
estimating , using a neural network model , a plurality of RF 
coil profiles corresponding to the plurality of RF coils ; 
generating an MR image of the subject using the plurality of 
MR images and the plurality of RF coil profiles ; and 
outputting the generated MR image . 
[ 0018 ] Some embodiments provide for a magnetic reso 
nance imaging ( MRI ) system , comprising : a magnetics 
system having a plurality of magnetics components to 
produce magnetic fields for performing MRI , the magnetics 

system comprising a plurality of RF coils configured to 
detect MR signals ; and at least one processor configured to 
perform : obtaining a plurality of input MR datasets obtained 
by the MRI system to image a subject , each of the plurality 
of input MR datasets comprising spatial frequency data and 
obtained using a respective RF coil in the plurality of RF 
coils ; generating a respective plurality of MR images from 
the plurality of input MR datasets by using an MR image 
reconstruction technique ; estimating , using a neural network 
model , a plurality of RF coil profiles corresponding to the 
plurality of RF coils ; generating an MR image of the subject 
using the plurality of MR images and the plurality of RF coil 
profiles ; and outputting the generated MR image . 
[ 0019 ] Some embodiments provide for a system compris 
ing at least one processor configured to perform : obtaining 
a plurality of input MR datasets obtained by an MRI system 
to image a subject , each of the plurality of input MR datasets 
comprising spatial frequency data and obtained using a 
respective RF coil in a plurality of RF coils of the MRI 
system ; generating a respective plurality of MR images from 
the plurality of input MR datasets by using an MR image 
reconstruction technique ; estimating , using a neural network 
model , a plurality of RF coil profiles corresponding to the 
plurality of RF coils ; generating an MR image of the subject 
using the plurality of MR images and the plurality of RF coil 
profiles ; and outputting the generated MR image . 
[ 0020 ] Some embodiments provide for at least one non 
transitory computer readable storage medium storing pro 
cessor - executable instructions that , when executed by at 
least one processor , cause the at least one processor to 
perform a method for generating magnetic resonance ( MR ) 
images of a subject from MR data obtained by a magnetic 
resonance imaging ( MRI ) system having a plurality of RF 
coils configured to detect MR signals . The method com 
prises : obtaining a plurality of input MR datasets obtained 
by the MRI system to image a subject , each of the plurality 
of input MR datasets comprising spatial frequency data and 
obtained using a respective RF coil in the plurality of RF 
coils ; generating a respective plurality of MR images from 
the plurality of input MR datasets by using an MR image 
reconstruction technique ; estimating , using a neural network 
model , a plurality of RF coil profiles corresponding to the 
plurality of RF coils ; generating an MR image of the subject 
using the plurality of MR images and the plurality of RF coil 
profiles , and outputting the generated MR image . 
[ 0021 ] Some embodiments provide for a method for gen 
erating magnetic resonance ( MR ) images from MR data 
obtained by a magnetic resonance imaging ( MRI ) system 
comprising a plurality of RF coils configured to detect RF 
signals . The method comprises : obtaining a plurality of input 
MR datasets obtained by the MRI system to image a subject , 
each of the plurality of input MR datasets comprising spatial 
frequency data and obtained using a respective RF coil in the 
plurality of RF coils ; generating , from the plurality of input 
MR datasets and using a geometric coil compression tech 
nique , a plurality of virtual input MR datasets having fewer 
input MR datasets than the first plurality of input MR 
datasets ; generating a plurality of MR images from the 
plurality of virtual input MR datasets by applying a neural 
network MR image reconstruction technique to the plurality 
of virtual input MR datasets ; generating an MR image of the 
subject by combining the plurality of MR images ; and 
outputting the generated MR image . 
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[ 0022 ] Some embodiments provide for a magnetic reso 
nance imaging ( MRI ) system , comprising : a magnetics 
system having a plurality of magnetics components to 
produce magnetic fields for performing MRI , the magnetics 
system comprising a plurality of RF coils configured to 
detect MR signals ; and at least one processor configured to 
perform : obtaining a plurality of input MR datasets obtained 
by the MRI system to image a subject , each of the plurality 
of input MR datasets comprising spatial frequency data and 
obtained using a respective RF coil in the plurality of RF 
coils ; generating , from the plurality of input MR datasets 
and using a geometric coil compression technique , a plural 
ity of virtual input MR datasets having fewer input MR 
datasets than the first plurality of input MR datasets ; gen 
erating a plurality of MR images from the plurality of virtual 
input MR datasets by applying a neural network MR image 
reconstruction technique to the plurality of virtual input MR 
datasets ; generating an MR image of the subject by com 
bining the plurality of MR images , and outputting the 
generated MR image . 
[ 0023 ] The foregoing is a non - limiting summary of the 
invention , which is defined by the attached claims . 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0024 ] Various aspects and embodiments of the disclosed 
technology will be described with reference to the following 
figures . It should be appreciated that the figures are not 
necessarily drawn to scale . 
[ 0025 ] FIG . 1 is a diagram illustrating various types of 
processing performed on data collected by an MRI system 
while imaging a subject to generate an MR image of the 
subject . 
[ 0026 ] FIG . 2A is a diagram illustrating processing per 
formed by a neural network model on data collected by an 
MRI system while imaging a subject to generate an MR 
image of the subject , in accordance with some embodiments 
of the technology described herein . 
[ 0027 ] FIG . 2B is a diagram of illustrative components of 
the pre - reconstruction neural network part of the neural 
network model of FIG . 2A , in accordance with some 
embodiments of the technology described herein . 
[ 0028 ] FIG . 2C is a diagram of illustrative components of 
the post - reconstruction neural network part of the neural 
network model of FIG . 2A , in accordance with some 
embodiments of the technology described herein . 
[ 0029 ] FIG . 2D is a flowchart of an illustrative process for 
generating an MR image from input MR spatial frequency 
data , in accordance with some embodiments of the technol 
ogy described herein . 
[ 0030 ] FIG . 3A is a diagram of an illustrative of architec 
ture of an example neural network model for generating MR 
images from input MR spatial frequency data , in accordance 
with some embodiments of the technology described herein . 
[ 0031 ] FIG . 3B is a diagram of one type of architecture of 
a block of the neural network model of FIG . 3A , in accor 
dance with some embodiments of the technology described 
herein . 
[ 0032 ] FIG . 3C is a diagram of an illustrative architecture 
of a data consistency block , which may be part of the block 
shown in FIG . 3B , in accordance with some embodiments of 
the technology described herein . 
[ 0033 ] FIG . 3D is a diagram of an illustrative architecture 
of a convolutional neural network block , which may be part 

of the block shown in FIG . 3B , in accordance with some 
embodiments of the technology described herein . 
[ 0034 ] FIG . 3E is a diagram of another type of architecture 
of a block of the neural network model of FIG . 3A , in 
accordance with some embodiments of the technology 
described herein . 
[ 0035 ] FIG . 4A illustrates the architecture of an example 
convolutional neural network block having a “ U ” structure 
and an average pooling layer , which block may be part of the 
pre - reconstruction neural network model , in accordance 
with some embodiments of the technology described herein . 
[ 0036 ] FIG . 4B illustrates a specific example of the archi 
tecture of an example convolutional neural network block 
shown in FIG . 4A , in accordance with some embodiments of 
the technology described herein . 
[ 0037 ] FIG . 4C illustrates the architecture of an example 
convolutional neural network block having a “ U ” structure 
and a spectral unpooling layer , which block may be part of 
the pre - reconstruction neural network model , in accordance 
with some embodiments of the technology described herein . 
[ 0038 ] FIG . 4D illustrates the architecture of an example 
spectral unpooling layer , in accordance with some embodi 
ments of the technology described herein . 
[ 0039 ] FIGS . 5A - 5C show an illustrative diagram of a 
process for generating training data from MR images for 
training the neural network models described herein , in 
accordance with some embodiments of the technology 
described herein . 
[ 0040 ] FIG . 6 is a diagram of an example neural - network 
based architecture for aligning one or more MR images , in 
accordance with some embodiments of the technology 
described herein . 
[ 0041 ] FIG . 7 is a diagram of the architecture of an 
illustrative neural network for aligning one or more MR 
images , in accordance with some embodiments of the tech 
nology described herein . 
[ 0042 ] FIG . 8A is a flowchart of an illustrative process 800 
for aligning one or more MR images , in accordance with 
some embodiments of the technology described herein . 
[ 0043 ] FIG . 8B is a flowchart of an illustrative implemen 
tation of act 850 of process 800 of FIG . 8B , in accordance 
with some embodiments of the technology described herein . 
[ 0044 ] FIG . 9 illustrates a block diagram of an example 
pipeline for motion correction , in accordance with some 
embodiments of the technology described herein . 
[ 0045 ] FIG . 10 is a flowchart of an illustrative process 
1000 for generating training data to train a neural network 
for aligning one or more images , in accordance with some 
embodiments of the technology described herein . 
[ 0046 ] FIG . 11A illustrates example motion - corrupted MR 
images of a patient's brain . 
[ 0047 ] FIG . 11B illustrates the result of applying the 
neural network techniques described herein to correct for 
motion in the MR images of FIG . 11A , in accordance with 
some embodiments of the technology described herein . 
[ 0048 ] FIG . 12A illustrates another example of motion 
corrupted MR images of a patient's brain . 
[ 0049 ] FIG . 12B illustrates the result of applying the 
neural network techniques described herein to correct for 
motion in the MR images of FIG . 12A , in accordance with 
some embodiments of the technology described herein . 
[ 0050 ] FIG . 13A illustrates motion - corrupted MR images , 
the motion occurring along the z - direction ( out of the plane 
of the images ) . 
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[ 0067 ] FIG . 25B illustrates a portable MRI system per 
forming a scan of the knee , in accordance with some 
embodiments of the technology described herein . 
[ 0068 ] FIG . 26 is a diagram of an illustrative computer 
system on which embodiments described herein may be 
implemented . 

DETAILED DESCRIPTION 

[ 0051 ] FIG . 13B illustrates the result of applying the 
neural network techniques described herein to correct for 
motion in the MR images of FIG . 13A , in accordance with 
some embodiments of the technology described herein . 
[ 0052 ] FIG . 14A illustrates MR images having no motion 
corruption . 
[ 0053 ] FIG . 14B illustrates the result of applying the 
neural network techniques described herein to the MR 
images of FIG . 14A , which shows that no motion is 
detected , no correction in performed , in accordance with 
some embodiments of the technology described herein . 
[ 0054 ] FIG . 15 is a diagram illustrating a self - ensembling 
approach to non - linear MR image reconstruction , in accor 
dance with some embodiments of the technology described 
herein . 
[ 0055 ] FIG . 16 is a flowchart of an illustrative process 
1600 for performing non - linear MR image reconstruction 
using self ensembling , in accordance with some embodi 
ments of the technology described herein . 
[ 0056 ] FIGS . 17A and 17B show example MR images of 
a subject's brain obtained without self - ensembling and with 
self - ensembling , respectively , in accordance with some 
embodiments of the technology described herein . 
[ 0057 ] FIGS . 18A and 18B show example MR images of 
a subject's brain obtained ( by different RF coils ) without 
self - ensembling and with self - ensembling , respectively , in 
accordance with some embodiments of the technology 
described herein . 
[ 0058 ] FIGS . 19A and 19B show example MR images of 
a subject's brain obtained without self - ensembling and with 
self - ensembling , respectively , in accordance with some 
embodiments of the technology described herein . 
[ 0059 ] FIG . 20A is a flowchart of an illustrative process 
2000 for generating an MR image from input MR spatial 
frequency data collected by multiple RF coils , the process 
including estimate RF coil profiles using a neural network , 
in accordance with some embodiments of the technology 
described herein . 
[ 0060 ] FIG . 20B is an illustrate example architecture of a 
neural network for estimating RF coil profiles , in accordance 
with some embodiments of the technology described herein . 
[ 0061 ] FIGS . 20C , 20D , 20E , 20F , 20G , and 20H illustrate 
performance of the neural network coil profile estimation 
techniques described herein relative to conventional parallel 
imaging techniques . 
[ 0062 ] FIG . 21 is a flowchart of an illustrative process 
2100 for generating an MR image using geometric coil 
compression from data obtained by multiple physical RF 
coils , in accordance with some embodiments of the tech 
nology described herein . 
[ 0063 ] FIG . 22 is a schematic illustration of a low - field 
MRI system , in accordance with some embodiments of the 
technology described herein . 
[ 0064 ] FIG . 23 illustrates a bi - planar permanent magnet 
configuration for a B , magnet that may be part of the 
low - field system of FIG . 22 , in accordance with some 
embodiments of the technology described herein . 
[ 0065 ] FIGS . 24A and 24B illustrate views of a portable 
MRI system , in accordance with some embodiments of the 
technology described herein . 
[ 0066 ] FIG . 25A illustrates a portable MRI system per 
forming a scan of the head , in accordance with some 
embodiments of the technology described herein . 

[ 0069 ] Conventional techniques for processing MRI data 
to generate MR images of patients involve applying different 
computational tools to perform different tasks part of the 
processing pipeline for generating MR images from the MRI 
data . For example , as shown in FIG . 1 , the processing 
pipeline may involve performing various pre - processing , 
reconstruction , and post - processing tasks on data acquired 
by an MRI system . The pre - processing tasks may include 
sorting and filtering of data , correcting the data for motion , 
and suppressing RF artefacts ( e.g. , external RF interference 
generated by any device ( s ) external to the MRI system , 
internal RF interference generated by any component ( s ) of 
the MRI system outside of its imaging region , and noise 
generated by the receive circuitry of the MRI system ) in the 
data . After pre - processing , the pipeline may involve recon 
structing MR images from the pre - processed data using 
linear methods ( e.g. , gridding , principle components analy 
sis ( PCA ) , sensitivity encoding ( SENSE ) , generalized auto 
calibrating partial parallel acquisition ( GRAPPA ) or non 
linear methods ( e.g. , compressed sensing , deep learning ) ) . 
Next , the resulting images may be post processed to perform 
retrospective motion correction , artefact removal , denoising , 
intensity correction , and / or image enhancement . 
[ 0070 ] The inventors have appreciated that a fundamental 
limitation of such conventional MRI data processing tech 
niques is that each of the tasks in the processing pipeline is 
tacked individually . Even though performance of the tasks is 
sequenced , solving each such task individually can result in 
loss of information at intermediate stages . Moreover , fea 
tures that can be mutually exploited in multiple stages may 
be missed . As a result , the performance of the overall 
pipeline is sub - optimal resulting in lower quality and lower 
SNR images , especially in settings ( e.g. , low - field MRI , 
undersampled data ) where the sensor data is noisy and 
incomplete . 
[ 0071 ] To address shortcomings of conventional MRI pro 
cessing pipelines , the inventors have developed a unified 
deep - learning processing pipeline for processing MRI data 
to generate MR images of patients . The deep learning 
processing pipeline developed by the inventors involves 
using multiple neural networks to perform different pipeline 
tasks . Examples of such tasks include removing artefacts 
( e.g. , interference , noise , corrupted readout lines ) from input 
MR spatial frequency data , reconstructing images from the 
input MR spatial frequency data , combining MR images 
generated from data collected by different RF coils , aligning 
sets of MR images to one another to compensate for patient 
motion , combining aligned sets of MR images to increase 
the image signal to noise ( SNR ) , correcting for inhomoge 
neous intensity variations . In some embodiments , at least 
some ( e.g. , all ) of these tasks may be performed by respec 
tive neural networks . 
[ 0072 ] In some embodiments , the neural networks in the 
processing pipeline may be jointly trained . In this way , 
parameters of neural networks for performing different tasks 
( e.g. , interference removal , RF coil profile estimation , 
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[ 0077 ] In some embodiments , the pre - reconstruction neu 
ral network comprises a first neural network configured to 
suppress RF interference ( e.g. , neural network 224 ) , the first 
neural network comprising one or more convolutional lay 
ers . Additionally or alternatively , the pre - reconstruction neu 
ral network comprises a second neural network configured 
to suppress noise ( e.g. , neural network 226 ) , the second 
neural network comprising one or more convolutional lay 
ers . Additionally or alternatively , the pre - reconstruction neu 
ral network comprises a third neural network configured to 
perform line rejection ( e.g. , neural network 220 ) , the third 
neural network comprising one or more convolutional lay 
ers . 

reconstruction , and motion correction ) may be optimized 
jointly using a common set of training data and using a 
common objective metric . In some embodiments , the com 
mon objective metric may be a weighted combination of loss 
functions for learning parameters of the neural networks in 
the deep learning processing pipeline . Each of the neural 
networks in the pipeline may be trained to perform a 
respective task and the common objective metric may 
include one or more loss function ( e.g. , as part of the 
weighted combination ) for the respective task . Examples of 
such loss functions are provided herein . 
[ 0073 ] This " end - to - end ” deep learning processing pipe 
line allows any improvements made in individual earlier 
processing stages to propagate to and be used by subsequent 
processing stages in the pipeline . As a result , the quality and 
SNR of MR images generated by the deep learning pipeline 
is higher than that produced by conventional processing 
pipelines , which is an improvement in MRI technology . In 
addition , since neural network calculations may be per 
formed efficiently using specialized hardware ( e.g. , one or 
more graphics processing units ( GPUs ) ) , these calculations 
may be offloaded to such hardware freeing up resources of 
other onboard processors to perform different tasks — the 
overall load on the CPUs is reduced . This is a benefit that 
cannot be achieved using conventional pipelines as many of 
the algorithms used in conventional pipelines ( e.g. , com 
pressed sensing ) are not designed for efficient implementa 
tion on GPUs . Thus , the techniques described herein also 
provide an improvement to computing technology . 
[ 0074 ] Accordingly , some embodiments provide for a 
method for generating magnetic resonance ( MR ) images of 
a subject from MR data obtained by a magnetic resonance 
imaging ( MRI ) system . The method comprises : ( 1 ) obtain 
ing input MR spatial frequency data obtained by imaging the 
subject using the MRI system ; and ( 2 ) generating an MR 
image of the subject from the input MR spatial frequency 
data using a neural network model comprising : ( a ) a pre 
reconstruction neural network ( e.g. , pre - reconstruction neu 
ral network 210 ) configured to process the input MR spatial 
frequency data ; ( b ) a reconstruction neural network ( e.g. , 
reconstruction neural network 212 ) configured to generate at 
least one initial image of the subject from output of the 
pre - reconstruction neural network ; and ( c ) a post - recon 
struction neural network ( e.g. , post - reconstruction neural 
network 214 ) configured to generate the MR image of the 
subject from the at least one initial image of the subject . 
[ 0075 ] In some embodiments , the input MR spatial fre 
quency data may be under - sampled relative to a Nyquist 
criterion . For example , in some embodiments , the input MR 
spatial frequency data may include less than 90 % ( or less 
than 80 % , or less than 75 % , or less than 70 % , or less than 
65 % , or less than 60 % , or less than 55 % , or less than 50 % , 
or less than 40 % , or less than 35 % , or any percentage 
between 25 and 100 ) of the number of data samples required 
by the Nyquist criterion . In some embodiments , the recon 
struction neural network was trained to reconstruct MR 
images from spatial frequency MR data under - sampled 
relative to a Nyquist criterion . 
[ 0076 ] In some embodiments , the input MR spatial fre 
quency data may have been obtained using a non - Cartesian 
( e.g. , radial , spiral , rosette , variable density , Lissajou , etc. ) 
sampling trajectory , which may be used to accelerate MRI 
acquisition and / or be robust to motion by the subject . 

[ 0078 ] In some embodiments , the reconstruction neural 
network is configured to perform data consistency process 
ing using a non - uniform Fourier transformation for trans 
forming image data to spatial frequency data . In some 
embodiments , the reconstruction neural network is config 
ured to perform data consistency processing using the non 
uniform Fourier transformation at least in part by applying 
the non - uniform Fourier transformation on data by applying 
a gridding interpolation transformation , a fast Fourier trans 
formation , and a de - apodization transformation to the data . 
[ 0079 ] In some embodiments , the MRI system comprises 
a plurality of RF coils , the at least one initial image of the 
subject comprises a plurality of images , each of the plurality 
of images generated from a portion of the input MR spatial 
frequency data collected by a respective RF coil in a 
plurality of RF coils , and the post - reconstruction neural 
network comprises a first neural network ( e.g. , neural net 
work 232 ) configured to estimate a plurality of RF coil 
profiles corresponding to the plurality of RF coils . In some 
such embodiments , the method further comprises : generat 
ing the MR image of the subject using the plurality of MR 
images and the plurality of RF coil profiles . 
[ 0080 ] In some embodiments , the at least one initial image 
of the subject comprises a first set of one or more MR images 
and a second set of one or more MR images , and the 
post - reconstruction neural network comprises a second neu 
ral network ( e.g. , neural network 234 ) for aligning the first 
set of MR images and the second set of MR images . 
[ 0081 ] In some embodiments , the post - reconstruction neu 
ral network comprises a neural network ( e.g. , neural network 
238 ) configured to suppress noise in the at least one initial 
image and / or at least one image obtained from the at least 
one initial image . 
[ 0082 ] In some embodiments , the pre - reconstruction neu 
ral network , the reconstruction neural network , and the 
post - reconstruction neural network are jointly trained with 
respect to a common loss function . In some embodiments , 
the common loss function is a weighted combination of a 
first loss function for the pre - reconstruction neural network , 
a second loss function for the reconstruction neural network , 
and a third loss function for the post - reconstruction neural 
network . 
[ 0083 ] The neural networks described herein may be con 
figured to operate on data in any suitable domain . For 
example , one or more of the neural networks described 
herein may be configured to receive as input , data in the 
“ sensor domain ” , “ spatial - frequency domain ” ( also known 
as k - space ) , and / or the image domain . Data in the " sensor 
domain ” may comprise raw sensor measurements obtained 
by an MRI system . Sensor domain data may include mea 
surements acquired line - by - line for a set of coordinates 
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specified by a sampling pattern . A line of measurements may 
be termed a " readout ” line . Each measurement may be a 
spatial frequency . As such , sensor domain data may include 
multiple readout lines . For example , if p readout lines were 
measured and each readout line included m samples , the 
sensor domain data may be organized in an mxp matrix . 
Knowing the k - space coordinates associated with each of the 
mxp samples , the sensor domain data may be re - organized 
into the corresponding k - space data , and may be then 
considered to be spatial frequency domain data . Data in the 
sensor domain as well as the data in k - space is spatial 
frequency data , but the spatial frequency data is organized 
differently in these two domains . Image - domain data may be 
obtained by applying an inverse Fourier transformation 
( e.g. , an inverse fast Fourier transform if the samples fall on 
a grid ) to k - space data . 
[ 0084 ] In addition , it should be appreciated that the sensor 
domain , k - space , and image domain are not the only 
domains on which the neural networks described herein may 
operate . For example , the data in a source domain ( e.g. , 
sensor domain , k - space , or image domain ) may be further 
transformed by an invertible transformation ( e.g. , 1D , 2D , or 
#d Fourier , Wavelet , and / or short - time Fourier transforma 
tion , etc. ) to a target domain , the neural network may be 
configured to receive as input data in the target domain , and 
after completing processing , the output may be transformed 
back to the source domain . 
[ 0085 ] A neural network may be configured to operate on 
data in a particular domain being trained to operate on input 
in the particular domain . For example , a neural network 
configured to operate on data in domain D , may be trained 
on input - output pairs , with the input in the pairs being the 
domain D. In some embodiments , the output of a neural 
network may be in the same domain as its input , but in other 
embodiments , the input is not in the same domain as its input 
( e.g. , the reconstruction neural network 212 may receive 
input data in the spatial frequency domain and output images 
in the image domain ) . 
[ 0086 ] As used herein , “ high - field ” refers generally to 
MRI systems presently in use in a clinical setting and , more 
particularly , to MRI systems operating with a main magnetic 
field ( i.e. , a B , field ) at or above 1.5 T , though clinical 
systems operating between 0.5 T and 1.5 T are often also 
characterized as “ high - field . ” Field strengths between 
approximately 0.2 T and 0.5 T have been characterized as 
“ mid - field ” and , as field strengths in the high - field regime 
have continued to increase , field strengths in the range 
between 0.5 T and 1 T have also been characterized as 
mid - field . By contrast , “ low - field ” refers generally to MRI 
systems operating with a B , field of less than or equal to 
approximately 0.2 T , though systems having a B. field of 
between 0.2 T and approximately 0.3 T have sometimes 
been characterized as low - field as a consequence of 
increased field strengths at the high end of the high - field 
regime . Within the low - field regime , low - field MRI systems 
operating with a B , field of less than 0.1 T are referred to 
herein as “ very low - field ” and low - field MRI systems oper 
ating with a B , field of less than 10 mT are referred to herein 
as " ultra - low field . ” 
[ 0087 ] In some embodiments , the techniques described 
herein for generating MR images from input MR spatial 
frequency data may be adapted for application to spatial 
frequency data collected using a low - field MRI system , 
including , by way of example and not limitation , any of the 

low - field MR systems described herein and / or any low - field 
MR systems described in U.S. Pat . No. 10,222,434 , filed on 
Jan. 24 , 2018 , titled “ Portable Magnetic Resonance Imaging 
Methods and Apparatus , ” which is incorporated by reference 
in its entirety . 
[ 0088 ] Following below are more detailed descriptions of 
various concepts related to , and embodiments of , methods 
and apparatus for generating MR images from spatial fre 
quency domain data . It should be appreciated that various 
aspects described herein may be implemented in any of 
numerous ways . Examples of specific implementations are 
provided herein for illustrative purposes only . In addition , 
the various aspects described in the embodiments below 
may be used alone or in any combination , and are not limited 
to the combinations explicitly described herein . 
[ 0089 ] FIG . 2A is a diagram illustrating processing per 
formed by a neural network model on data collected by an 
MRI system while imaging a subject to generate an MR 
image of the subject , in accordance with some embodiments 
of the technology described herein . As shown in FIG . 2A , 
neural network model 204 may be configured to implement 
a deep learning pipeline to estimate one or more MR images 
206 from input MR spatial frequency data 202. The neural 
network model 204 may include multiple neural networks 
for performing various processing pipeline tasks . In some 
embodiments , at least some ( e.g. , all ) of the neural networks 
part of neural network model 204 may be trained jointly on 
a common set of training data and with respect to a common 
loss function . 
[ 0090 ] It should be appreciated that although , in some 
embodiments , all tasks in the pipeline for generating MR 
images from input MR spatial frequency data are performed 
by respective neural networks ( e.g. , part of neural network 
204 ) , in other embodiments , one or more such tasks may be 
performed by techniques other than neural networks . 
[ 0091 ] Notwithstanding , in such embodiments , the neural 
networks that are part of the processing pipeline may be 
trained jointly on a common set of training data and with 
respect to a common loss function . 
[ 0092 ] In the illustrated embo nt , neural network 
model 204 includes pre - reconstruction neural network 210 
configured to perform one or more pre - processing tasks 
( e.g. , motion correction , RF interference removal , noise 
removal ) , reconstruction neural network 212 configured to 
reconstruct one or more images from the output of the neural 
network 210 ( e.g. , including when the MR data is under 
sampled ) , and post - reconstruction neural network 214 con 
figured to perform one or more post - processing tasks ( e.g. , 
combining images generated from data collected by different 
coils , image registration , signal averaging , denoising , and 
correction for intensity variation ) on the MR images gener 
ated by the reconstruction neural network 212. Aspects of 
the pre - reconstruction neural network 210 are described 
herein , including with reference to FIGS . 2B , and 4A - 4D . 
Aspects of the reconstruction neural network 212 are 
described herein , including with reference to FIGS . 3A - 3E . 
Aspects of the post - reconstruction neural network 214 are 
described herein , including with reference to FIGS . 2C and 
6-14 . Aspects of training neural network model 204 are 
described herein including with reference to FIG . 5 . 
[ 0093 ] In some embodiments , input MR spatial frequency 
data 202 may be collected by one or multiple RF coils of an 
MRI system . The data 202 may be collected using a Carte 
sian sampling trajectory or any suitable type of non - Carte 
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sian sampling trajectory ( e.g. , radial , spiral , rosette , variable 
density , Lissajou , etc. ) . In some embodiments , the data 202 
may be fully - sampled data ( data collected by sampling 
spatial frequency space so that the corresponding Nyquist 
criterion is not violated ) . In some embodiments , the data 202 may be under - sampled data ( data containing fewer points 
than what is required by spatial Nyquist criteria ) . In some 
embodiments , the data 202 may exhibit artefacts due to the 
presence of external RF interference , internal RF interfer 
ence , and / or noise generated by the MR receiver chain 
and / or a subject ( or object ) being imaged . In some embodi 
ments , the data may include distortions caused by movement 
of the patient during imaging . 
[ 0094 ] FIG . 2B is a diagram of illustrative components of 
the pre - reconstruction neural network 210 part of the neural 
network model 204 of FIG . 2A , in accordance with some 
embodiments of the technology described herein . The pre 
reconstruction neural network 210 may include one , two , 
three , four , and / or any other suitable number of neural 
networks each configured to perform a pre - processing task 
in the overall data processing pipeline . 
[ 0095 ] In the illustrated embodiment of FIG . 2B , pre 
reconstruction neural network 210 includes three neural 
networks : ( 1 ) a neural network 220 configured to perform 
line rejection ; ( 2 ) a neural network 224 configured to 
suppress RF interference ( external and / or internal RF inter 
ference ) ; and ( 3 ) a neural network 226 configured to sup 
press noise . In the illustrated embodiment , pre - reconstruc 
tion neural network 210 includes all three neural networks 
220 , 224 , and 226. In other embodiments , neural network 
210 may include any one or any two of the neural networks 
220 , 224 , 226. Also , neural network 210 may include one or 
more other neural networks for performing pre - processing 
tasks in the pipeline , as aspects of the technology described 
herein are not limited in this respect . 
[ 0096 ] In some embodiments , neural network 220 may be 
configured to process portions ( e.g. , readout lines ) of sensor 
data 202 to determine whether any of these portions are 
corrupted , for example , due to motion of the patient during 
their acquisition . In some embodiments , the input to neural 
network 220 may be a portion ( e.g. , a readout line ) of data 
202 , and the output of the neural network may provide an 
indication of whether or not the portion of data 202 is 
corrupted ( e.g. , due to patient motion ) . 
[ 0097 ] In some embodiments , the input to neural network 
220 may further include data from one or more auxiliary 
sensors ( e.g. , one or more optical sensors , one or more RF 
sensors , one or more accelerometers and / or gyroscopes ) 
configured to detect patient movement . Such sensors may be 
part of the MRI system that acquired the data 202 ( e.g. , one 
or more RF sensors , accelerometers , and / or gyroscopes may 
be coupled to a helmet housing one or more RF receive 
coils ) or may be external to the MRI system but deployed so 
as to monitor patient movement ( e.g. , one or more cameras 
may be positioned to observe the imaging region and / or the 
patient to detect patient movement ) . 
[ 0098 ] In some embodiments , the neural network 220 may 
be a convolutional neural network and may have one or 
more convolutional layers , one or more transpose convolu 
tional layers , one or more non - linearity layers , and / or one or 
more fully connected layers . The neural network 220 may be 
implemented using any of the neural network architectures 
described herein including with reference to FIG . 3D by way 

of example and not limitation . Alternatively , a ResNet type 
architecture may be used where convolutional blocks have 
residual connections . 
[ 0099 ] In some embodiments , the neural network 220 may 
be applied to the data 202 after that data has been processed 
( e.g. , by neural networks 224 and 226 ) to suppress ( e.g. , 
reduce and / or eliminate ) RF artefacts such as RF interfer 
ence and RF noise . In other embodiments , the neural net 
work 220 may be applied to the data 202 before it has been 
processed to suppress RF artefacts . 
[ 0100 ] Returning to FIG . 2B , in some embodiments , neu 
ral network 224 may be configured to suppress RF interfer 
ence . As described herein , RF interference may be external 
RF interference generated by one or more devices external 
to the MRI system , as the case may be for low - field MRI 
systems deployed outside of shielded rooms ( e.g. , Faraday 
cages ) in various environments ( e.g. , emergency room , an 
ICU , an ambulance , a doctor's office , etc. ) and in the 
presence of various devices ( medical equipment , smart 
phones , televisions , etc. ) . RF interference may also include 
internal RF interference generated by one or more compo 
nents of the MRI system located outside of its imaging 
region ( e.g. , power supply , gradient coils , gradient coil 
amplifiers , RF amplifiers , etc. ) . 
[ 0101 ] In some embodiments , the neural network 224 may 
be a convolutional neural network , and may have one or 
more convolutional layers , one or more transpose convolu 
tional layers , one or more non - linearity layers , one or more 
pooling layers ( e.g. , average , spectral , maximum ) and one or 
more corresponding unpooling layers , and / or one or more 
fully connected layers . The neural network 224 may be 
implemented using any of the neural network architectures 
described herein including with reference to FIGS . 4A - 4D 
by way of example and not limitation . Alternatively , a 
ResNet type architecture may be used where convolutional 
blocks have residual connections . 
[ 0102 ] In some embodiments , the neural network 224 may 
be trained using particular loss functions described next . 
First , some notation is introduced . An MRI system may have 
one or multiple RF coils configured to detect MR signals in 
the imaging region of the MR system . Let the number of 
such RF coils be denoted by Nc For each RF coil c 
configured to detect MR signals in the imaging region , let se 
denote the detected signal . This detected signal contains 
three different components as follows : ( 1 ) the target MR 
signal data , x , for coil c ; ( 2 ) the noise n . corrupting the signal 
( e.g. , noise generated by the MR receiver chain for coil c , 
noise generated by the subject ( or object ) being imaged ) ; 
and ( 3 ) external and / or internal RF interference ic . Accord 
ingly , s.X. + n + ic . Moreover , by locating N , RF coils out 
side of the system noise observed outside of the system 
( which is correlated with sc's ) called s " may be acquired . 
Thus , the observed signal may expressed according to : 

Sc = x + ne + ic = sM + ic 

[ 0103 ] In some embodiments , the neural network 224 may 
be trained to suppress RF interference ic . To this end , 
training data may be created that includes all of the com 
ponents of s , separately so that ground truth is available . For 
example , each of x , n , and i ,, may be generated syntheti 
cally using a computer - based simulation and / or data 
observed using an MRI system . For example , to generate is 
one can synthetically add structured noise lines to se or 
acquire se while no object is located inside of the system . As 



US 2020/0294229 Al Sep. 17 , 2020 
9 

NZ ) 

NI 

NI 

another example , an MRI system may have one or more RF 
coils outside of the imaging region that may be used to 
observe artefacts outside of the imaging region ( without also 
detecting MR signals ) and this coil or coils may be used to 
measure RF interference . 
[ 0104 ] The input to the neural network 224 may be : ( 1 ) the 
signal s , for each coil , so that the neural network suppresses 
RF interference for each coil separately ; ( 2 ) the signals se for 
all the coils as separate channels , so that the neural network 
suppresses RF interference for all coils at the same time ; or 
( 3 ) the signals se for each coil , as separate channels , as well 
as the signals s . ' s as extra information in other channels 
( not to be suppressed , but rather to suppress RF interference 
in the signals sc . The output produced by the neural network 
224 , corresponding to the input , may be : ( 1 ) se for each 
coil c separately ; or ( 2 ) all se ' s as separate channels ( when 
the input is of the latter two cases ) . Additionally , in some 
embodiments , the input to this block can be se of all N 
averages together to incorporate even more information . In 
this case the output will be all denoise coil data for all 
averages together . This may be helpful when multiple obser 
vations are made by each coil . 
[ 0105 ] Any of numerous types of loss functions may be 
used for training a neural network for suppressing RF 
interference , and various examples of loss functions are 
provided herein . As one example , for training a neural 
network 224 for suppressing RF interference in data 
acquired using a single coil , the following loss function may 
be employed : 

L ( O ) = || F ( SMU ) -fcxx ( F ( s ) [ 0 ) || 22 + \ / CRMVF ( s . ) 0 ) || 1+ 
|| w ( s M - fannsc10 ) ) || 

where W is the weighting matrix , F is a 1D Fourier ( spectral ) 
transform , V is an image gradient , and 0 represents param 
eters of the neural network 224 denoted in the equations by 
foane 

[ 0106 ] In the multi - channel setting , the following loss 
function may be employed for training neural network 224 : 

[ 0109 ] In some embodiments , the neural network 226 may 
be a convolutional neural network , and may have one or 
more convolutional layers , one or more transpose convolu 
tional layers , one or more non - linearity layers , one or more 
pooling layers ( e.g. , average , spectral , maximum ) and one or 
more corresponding unpooling layers , and / or one or more 
fully connected layers . The neural network 226 may be 
implemented using any of the neural network architectures 
described herein including with reference to FIGS . 4A - 4D 
by way of example and not limitation . Alternatively , a 
ResNet type architecture may be used where convolutional 
blocks have residual connections . 
[ 0110 ] In some embodiments , the input to the neural 
network 226 may be : ( 1 ) s , for suppressing noise from each 
coil c separately ; ( 2 ) all sc's as separate channels , for 
suppressing noise in all coils at the same time ; ( 3 ) all sc's as 
separate channels as well as the data detected by coils 
outside of the imaging region ( sp " ) as an additional infor 
mation to use for denoising . In some embodiments , the 
output of the trained neural network may be : ( 1 ) x , or ( 2 ) all 
xc's for the multiple coils . 
[ 0111 ] Any of numerous types of loss functions may be 
used for training the neural network 226 for suppressing 
noise . For example , for training a neural network for sup 
pressing noise in data acquired using a single coil , the 
following loss function may be employed : 

L ( O ) = || F ( x ) -fonu ( F ( s . ) 0 ) || 2 ? + || fcxv ( VF ( s . ) 0 ) || + || W 
( x2 - CNN ( s_10 ) ) || 

[ 0112 ] In some embodiments , when training neural net 
work 2266 for suppressing noise in data acquired using 
multiple coils , the following loss function may be employed : 

avg 

Ncoil 

LO ) = ( IF ( xc ) – fenn ( F ( s ) [ 0 ) ell + 
C = 1 

Il forn ( V F ( s ) [ 0 ) ||| + || W ( xc - fon ( s | 0 ) . ) ) . 

N. coil 

LO ) = ( IF ( $ M ) – fewn ( F ( 3 ) | 0 ) d } + 
Il fenn ( V F ( s ) [ 0 ) .Il . + || W ( SNI - FCNN ( s | 0 ) ) I ) 

[ 0107 ] where Ncoil is the number of coils and fann ( s ) is 
denoised sensor data for coil c , where s includes all the 
signals se arranged channel - wise . 
[ 0108 ] Returning to FIG . 2B , in some embodiments , neu 
ral network 226 may be configured to suppress noise . For 
example , neural network 226 may be configured to suppress 
noise generated by operation of circuitry involved in the 
processing of signals recorded by the RF coil ( s ) of the MRI 
system , which circuitry may be termed the “ MR receiver 
chain ” . The MR receiver chain may include various types of 
circuitry such as analog circuitry ( e.g. , one or more ampli 
fiers , a decoupling circuit , an RF transmit / receive switch 
circuit , etc. ) , digital circuitry ( e.g. , a processor ) and / or any 
suitable combination thereof . Some examples of MR 
receiver chain circuitry are described in U.S. Pat . App . Pub . 
No .: 2019/0353723 , filed on May 21 , 2019 ( as application 
Ser . No. 16 / 418,414 ) , titled “ Radio Frequency Coil Signal 
Chain For a Low - Field MRI System ” , which is incorporated 
by reference in its entirety . 

[ 0113 ] FIG . 2C is a diagram of illustrative components of 
the post - reconstruction neural network 214 part of the neural 
network model 204 of FIG . 2A , in accordance with some 
embodiments of the technology described herein . As shown 
in FIG . 2C , reconstruction neural network 212 may generate 
one or multiple MR images upon reconstruction — these are 
the initial MR images 230-1 , 230-2 , ... , 230 - N . 
[ 0114 ] There are multiple reasons for why reconstruction 
neural network 212 may generate multiple MR images . For 
example , in some embodiments , an MRI system may 
include multiple RF coils and the reconstruction neural 
network 212 may generate , for each particular one of the 
multiple RF coils , one or more MR images from data 
detected by that particular RF coil . Moreover , multiple 
images may be generated by the neural network 212 even 
from data collected by a single RF coil because : ( 1 ) each line 
may be acquired multiple times ( for subsequent averaging to 
boost SNR ) ; and ( 2 ) the data collected by a single RF coil 
may include data corresponding to each of multiple two 
dimensional slices of a patient's anatomy . Accordingly , in 
some embodiments , the initial images 230-1 , . . . , 230 - N , 
may include multiple sets of MR images , with each of the 
sets of MR images generated using data collected by a 
respective RF coil from among the multiple RF coils of the 
MRI system , and each set of images may include one or 
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Aspects of illustrative implementations the neural network 
234 are described herein including in the “ Motion Correc 
tion " Section below . 
[ 0121 ] Returning to FIG . 2C , in some embodiments , neu 
ral network 236 may be configured to perform signal aver 
aging to increase the SNR of the final reconstructed MR image . Conventionally , this is performed by averaging mul 
tiply acquired data from the same imaging protocol ( e.g. , the 
same pulse sequence being repeatedly applied ) . An assump 
tion underlying this conventional approach is that the images 
being averaged have almost independent and identically 
distributed ( iid ) noise , which will cancel when the images 
are combined . In practice , however , this assumption may be 
violated because the reconstruction is non - linear and 
because bias and correlation may be introduced by the MRI 
system . 
[ 0122 ] The inventors have recognized that improved per 
formance may be achieved if , instead of averaging images , 
a neural network is used to learn how to combine them . This 
would take into account various characteristics of the noise 
and MRI system that result in the iid assumption beneath the 
conventional averaging approach being violated . Suppose x 
is the ground truth target to be reconstructed . Suppose also 
that N measurements of x are acquired and individually 
reconstructed , yielding images X1 , XN Instead of 
averaging these images , the combination may be performed 
by neural network 236 denoted by fenn ( : 10 ) , which takes all 

images as input and outputs a single combined image 

avg 

Na avg 
Xrec 

multiple volumes of data ( e.g. , K volumes of data each 
including M slices per volume ) . However , in some embodi 
ments , the collected MR data may be such that the recon 
struction neural network 212 may generate only a single MR 
image , as aspects of the technology described herein are not 
limited in this respect . 
[ 0115 ] In the illustrated embodiment of FIG . 2C , post 
reconstruction neural network 214 includes five neural net 
works : ( 1 ) a neural network 232 configured to perform RF 
coil profile estimation and / or image combination across RF 
coils ; ( 2 ) a neural network 234 configured perform align 
ment among multiple sets of one or more MR images to 
correct for patient motion ; ( 3 ) a neural network 236 config 
ured to perform signal averaging ; ( 4 ) a neural network 238 
configured to perform noise suppression ; and ( 5 ) a neural 
network 240 configured to perform intensity correction . 
[ 0116 ] In the illustrated embodiment of FIG . 2C , post 
reconstruction neural network 214 includes all five neural 
networks 232 , 234 , 236 , 238 , and 240. In other embodi 
ments , neural network 214 may include any one , or any two , 
or any three , or any four of the neural networks 232 , 234 , 
236 , 238 , and 240. Also , neural network 214 may include 
one or more other neural networks for performing post 
processing tasks in the pipeline , as aspects of the technology 
described herein are not limited in this respect . 
[ 0117 ] Neural network 232 may be used in embodiments 
in which the MRI system collects data using multiple RF 
coils . In such embodiments , the neural network 232 may be 
used to combine the images ( from among initial images 232 ) 
generated from data collected by different RF coils , but 
corresponding to the same slices . As described in more detail 
below in the “ Coil Estimation " Section below , neural net 
work 232 may be used to either estimate such a combined 
image directly or to estimate sensitivity profiles for the 
different RF coils , which in turn may be used to combine the 
images . 
[ 0118 ] In some embodiments , the neural network 232 may 
be a convolutional neural network having one or more 
convolutional layers , one or more transpose convolutional 
layers , one or more non - linearity layers , one or more pooling 
layers and one or more corresponding unpooling layers , 
and / or one or more fully connected layers . For example , in 
some embodiments , the neural network 232 may have the 
architecture shown in FIG . 20B . Alternatively , a ResNet type 
architecture may be used where convolutional blocks have 
residual connections . 
[ 0119 ] Returning to FIG . 2C , in some embodiments , neu 
ral network 234 may be configured to align two sets of one 
or more MR images to each other . In some instances , each 
set of MR images may correspond to a set of images for a 
given volume ( e.g. , a number of 2D slices that may be 
stacked to constitute a volume ) . Such an alignment allows 
for the sets of MR images to be averaged to increase the 
SNR . Performing the averaging without first performing 
alignment would introduce blurring due to , for example , 
movement of the patient during acquisition of the data being 
averaged . 
[ 0120 ] In some embodiments , neural network 234 may be 
configured to align sets of one or more MR images by 
estimating one or more transformations ( e.g. , non - rigid , 
affine , rigid ) between the sets of MR images . In some 
embodiments , neural network 234 may be implemented at 
least in part by using estimated parameter resampling ( EPR ) . 

[ 0123 ] In some embodiments , the eural vork 236 may 
be applied after neural network 234 is used to align corre 
sponding sets of images so that blurring is not introduced 
through the combination performed by neural network 236 . 
[ 0124 ] The neural network 236 may be a convolutional 
neural network having one or more convolutional layers , 
one or more transpose convolutional layers , one or more 
non - linearity layers , one or more pooling layers and one or 
more corresponding unpooling layers , and / or one or more 
fully connected layers . For example , the network 236 may 
have a U - net type architecture . Alternatively , a ResNet type 
architecture may be used where convolutional blocks have 
residual connections . 
[ 0125 ] In some embodiments , given the dataset D , the 
neural network may be trained using the following loss 
function : 

f ( 0 ) = ??x ) – x . Pell2 
j = 1 

[ 0126 ] Returning to FIG . 2C , in some embodiments , neu 
ral network 238 may be configured to suppress artefacts in 
the image domain . The neural network 238 may be a 
convolutional neural network , and may have one or more 
convolutional layers , one or more transpose convolutional 
layers , one or more non - linearity layers , one or more pooling 
layers ( e.g. , average , spectral , maximum ) and one or more 
corresponding unpooling layers , and / or one or more fully 
connected layers . The neural network 238 may be imple 
mented using any of the neural network architectures 
described herein including with reference to FIGS . 4A - 4D 
by way of example and not limitation . Alternatively , a 



US 2020/0294229 Al Sep. 17 , 2020 
11 

fully connected layers . The neural network 240 may be 
implemented using a U - Net architecture . Alternatively , a 
ResNet type architecture may be used where convolutional 
blocks have residual connections . 
[ 0132 ] To generate training data for training neural net 
work 240 , image augmentation may be employed to simu 
late the intensity variations using unperturbed input images 
and a random histogram augmentation function Ix ) : 

x " = 1 ( x " ) 

[ 0133 ] In some embodiments , the histogram augmentation 
function may be designed to enhance image contrast . Other 
image acquisition artifacts can be modeled this way as well . 
For example , geometric transformations applied to images , 
such as affine or nonlinear deformations T ( r ) yielding : 

ResNet type architecture may be used where convolutional 
blocks have residual connections . 
[ 0127 ] Suppressing artefacts in the image domain may 
facilitate reducing or removing noise generated by the 
acquisition system ( e.g. , MR receiver chain ) . The effects of 
such noise are more pronounced in low - field MRI system 
leading to a lower signal to noise ratio . Conventional tech 
niques for suppressing noise in MR images involve using 
parametric filtering techniques such as anisotropic diffusion 
or non - local means filtering . The goal of these parametric 
filtering techniques is to remove noise in uniform image 
regions while preserving sharpness of the edges around 
anatomical structures . When the level of noise is high ( as the 
case may be in low - field systems ) , applying the parametric 
filters typically results in smooth - looking images with loss 
of detail in low - contrast image regions . By contrast , using 
deep learning to suppress artefacts ( e.g. , noise ) in the image 
domain using the neural network 238 results in sharp 
looking images , while preserving structure even in low 
contrast regions . 
[ 0128 ] In some embodiments , training data may be created 
to reflect the effect of noise on MR images . The noise may 
be measured ( e.g. , using an MRI system ) or synthesized . For 
example , a synthetic noise signal e may be added to the 
image x , as follows : x " = xcHec , where the noise may be 
drawing from a Gaussian e - N ( 0,0 . ) or Rician distribution , 
( assuming there is no correlation among coils for simplic 
ity ) . In some embodiments , the neural network 238 may be 
trained , given a dataset D , using content loss ( structural 
similarity index ( SSIM ) loss or mean squared error loss ) and 
an adversarial loss given by : 

x " = 1 ( x ' ( T ( r ) ) ) . 

DI 

L?c , áp ) = Z - Dep ( Ga ( xe ) , x ) + ( 1 – SSIM ( xsx ) ) . 
i = 1 

[ 0129 ] In the above expression for loss , the generator G is 
the filtering network and the discriminator D is trained to 
best differentiate between images filtered with the network 
G and original noise - free images ( ground truth ) . In some 
embodiments , the parameters of the generator ( 06 ) and 
discriminator ( 0 ) neural networks may be optimized by 
establishing a minimax game between the generator and 
discriminator neural networks . The generator network may 
be trained to produce filtered images as close as possible to 
the ground truth and thus fool the discriminator neural 
network . On the other hand , the discriminator network may 
be trained to classify the input images as filtered or ground 
truth . Using an adversarial loss like the one described 
above , helps to achieve sharp - looking filtered images while 
preserving structures even in low - contrast regions . 
[ 0130 ] Returning to FIG . 2C , in some embodiments , neu 
ral network 240 may configured to suppress ( e.g. , reduce 
and / or eliminate ) inhomogeneous intensity variations across 
image regions , which may result from combining images 
generated from data collected by different RF coils ( e.g. , via 
the application of neural network 232 ) . 
[ 0131 ] In some embodiments , the neural network 240 may 
be a convolutional neural network , and may have one or 
more convolutional layers , one or more transpose convolu 
tional layers , one or more non - linearity layers , one or more 
pooling layers ( e.g. , average , spectral , maximum ) and one or 
more corresponding unpooling layers , and / or one or more 

[ 0134 ] FIG . 2D is a flowchart of an illustrative process 250 
for generating an MR image from input MR spatial fre 
quency data , in accordance with some embodiments of the 
technology described herein . Process 250 may be performed 
by any suitable computing device ( s ) . For example , process 
250 may be performed by one or more processors ( e.g. , 
central processing units and / or graphics processing units ) 
part of the MRI system and / or by one or more processors 
external to the MRI system ( e.g. , computers in an adjoining 
room , computers elsewhere in a medical facility , and / or on 
the cloud ) . 
[ 0135 ] Process 250 begins at act 252 , where the system 
performing process 250 obtains ( e.g. , accesses from memory 
or other non - transitory computer readable storage medium , 
receives over a network ) input MR spatial frequency data 
obtained by imaging a subject using an MRI system . In the 
illustrative embodiment of FIG . 2D , the imaging itself is not 
part of process 250. However , in other embodiments , pro 
cess 250 may include performing the imaging using the MRI 
system . 
[ 0136 ] The input MR spatial frequency data may include 
data collected by one or multiple RF coils of the MRI 
system . The data 252 may be collected using a Cartesian 
sampling trajectory or any suitable type of non - Cartesian 
sampling trajectory ( e.g. , radial , spiral , rosette , variable 
density , Lissajou , etc. ) . In some embodiments , the data 252 
may be fully - sampled data ( data collected by sampling 
spatial frequency space so that the corresponding Nyquist 
criterion is not violated ) . In some embodiments , the data 252 
may be under - sampled data ( data containing fewer points 
than what is required by spatial Nyquist criteria ) . In some 
embodiments , the data 252 may be data corresponding to a 
slice or multiple slices , and may include multiple acquisi 
tions of the same slice or volume so that these acquisitions 
may be subsequently averaged . 
[ 0137 ] Next , process 250 proceeds to act 254 , where one 
or more MR images are generated from the input MR spatial 
frequency data . The MR image ( s ) may be generated using a 
neural network model ( e.g. , neural network model 204 , 
described herein with reference to FIG . 2A ) . In some 
embodiments , the neural network model may include : a 
pre - reconstruction neural network ( e.g. , neural network 
210 ) , a reconstruction neural network ( 212 ) , and a post 
reconstruction neural network ( 214 ) . Example architectures 
and other aspects of such networks are described herein . 
[ 0138 ] Accordingly , in some embodiments , generating 
MR image ( s ) from input MR spatial frequency data at act 
254 comprises : ( 1 ) processing , at 256 , input MR spatial 
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frequency data using a pre - reconstruction neural network 
( e.g. , neural network 210 ) ; ( 2 ) generating , at 258 and based 
on output of the pre - reconstruction neural network , at least 
one initial image of the subject using a reconstruction neural 
network ( e.g. neural network 212 ) ; and ( 3 ) generating , at 
260 , at least one MR image of the subject from the at least 
one initial image of the subject obtained using the recon 
struction neural network . The image ( s ) generated at act 260 
may then be saved , sent to another system , displayed , or 
output in any other suitable way . 
[ 0139 ] It should be appreciated that any of the convolu 
tional neural network models described herein may be 
two - dimensional or three - dimensional convolutional neural 
networks that operate on two - dimensional data ( e.g. , data 
corresponding to a single image , for example , an image of 
a slice of a patient's anatomy ) or three - dimensional data 
( e.g. , data corresponding to multiple images , for example , a 
stack of images in a volume each of which corresponds to a 
respective slice of the patient's anatomy ) , as aspects of the 
technology described herein are not limited in this respect . 
Example Neural Network Architectures for Generating MR 
Images from Undersampled Data 
[ 0140 ] As described herein , the inventors have developed 
neural network models for reconstructing MR images from 
spatial frequency data obtained using non - Cartesian sam 
pling trajectories . For example , as described with reference 
to FIG . 2A , the reconstruction may be performed by recon 
struction neural network 212 , in some embodiments . Recon 
struction neural network 212 may be implemented in any 
suitable way including in any of the ways described next 
with reference to FIGS . 3A - 3E and / or in any of the ways 
described in U.S. Pat . Pub . No .: 2020/0034998 , filed Jul . 29 , 
2019 ( as U.S. application Ser . No. 16 / 524,598 ) , titled “ Deep 
Learning Techniques for Magnetic Resonance Image Recon 
struction ” , which is incorporated by reference in its entirety . 
[ 0141 ] FIG . 3A is a diagram of an illustrative architecture 
of an example neural network model 310 , which generates 
MR images from input MR spatial frequency data in stages . 
Input MR spatial frequency data 305 is first processed using 
initial processing block 312 to produce an initial image 314 , 
and then the initial image 314 is processed by a series of 
neural network blocks 316-1 , 316-2 , ... , 316 - n . 
[ 0142 ] In some embodiments , one or more of the blocks 
316-1 , 316-2 , ... , 316 - n may operate in the image domain . 
In some embodiments , one or more of the blocks 316-1 , 
316-2 , .. 316 - n may transform the input data to a different 
domain , including but not limited to the spatial frequency 
domain , perform processing in the different domain , and 
subsequently transform back to the image domain . 
[ 0143 ] In some embodiments , the initializer block trans 
forms the input MR spatial frequency data to the image 
domain to generate an initial image for subsequent process 
ing by the neural network model 310. The initializer block 
may be implemented in any suitable way , and in some 
embodiments , the initializer block may employ a Fourier 
transformation , a non - uniform Fourier transformation , or a 
gridding reconstruction to obtain the initial image . 
[ 0144 ] In some embodiments , one or more of the blocks 
316-1 , 316-2 , 316 - n may have the architecture of 
illustrative block 316 - i in FIG . 3B , which includes a data 
consistency block 320 , and a convolutional neural network 
block 350 , both of which are applied to the input X? , labeled 
321. The input x ; may represent the MR image reconstruc 
tion generated by neural network 310 at the completion of 

the ( i - 1 ) " neural network block . The output 335 of the block 
316 - i is obtained by applying the data consistency block 320 
to the input x? , to obtain a first result , applying the convo 
lutional neural network block 350 to X ;, to obtain a second 
result , and subtracting from x ; a linear combination of the 
first result and the second result , where the linear combina 
tion is calculated using the block - specific weight hy 
[ 0145 ] In some embodiments , the data consistency block 
320 may perform data consistency processing by transform 
ing the input image represented by x ; to the spatial frequency 
domain using a non - uniform Fourier transformation , com 
paring the result with the initial MR spatial frequency data 
305 , and transforming the difference between the two back 
to the image domain using an adjoint of the non - uniform 
Fourier transformation . 
[ 0146 ] FIG . 3C shows an example implementation of data 
consistency block 320 , in which the image domain input 
322 , is transformed to the spatial frequency domain through 
a series of transformations 324 , 326 , and 328 , whose com 
position is used to implement a non - uniform fast Fourier 
transformation from the image domain to the spatial fre 
quency domain . The transformation 324 is a de - apodization 
and zero - padding transformation D , the transformation 326 
is an oversampled FFT transformation Fs , and the transfor 
mation 328 is the gridding interpolation transformation G. 
The non - uniform fast Fourier transformation A is repre 
sented by the composition of these transformations accord 
ing to : A = G Fs D. Example realizations of these constituent 
transformations are described herein . 
[ 0147 ] After the image domain input 322 is transformed to 
the spatial frequency domain , it is compared with the initial 
MR spatial frequency data 305 , and the difference between 
the two is transformed back to the image domain using the 
transformations 330 , 332 , and 334 , in that order . The trans 
formation 330 is the adjoint of the gridding interpolation 
transformation 328. The transformation 332 is the adjoint of 
the oversampled FFT transformation 326. The transforma 
tion 334 is the adjoint of the de - apodization transformation 
324. In this way , the composition of the transformations 330 , 
332 , 334 , which may be written as DHFH GH = A , repre 
sents the adjoint AH of the non - uniform Fourier transforma 
tion A. 
[ 0148 ] In some embodiments , the convolutional neural 
network block 350 may have multiple convolutional layers . 
For example , as shown in FIG . 3D , the block 350 may have 
a U - net structure , whereby multiple convolutional layers 
downsample the data and subsequent transpose convolu 
tional layers upsample the data . In the example of FIG . 3D , 
input to the convolutional network block 350 is processed by 
a downsampling path followed an upsampling path . In the 
downsampling path , the input is processed by repeated 
application of two convolutions with 3x3 kernels , each 
followed by application of a non - linearity ( e.g. , a ReLU ) , an 
average 2x2 pooling operation with stride 2 for downsam 
pling . At each downsampling step the number of feature 
channels is doubled from 64 to 128 to 256. In the upsam 
pling path , the data is processed be repeated upsampling of 
the feature map using an average unpooling step that halves 
the number of feature channels , a concatenation with the 
corresponding feature map from the downsampling path , 
and two 3x3 convolutions , each followed by application of 
a non - linearity . 
[ 0149 ] FIG . 3E is a diagram of another type of architecture 
of a block that may be used within the neural network model 
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k - space grid and the sampling operator A is now given by a 
non - uniform discrete Fourier transform of type I : 

or 

( Eq . 2 ) yl ( kx , ky ) = ximezi rezultatas + kv ) 

of FIG . 3A . A neural network model with blocks having the 
architecture like the one shown in FIG . 3E may be termed 
a " generalized non - uniform variational network ” 
“ GNVN ” . It is " generalized ” in the sense that , while data 
consistency blocks are not used directly , features similar to 
the image features generated by such blocks may be useful 
to incorporate into a neural network model . 
[ 0150 ] As shown in FIG . 3E , the ith GNVN block 360 - i 
takes as input : ( 1 ) the image domain data x? , labeled as 362 ; 
and ( 2 ) the initial MR spatial frequency data 364. The input 
X ; may represent the MR image reconstruction generated by 
neural network 310 at the completion of the ( i - 1 ) - GNVN 
block ( 360- ( i - 1 ) ) . These inputs to the block 360 - i are used 
to generate input to the convolutional neural network ( CNN ) 
block 372 part of block 360 - i . In turn , the CNN block 372 
generates the next MR image reconstruction denoted by X : -1 : 
[ 0151 ] In the embodiment of FIG . 3E , the inputs 362 and 
364 are used to generate three inputs to the CNN block 372 : 
( 1 ) the reconstruction x ; itself is provided as input to the 
CNN block ; ( 2 ) the result of applying , to the reconstruction 
X? , the non - uniform Fourier transformation 366 followed by 
a spatial frequency domain CNN 368 , followed by the 
adjoint non - uniform Fourier transformation 370 ; and ( 3 ) the 
result of applying , to the initial MR spatial frequency data 
364 , the spatial frequency domain convolutional neural 
network 368 followed by an adjoint non - uniform Fourier 
transform 370. The non - uniform Fourier transformation 366 
may be the transformation A expressed as a composition of 
three transformations : the de - apodization transformation D , 
an oversampled Fourier transformation Fs , and a local 
gridding interpolation transformation G such that A = GF , D . 
The spatial frequency domain CNN 368 may be a five - layer 
convolutional neural network with residual connections . In 
other embodiments , the network 368 may be any 
of neural network ( e.g. , a fully convolutional network , a 
recurrent network , and / or any other suitable type of neural 
network ) , as aspects of the technology described herein are 
not limited in this respect . 
[ 0152 ] A discussion of further aspects and details of neural 
network models for MR image reconstruction from non 
Cartesian data , such as the neural network models illustrated 
in FIGS . 3A - 3E , follows next . Let xECN denote a complex 
valued MR image to be reconstructed , represented as a 
vector with N = N , N ,, where N , and N , are width and height of the image . Let yECM ( M << N ) represent the under 
sampled k - space measurements from which the complex 
valued MR image x is to be reconstructed . Reconstructing x 
from y may be formulated as an unconstrained optimization 
problem according to : 

where ( k , k , ) ER 2 ( rather than ( k? , k ,, ) EZ ? ) . An efficient 
implementation of the above forward model may be imple 
mented using the so - called non - uniform Fast Fo Trans 
form ( NUFFT ) , whereby Eq . 2 is approximated by the 
decomposition : A = GF D , where G is a gridding interpola 
tion kernel , F , is fast Fourier transform ( FFT ) with an 
oversampling factor of s , and D represents a de - apodization 
weights . 
[ 0153 ] Inversion of A is more involved . For the ( approxi 
mately ) fully - sampled case , one can consider direct inver 
sion ( 0 ( N ) ) or a more computationally efficient gridding 
reconstruction , which has the form Xgridding = AHWy , where 
W is a diagonal matrix used for the density compensation of 
non - uniformly spaced measurements . For the undersampled 
case , the inversion is ill - posed , and Eq . 1 should be solved 
by iterative algorithms . 
[ 0154 ] The inventors have developed a new deep learning 
algorithm to approximate the solution to the optimization 
problem of Eq . 1. The approach begins by considering a 
gradient descent algorithm , which provides a locally optimal 
solution to Eq . 1 , specified by the following equations for 
initialization and subsequent iterations : 

xo = finit ( A , y ) ; ( Eq . 3 ) 

Xi + 1 = x ; - & ; VF ( X ) x = x ; ' ( Eq . 4 ) 

other type where finit is an initializer , a is a step size and Vf is the 
gradient of the objective functional , which is given by : 

V.f ( x ) = ) = MA " ( Ax - y ) + V , R ( x ) . ( Eq . 5 ) 

[ 0155 ] In some embodiments , the initializer may be the 
adjoint finit ( A , y ) = AH y reconstruction or the gridding 
reconstruction fmi ( A , y ) = A Wy . The deep learning 
approach to solving Eq . 1 involves unrolling the sequential 
updates of Eq . 4 into a feed - forward model , and approxi 
mating the gradient term VR by a series of trainable 
convolutional ( or other types of neural network ) layers and 
non - linearities . This approach results in an end - to - end train 
able network with Nit blocks given by : 

Xo = finit - cnn ( A , y 100 ) ( Eq . 6 ) 

Xi + 1 = x ; – 1 ; A " ( Ax ; – y ) – fenn ( x ; | 8 ; ) ( Eq . 7 ) 
DC CNN - i 

argmina ( Eq . 1 ) 
3 || Ax – yll + R ( X ) , X 

where the operator A is a non - uniform Fourier sampling 
operator , R expresses regularisation terms on x , and à is a 
hyper - parameter associated to the noise level . When the 
k - space measurements y are obtained using a Cartesian 
sampling trajectory , the operator A may expressed according 
to : A = MF where M is a sampling mask , and F is discrete 
Fourier transform . In the case of a non - Cartesian sampling 
trajectory , the measurements no longer fall on a uniform 

[ 0156 ] where the learnable parameters are { 0. , ... , 0x 
als ... , ; } . The step size Q ; may be absorbed in the 
learnable parameters . In this way , a general non - convex 
regularization functional is used , which may be approxi 
mated by convolutional neural networks . For example , the 
neural network models of FIGS . 3A - 3D may implemented 
based on Equations 6 and 7. For example , the data consis 
tency term DC - i in Eq . 6 may be implemented as shown in 
FIG . 3C , and the CNN - i term in Eq . 6 may be implemented 
is shown in FIG . 3D . 
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[ 0157 ] Further details of the decomposition of the forward 
operator A = GFD are described next . The spatial frequency 
domain may be indexed using two - dimensional or three 
dimensional coordinates ( e.g. ( k , k ) or ( k , k , k . ) ) . Each 
entry of the vector y representing input MR spatial fre 
quency data represents a value associated to a specific 
k - space coordinate . A regular grid in k - space refers to a 
regularly - spaced grid of points k - space such that there is a 
fixed distance A between each k - space coordinate that can be 
indexed . Generally , the input MR spatial frequency data y 
may include k - space samples spaced on a regular - grid or 
irregularly spaced . Regularly spaced points are sometimes 
termed Cartesian data points . Irregularly spaced points are 
sometimes termed non - Cartesian ( data ) points . 
[ 0158 ] The interpolation transformation G operates to 
interpolate non - Cartesian sensor data y onto a regular 
k - space grid . When the transformation is represented as a 
matrix G , each row in the matrix corresponds to a specific 
regular grid point in k - space , and the entry j in the row i ( i.e. , 
the entry Gj ) expresses how much weight is associated 
between ith regular grid and jth k - space sample . In some 
embodiments , the interpolation matrix entries may be com 
puted using any one of the following four functions : be split 

coil 

27 
• Two term cosine a + ( 1 - a ) cos 

of Signal Processing 51 ( 2 ) , 560-574 ( 2003 ) , which is incor 
porated by reference in its entirety . 
[ 0161 ] The neural network architectures described herein 
with reference to FIGS . 3A - 3D , may be considered as 
embodiments of a more general neural network model that 
may be expressed according to the following : 

Xrec = frec ( A , y | 0 ) ( Eq . 8 ) , 

which accepts as input any input that is a combination of the 
forward operator A and raw spatial frequency data y . The 
learnable parameters 0 may be adjusted during training 
process . 
[ 0162 ] The input to the neural network of Eq . 8 may be 
data obtained by one or multiple RF coils of an MRI system . 
The input data y may have been obtained using multiple 
contrasts and / or different sets of acquisition parameters 
( e.g. , by varying repetition time ( TR ) , echo time ( TE ) , flip 
angle 0 , etc. ) . In some embodiments , input into the network 
may be , but is not limited to , the raw data y . Additionally or 
alternatively , the input to the network may be the adjoint 
reconstruction AH y where ( ) is the conjugate transpose of 
the matrix . 
[ 0163 ] In some embodiments , where the data ? includes 
data collected by multiple RF coils , these data y may 
into N. coil separate data sets , denoted y ( i ) for i = 1 , ... , N 
In some such embodiments , the neural network input may be 
the adjoint reconstruction of each coil images x , 1 ) = AHy ( 1 ) , 

( 1 ) for i = 1 , ... , Ncoil can be stacked together and form 
the input to the network ( e.g. , to the convolutional layers 
part of the network ) . 
[ 0164 ] In some embodiments , the raw data y may include 
multiple measurements obtained by each of one or more RF 
coils . For example , if the data is measured multiple times , 

times , then these data , or the adjoint reconstruction 
of these data , or any other function of these data measure 
ments and the forward operator A , may form an input to the 
neural network . For example , multiple measurements may 
be obtained for signal averaging and / or as part of acquiring 
images with different contrast . 
[ 0165 ] It should also be appreciated that the neural net 
work of Eq . 8 need not operate on the raw data y , and in 
some embodiments these data may be pre - processed . For 
example , in some embodiments these data may be pre 
processed to perform operations such as interference 
removal , denoising , filtering , smoothing , image prewhiten 
ing , etc. The output Xrec of the neural network in Eq . 8 , the 
output may include one or more images per respective RF 
coil . For example , if the input data contains data from each 
of N RF coils , the output may include one MR image for 
each such RF coil or multiple MR images for each such coil 
( e.g. , when each coil performs multiple acquisitions , for 
example , using different contrasts ) . 

and xo 2? 
• Three - term cosine : & + Bcos u + ( 1 - - a - 

47 
-B ) cos W 

• Gaussian : expl p [ -36 ) ] 
1 

. Kaiser - Bessel 10 BV 1 – ( 2u / W ) 2 say N avg 

coil 

where u is a distance between ith regular grid point and jth 
non - Cartesian data coordinate . The parameters a , b , W , O 
are free design parameters to be specified by user , and I , is 
the zeroth - order modified Bessel function of the first kind . 
Other functions may be used to compute interpolation 
matrix entries instead of or in addition to the above example 
functions . 

[ 0159 ] In some embodiments , the Fourier transformation 
F may be represented by an oversampled Fourier matrix F , 
which is a dense matrix in which each entry is a complex 
exponential of the form ey for y which depends on the index . 
The role of this matrix is to perform Fourier transform . In 
some embodiments , F , may be implemented using the fast 
Fourier transform with oversampling factor s . For example , 
if the image to be reconstructed x is NxN pixels , then 
oversampling FFT is performed for image size sNxsN . 
[ 0160 ] In some embodiments , the de - apodization transfor 
mation may be represented by a matrix D that will weigh 
each pixel in the image by a corresponding weight to reduce 
the interpolation error of approximating A with the given 
decomposition . In some embodiments , this may be imple 
mented via a pixel - wise weighting of the intermediate 
reconstruction in the image domain . For example , the pixel 
wise weighting may be implemented using a spatially 
varying low - order smooth polynomial . In some embodi 
ments , the matrix D may be set as described in Section IV - C 
of Fessler , J. A. , Sutton B. P .: Non - uniform fast Fourier 
transforms using min - max interpolation . IEEE Transactions 

Example Neural Network Architectures for 
Pre - Reconstruction Artefact Suppression 
[ 0166 ] As described above with reference to FIG . 2B , 
pre - reconstruction neural network 210 may be configured to 
suppress various types of artefacts in the MR spatial fre 
quency data . The suppression may involve rejecting lines of 
collected data ( e.g. , using neural network 220 ) , suppressing 
RF interference ( e.g. , using neural network 224 ) , and / or 
suppressing noise ( e.g. , using neural network 226 ) . The 
neural networks 224 and / or 226 may be implemented in any 
suitable way including in any of the ways described next 
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with reference to FIGS . 4A - 4D and / or in any of the ways 
described in U.S. Pat . Pub . No .: 2020/0058106 , filed Aug. 
15 , 2019 ( as U.S. application Ser . No. 16 / 541,511 ) , titled 
“ Deep Learning Techniques for Suppressing Artefacts in 
Magnetic Resonance Images , ” which is incorporated by 
reference in its entirety . As yet another example , the neural 
networks 224 and / or 26 may be implemented using one or 
more other architectures such as , for example , a ResNet 
architecture comprising convolutional blocks with residual 
connections , as described in He K , Zhang X , Ren S , Sun J. 
“ Deep residual learning for image recognition . ” In Proceed 
ings of the IEEE conference on computer vision and pattern 
recognition 2016 ( pp . 770-778 ) , which is incorporated by 
reference in its entirety . 
[ 0167 ] In some embodiments , the neural network 224 for 
suppressing RF interference may be implemented as a neural 
network having a “ U ” structure with convolutional layers 
being first applied to a sequence of successively lower 
resolution versions of the data ( along the down - sampling 
path ) and , second , to a sequence of successively higher 
resolution versions of the data ( along the up - sampling path ) . 
An example of such an architecture is shown in FIG . 4A as 
architecture 430 . 
[ 0168 ] As shown in FIG . 4A , in the down - sampling path , 
convolutional layers 432a and 432b are applied to input 431 . 
An average pooling layer 433 is then applied to the output 
of convolutional layer 432b , and convolutional layers 434a 
and 434b are applied to the lower - resolution data produced 
by the average pooling layer 433. Next , another average 
pooling layer 435 is applied to the output of convolutional 
layer 434b , and convolutional layers 436a , 436b , and 4360 
are applied to the output of the average pooling layer 435 . 
[ 0169 ] Next , in the up - sampling path , the output of con 
volutional layer 436c is processed by the average unpooling 
layer 437. The output of the average unpooling layer 437 is 
processed by convolutional layers 438a and 438b . The 
output of convolutional layer 4386 is processed by average 
unpooling layer 439 , and the output of average unpooling 
layer 439 is processed by convolutional layers 440a - c to 
generate output 445 . 
[ 0170 ] The architecture 430 also includes skip connec 
tions 441 and 442 , which indicates that the input to the 
average unpooling layers consists from output by the imme 
diately preceding convolutional layer and output having a 
higher resolution generated by another ( not immediately ) 
preceding convolutional layer . For example , the input to the 
average unpooling layer 437 is the output of convolutional 
layers 434b ( as indicated by the skip connection 442 ) and 
436c . The output of convolutional layer 434b has a higher 
resolution than that of layer 436c . As another example , the 
input to the average unpooling layer 439 is the output of 
convolutional layers 432b ( as indicated by the skip connec 
tion 442 ) and 438b . The output of convolutional layer 4326 
has a higher resolution than that of layer 4386. In this way , 
high frequency information that is lost through the applica 
tion of pooling layers along the down - sampling path is 
re - introduced ( and not lost ) as input to the unpooling layers 
along the up - sampling path . Although not expressly shown 
in FIG . 4A , a non - linearity layer ( e.g. , a rectified linear unit 
or ReLU , sigmoid , etc. ) may be applied after one or more 
( e.g. , convolutional ) layers shown in the architecture 430. In 
addition , batch normalization may be applied at one or more 
points along the architecture 430 ( e.g. , at the input layer ) . 

[ 0171 ] FIG . 4B illustrates a specific example of the archi 
tecture of the neural network shown in FIG . 4A . As shown 
in FIG . 4B , all of the convolutional layers apply a 3x3 
kernel . In the down - sampling path , the input at each level is 
processed by repeated application of two ( or three at the 
bottom level ) convolutions with 3x3 kernels , each followed 
by an application of a non - linearity , an average 2x2 pooling 
operation with stride 2 for down - sampling . At each down 
sampling step the number of feature channels is doubled 
from 64 to 128 to 256. The number of feature channels is 
also doubled from 256 to 512 at the bottom layer . In the 
up - sampling path , the data is processed by repeated up 
sampling of the feature maps using an average unpooling 
step that halves the number of feature channels ( e.g. , from 
256 to 128 to 64 ) , concatenating with the corresponding 
feature map from the down - sampling path and one or more 
convolutional layers ( using 3x3 kernels ) , each followed by 
application of a non - linearity . The last convolutional layer 
440c reduces the number of feature maps to 2 . 
[ 0172 ] In some embodiments , a neural network for sup 
pressing RF interference or noise may include “ spectral 
pooling ” and “ spectral unpooling ” layers , as shown , for 
example , in FIG . 4C that illustrates the architecture 450 of 
a CNN having a “ U ” structure and spectral pooling and 
unpooling layers instead of the average pooling and unpool 
ing layers . 
[ 0173 ] As shown in FIG . 4C , in the down - sampling path , 
convolutional layers 452a and 452b are applied to input 451 . 
A spectral pooling layer 453 is then applied to the output of 
convolutional layer 452b , and convolutional layers 454a and 
454b are applied to the lower - resolution data produced by 
the spectral pooling layer 453. Another spectral pooling step 
455 is applied to the output of convolutional layer 454b , and 
convolutional layers 436a , 436b , and 436c are applied to the 
output of spectral pooling layer 455. In the up - sampling 
path , the output of convolutional layer 456c is processed by 
the spectral unpooling layer 457 whose output is in turn 
processed by convolutional layers 458a and 458b . The 
output of convolutional layer 458b is processed by spectral 
unpooling layer 459 , whose output is processed by convo 
lutional layers 460a - c to generate output 465. A spectral 
pooling layer may be implemented by simply removing 
higher spatial frequency content from the data , which may 
be implemented efficiently since the data may be already in 
the spatial frequency domain , and a Discrete Fourier Trans 
form ( DFT ) is not needed . 
[ 0174 ] The architecture 450 also includes skip connec 
tions 461 and 462. Thus , the input to spectral unpooling 
layer 457 is the output of convolutional layers 454b and 
456c ( with the output of layer 454b including higher fre 
quency content than the output of layer 456c ) . The input to 
spectral unpooling layer 459 is the output of layers 452b and 
458b ( with output of layer 452b including higher frequency 
content than output of layer 458b ) . 
[ 0175 ] The architecture 450 may be implemented in a 
manner analogous to that of architecture 430 in FIG . 4B . For 
example , 3x3 kernels may be used and the number of feature 
channels may increase from 64 to 128 to 256 to 512 along 
the down - sampling path and decrease from 512 to 256 to 
128 to 64 and to 2 along the up - sampling path . However , any 
other suitable implementation ( e.g. , number of feature chan 
nels , kernel size , etc. ) may be used , as aspects of the 
technology described herein are not limited in this respect . 
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[ 0176 ] FIG . 4D illustrates an example architecture of 
spectral unpooling layer 457 part of architecture 450. In 
FIG . 4D , the output 480 of spectral unpooling layer 457 is 
generated from two inputs : ( 1 ) high resolution features 470 
provided via skip connection 462 ( from output of convolu 
tional layer 452b ) ; and ( 2 ) low resolution features 474 
provided as output from convolutional layer 4586. The high 
resolution features 470 include higher ( spatial ) frequency 
content than the low resolution features 474. As one specific 
example , the low - resolution features 474 may include one or 
more ( e.g. , 128 ) feature channels each comprising 64x64 
complex values and the high - resolution features may include 
one or more ( e.g. , 64 ) feature channels each comprising 
128x128 complex values . A high - resolution 128x128 fea 
ture channel and a corresponding low - resolution 64x64 
feature channel may be combined by : ( 1 ) zero padding the 
64x64 feature channel to obtain a 128x128 zero - padded set 
of values ; and ( 2 ) adding the high resolution 128x128 
feature channel ( weighted by weights 472 ) to the 128x128 
zero - padded set of values ( weighted by weights 478 ) . 
[ 0177 ] In the illustrated embodiment , the spectral unpool 
ing layer 457 combines the high resolution features and low 
resolution features 474 by : ( 1 ) zero padding the low reso 
lution features 474 using zero padding block 476 ; and ( 2 ) 
computing a weighted combination of the zero - padded low 
resolution features ( weighted using weights 478 ) with the 
high resolution features ( weighted by weights 472 ) . In some 
embodiments , the weights 472 and 478 may be set manually , 
in others they may be learned from data . 
[ 0178 ] The neural networks 220 , 224 , and 226 may be 
implemented in any suitable domain . For example , in some 
embodiments , each of one or more of these networks may be 
applied in the sensor domain , spectral domain , log spectral 
domain , time domain , spatial frequency domain , wavelet 
domain , and / or any other suitable domain , as aspects of the 
technology described herein are not limited in this respect . 
[ 0179 ] Neural Network Training 
[ 0180 ] The neural network models described herein may 
be trained using any suitable neural network training algo 
rithm ( s ) , as ects of the technology described herein are 
not limited in this respect . For example , in some embodi 
ments , the neural network models described herein may be 
trained by using one or more iterative optimization tech 
niques to estimate neural network parameters from training 
data . For example , in some embodiments , one or more of the following optimization techniques may be used : stochastic 
gradient descent ( SGD ) , mini - batch gradient descent , 
momentum SGD , Nesterov accelerated gradient , Adagrad , 
Adadelta , RMSprop , Adaptive Moment Estimation ( Adam ) , 
AdaMax , Nesterov - accelerated Adaptive Moment Estima 
tion ( Nadam ) , and AMSGrad . 
[ 0181 ] In some embodiments , training data for training a 
neural network may be generated synthetically from avail 
able MR images . In particular , in some embodiments , mag 
nitude MR images ( phase information is typically discarded ) 
may be used to generate corresponding spatial frequency 
data and the resulting ( spatial frequency data , MR image ) 
pairs may be used to train a neural network model , including 
any of the neural network models described herein , for 
example , by using any of the above - described algorithms . 
[ 0182 ] In some embodiments , the process of synthesizing 
spatial frequency data from MR image data for training a 
neural network may take into account one or more charac 
teristics of MRI system that will collect patient data that the 

neural network is being trained to process once the neural 
network is deployed . Non - limiting , examples of such char 
acteristics include , but are not limited to , size of the field of 
view of the MRI system , sampling patterns to be used by the 
MRI system during imaging ( examples of various sampling 
patterns are provided herein ) , number of RF coils in the MRI 
system configured to detect MR data , geometry and sensi 
tivity of RF coils in the MRI system , pulse correlation 
among signals received by the RF coils of the MRI system , 
RF interference ( external and internal ) that the MRI system 
is expected to experience during operation , RF noise ( e.g. , 
from the MR signal receive chain ) that the MRI system is 
expected to experience during operation , pulse sequences to 
be used during imaging , and field strength of the MRI 
system . 
[ 0183 ] Using characteristics of the MRI system that will 
collect patient data to generate training data allows for the 
neural network to learn these characteristics and use them to 
improve its performance on tasks in the reconstruction 
pipeline . Moreover , this approach allows the trained neural 
network models to reconstruct MR images of comparably 
high quality based on sensor data acquired using MRI 
hardware and software that produces comparatively lower 
quality sensor measurements due to various hardware and 
software characteristics ( including constraints and imperfec 
tions ) . 
[ 0184 ] FIGS . 5A - 5C show an illustrative diagram of a 
process 500 for generating training data from MR images for 
training the neural network models described herein , in 
accordance with some embodiments of the technology 
described herein . The process 500 starts with a magnitude 
MR volume 502 using various specified characteristics of an 
MRI system generates spatial frequency data 550 , which 
includes spatial frequency data collected multiple times 
( Navg times in this example ) by each of multiple RF cols of 
the MRI system ( 8 in this example ) . Process 500 may be 
performed by any suitable computing device ( s ) and , in some 
embodiments , may be performed in a cloud computing 
environment , for example . 
[ 0185 ] In some embodiments , process 500 may be 
repeated multiple times by starting from the same MR 
volume 502 to generate different spatial frequency data 550 , 
since multiple portions of the process 500 can be made to 
vary across different runs since these portions sample certain 
variations and parameters at random . Repeating process 500 
multiple times by starting from the same MR volume , but 
varying the process parameters ( e.g. , transformations 
applied to the image at acts 508 , 510 , and 512 ) enables the 
generation of multiple training data pairs from a single MR 
volume , which is a type of data augmentation that not only 
increases the diversity and coverage of the training data , but 
also reduces the demand to obtain greater amounts of 
real - world MRI images needed for training , which can be 
expensive , time - consuming , and impractical . 
[ 0186 ] As shown in FIGS . 5A - 5C , process 500 begins by 
accessing a reference magnitude MR volume 502. The MR 
volume 502 may comprise one or multiple images . Each of 
the image ( s ) may represent an anatomical slice of a subject 
being imaged . The MR volume 502 may include one or more 
magnitude images obtained by a clinical MRI system . In 
some embodiments , for example , the MR volume 502 may 
be obtained from one or more publically - accessible data 
bases ( e.g. , the Human Connectome Project ) and / or data 
associated with one or more publications . The MR volume 
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502 may include brain MR images . Additionally or alterna 
tively , the MR volume 502 may include MR images of other 
body parts . The MR volume 502 may be represented math 
ematically as x , ER Nx0xNy0xNz0 , where N , N , N , are the 
dimensions of the volume ( e.g. , in pixels ) . 
[ 0187 ] Next , at 504 , desired field of field view FOV 
( FOVX , FOV „ , FOV2 ) and image resolution ( NX , N , N , ) may 
be specified , and at 506 the MR volume 502 may be cropped 
and / or resampled to obtain an updated MR volume x ' having 
the desired field of view and image resolution , such that x'E R NzxNyxNz 
[ 0188 ] Next , in some embodiments , the updated MR vol 
ume x ' may be further modified , at 512 , by the application 
of one or more transformations T ( x ) ( generated at 508 ) 
and / or application of a histogram augmentation function I ( x ) 
( generated at 510 ) to obtain the updated MR volume x " ( r ) 
= I ( x ' ( T ( r ) ) ) . Such modifications permit generating multiple 
different training examples from a single underlying MR 
volume ( i.e. , MR volume 502 ) , which is a type of training 
data augmentation , as described above . 
[ 0189 ] In some embodiments , the transformation ( s ) T ( x ) 
( generated at 508 ) may include one or more 2D or 3D rigid 
transformations , one or more 2D or 3D affine transforma 
tions ( e.g. , one or more translations , one or more rotations , 
one or more scalings ) and / or one or more 2D or 3D non - rigid 
transformations ( e.g. , one or more deformations ) . In some 
embodiments , each such transformation may be imple 
mented by using a data augmentation matrix ( e.g. , a 3x3 
matrix for a rigid transformation , a 4x4 matrix for an affine 
transformation , and a dense deformation grid ( e.g. , of the 
same dimensionality as the MR volume ) for a non - rigid 
transformation ) . 
[ 0190 ] In some embodiments , an affine transformation 
T ( x ) may be generated at random at 508 to simulate a 
realistic variation of how different positions and orientations 
of a patient's anatomy may be positioned within the MRI 
system . For example , if the field of view of the image is 22 
cm , transformations sampled at 508 may translate the MR 
volume by a distance of up to 5 cm and / or rotate the MR 
volume by up to 30 degrees along the axial angle . A 
non - rigid transformation T ( x ) may be generated at random 
at 508 to simulate the effect of inhomogeneity of the B , field , 
eddy currents and / or encoding error of the MRI system . 
[ 0191 ] In some embodiments , the histogram augmentation 
function I ( r ) generated at 510 may be used to change the 
intensity variations in regions of the image to simulate 
various effects , including , but not limited to the effect of RF 
coil correlation and / or to provide different contrasts that may 
occur in multi - echo pulse sequences . 
[ 0192 ] Next , at acts 514 , 516 , and 518 , synthetic phase is 
generated from a linear combination of spherical harmonic 
basis functions to generate the target complex - valued vol 
ume x 520. In some embodiments , coefficients a ; of N 
spherical harmonic basis functions Y ; are sampled , at 514 , at 
random to generate a phase image , at 516 , according to : 
0 = 2 = 1 ̂ Q , Y ;. In turn , the complex - valued target vole 520 
may be given by : x = x " ( r ) eie . In some embodiments , the 
number of spherical harmonics is selected by the user — the 
greater the number , the more complex the resulting phase . In 
some embodiments , the range of values for each spherical 
harmonic coefficient Q ; may be set by user , for example , 
empirically . 
[ 0193 ] Next , after the target image 520 is generated , act 
525 ( which includes acts 522-544 is repeated ) multiple times 

times in this example ) to generate multiple sets of 
spatial frequency data , each set including spatial frequency 
data for Ncoil RF coils ( 8 in this example ) . Within act 525 , 
first sequence specific augmentation is performed at acts 522 
and 524 . 
[ 0194 ] In some embodiments , one or more transforma 
tions may be generated , at 522 , at random , to apply to target 
MR volume 520 , and subsequently be applied to the target 
MR volume at 524. Generating the transformations , at 522 , 
may include : ( 1 ) generating , at 522a , RF artefacts ( e.g. , 
internal RF interference , noise ) to simulate the types of RF 
artefacts that may be expected to be observed during a 
particular pulse sequence ; and ( 2 ) generating , at 522b , one 
or more affine or non - rigid transformations to simulate the 
effect of patient motion during a particular pulse sequence 
( inter - volume motion ) . 
[ 0195 ] Next , at acts 526 and 528 , an RF coil sensitivity 
profile is generated for each of the Na RF coils to obtain 
multiple RF coil sensitivity profiles S ,, i = 1 ... Ncoit . Each 
generated RF coil sensitivity profile S , is complex - valued , 
with the magnitudes generated at act 526 using one or more 
RF coil models and with the phases generated ( e.g. , ran 
domly ) at 528. The resulting RF sensitivity profiles are 
applied to the MR volume ( e.g. , to the result of performing , 
at 524 , pulse sequence specific augmentation on target MR 
volume 520 ) to obtain multiple MR volumes , each of the 
multiple MR volumes obtained by applying a respective RF 
coil sensitivity profile to the MR volume resulting at the 
output of 524 . 
[ 0196 ] The RF coil model used at 524 may be of any 
suitable type . For example , in some embodiments , the RF 
coil model used at 526 may be a physics - based RF coil 
model , which may be configured to calculate the sensitivity 
of a particular RF coil given its geometry . The physics - based 
model may be performed for multiple coils simultaneously 
to determine any RF coil coupling and / or inductance effects 
( e.g. , the results of that calculation may be used at 532 , as 
discussed below ) . In other embodiments , the RF coil model 
may be a statistical model having a Gaussian profile for the 
amplitude and smooth complex phase . In yet other embodi 
ments , a non - uniform map having the same dimension as 
each volume slice may be employed , where each pixel is 
weighted by a smooth amplitude reduction map and noise is 
added to determine an overall reduction in SNR that is to be 
applied . 
[ 0197 ] Next at 532 , a coil correlation matrix L ' may be 
determined . This matrix may model the effect of RF coil 
coupling and / or inductance . The coil correlation matrix L ' 
may be determined based on a model of RF coil inductance 
( e.g. , a physics - based model as described above ) . Next , at 
534 , the coil correlation matrix may be perturbed ( e.g. , 
randomly ) to obtain a coil correlation matrix L. At 536 , the 
coil correlation matrix L is applied to the pixel data . 
[ 0198 ] Next , at 538 and 540 , correlated Gaussian noise is 
generated and added , at 542 , to the multiple MR volumes 
produced at 536. In some embodiments , the Gaussian noise 
may be generated by : ( 1 ) determining , at 538 , a noise level 
0 ; for each of the coils ; and ( 2 ) generating , at 540 , Gaussian 
noise having the covariance of LDL , where D is a diagonal 
matrix with Di = 0 ;, and L is the coil correlation matrix 
determined at 534 . 
[ 0199 ] Next , at 544 , a k - space sampling trajectory is 
selected . The sampling trajectory may be of any suitable 
type . It may be Cartesian or non - Cartesian ( e.g. , radial , 
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spiral , rosette , variable density , Lissajou , etc. ) . Next , at 546 , 
noise dk ( t ) is added to sampling trajectory k ( t ) . The noise 
may be added to simulate for various MRI system imper 
fections and / or any other reason . Next , at 548 , a non 
uniform Fourier transform is applied to the noise - corrupted 
coil - weighted MR volumes produced at 542 . 
[ 0200 ] As a last step , at 545 , k - space augmentation may be 
performed to perform further sequence - specific augmenta 
tion . For example , this may be done to model them impact 
of the basebanging artefact in bSSFP ( balanced stead state 
free precession ) sequences or warping artefacts in DWI 
( diffusion weighted imaging ) . 
[ 0201 ] The resulting spatial frequency data are then out 
put , at 550. These data may be used for training any of the 
neural network models described herein . 
[ 0202 ] It should be appreciated that the process 500 is 
illustrative and that there are variations thereof . For 
example , one or more of the acts of process 500 may be 
omitted , in some embodiments . For example , when gener 
ating data for training a neural network to operate on data 
collected by an MRI system having a single RF coil , acts 
532-542 may be omitted , in some embodiments . As another 
example , one or more of the augmentation acts ( e.g. , k - space 
augmentation at 545 ) may be omitted , in some embodi 
ments . 
Unsupervised Learning with Low - Field Data 
[ 0203 ] As described herein , including above with refer 
ence to FIG . 5 , in some embodiments , neural network 
models developed by the inventors and described herein 
may be trained using training data generated from existing 
high - field image data . Indeed , a training dataset of ( sensor 
input data , image ) pairs may be generated by , for each pair , 
starting with a high - field source image X , and using a model 
of the “ forward process ” ( e.g. , the forward process described 
with reference to FIG . 5 ) to generate input sensor data Yn 
thereby forming the pair ( yn , Xn ) . However , the inventors 
have recognized that generating training data from high - field 
data , training neural network models on such training data , 
and then applying the trained neural network models to 
process low - field data ( e.g. , data collected using an MRI 
system having a B , field strength between 0.02 T and 0.2 T ) 
results in worse performance as compared to when the 
trained neural network models are applied to the type of 
high - field data that their training dataset was generated from . 
This problem is often referred to as “ domain shift . ” 
[ 0204 ] One way of mitigating domain shift is to a train 
neural network from low - field data when the trained neural 
network is to be applied to low - field data and to train neural 
networks from high - field data when the trained neural 
network is to be applied to high - field data . However , there 
is simply insufficient low - field MR data from which to train 
and the existing data is noisy , making it very difficult to 
generate low - field ( k - space data , image ) pairs . As a result , 
training a neural network from purely low - field data is not 
always possible . 
[ 0205 ] The inventors have recognized that this problem 
may be addressed by training the neural network with data 
pairs derived from high - field data ( as above ) , but also 
augmenting the loss function with losses computed with 
respect to available low - field images . The key insight is that , 
even if a neural network were trained using high - field data , 
the resulting network should reconstruct the same image 
from both : ( 1 ) a first set of low - field k - space data ; and ( 2 ) a 
second set of low - field data obtained by applying a geomet 

ric transformation to the first set of low - field k - space data , 
where the image reconstruction should be invariant under 
the transformation . 
[ 0206 ] For example , rotating the input sensor domain data 
along by a particular rotation angle , should simply cause the 
reconstructed image to be rotated by the same angle . Other 
non - limiting examples of geometric transformations with 
respect to which the image reconstruction should be invari 
ant include linear shift , phase shift , conjugation , and flip 
ping . 
[ 0207 ] Accordingly , in some embodiments , the loss func 
tion for training a neural network model for performing 
image reconstruction ( e.g. , neural network model 212 ) , may 
incorporate a loss applied on low - field data . Formally , let x 
E CN denote a complex - valued MR image to be recon 
structed , represented as a vector with N = N , N , where N , and 
N , are width and height of the image . Let YECM ( M << N ) 
represent the under - sampled k - space measurements . Denote 
the image reconstruction by a trained neural network f that 
generates x from y . Then , in some embodiments , the neural 
network may be trained using the following loss function : 

L selj = Ey - Pom [ L ] + Ey - polL2 + £ 3 ] , 
where the constituent loss functions are given by : 

L , = lkyn ) -xz || L2 = 160 ) -T - ' ( T ( y ) ) || Lg = R W ) ) . 
[ 0208 ] Here , the loss function £ 1 penalizes errors in 
reconstruction of high - field images ; it is based on the 
available data pairs generated from high - field images . The 
loss function L z penalizes errors between image reconstruc 
tions of a data set and a geometric transformation thereof , 
where the reconstruction should be invariant to action by the 
geometric transformation . The loss function L , implements 
a regularization term , such as total variation norm , which is 
typically applied in compressed sensing type reconstruc 
tions . In some embodiments , the loss function L 
a weighted combination of the individual loss functions L 1 , 
L2 and L 3 . 
[ 0209 ] Additionally or alternatively , another way to gen 
erate a training dataset is to use source images of higher 
quality X. , such as those obtained from low - field scanners , 
but using more data samples . The sensor data can be 
obtained directly by collecting the scanner measurements yo . 
The higher quality data x , and input data x are related by a 
mask in the sensor domain , i.e. y = M.y .. The training loss 
can then be written as : 

L4 = V7y ) -x | l 

self may be 

Motion Correction and Alignment 
[ 0210 ] As described herein , multiple MR images of a 
single slice of a patient's anatomy may be acquired in order 
to enhance MR image quality by averaging the multiple MR 
images to increase the resulting SNR . Multiple sets of 
images covering a same volume of the patient's anatomy 
( e.g. , a volume containing multiple slices of the patient's 
anatomy ) may be acquired and averaged for the same 
reason . However , performing multiple acquisitions ( e.g. of 
the same slice and / or of the same volume ) increases the 
overall total acquisition time , which in turn increases the 
likelihood that the patient moves during imaging . On the 
other hand , patient motion causes misalignment between the 
multiple acquisitions . Averaging such misaligned acquisi 
tions would not improve SNR as is desirable and , instead , 
may degrade the images , for example , through blurring . 
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[ 0211 ] As described herein , the inventors have developed 
deep learning techniques for aligning sets of images 
obtained by multiple acquisitions of the same slice and / or 
volume . In some embodiments , the deep learning techniques 
involve using a cascade of two or more neural networks 
configured to estimate a transformation ( e.g. , a non - rigid , an 
affine , a rigid transformation ) between two sets of MR 
images ( each set having one or multiple MR images ) , and 
aligning the two sets of images using the estimated trans 
formation . In turn , the two sets of images may be averaged 
to obtain a combined set of images having a higher SNR 
than the sets of images themselves . 
[ 0212 ] In some embodiments , the estimated transforma 
tion may indicate one or more rotations and / or translations 
to align the two sets of images . In some embodiments , the 
deep learning techniques described herein may be used as 
part of neural network 234 part of post - reconstruction neural 
network 214 , as described herein including in connection 
with FIG . 2C . 
[ 0213 ] Accordingly , some embodiments provide for a 
system and / or a method for generating MR images of a 
subject from MR data obtained by an MRI system . In some 
embodiments , the method includes : ( 1 ) obtaining first input 
MR data obtained by imaging the subject using the MRI 
system ; ( 2 ) obtaining second input MR data obtained by 
imaging the subject using the MRI system ; ( 3 ) generating a 
first set of one or more MR images from the first input MR 
data ( e.g. , by reconstructing the first set of MR images from 
the first input MR data ) ; ( 4 ) generating a second set of one 
or more MR images from the second input MR data ( e.g. , by 
reconstructing the second set of MR images from the second 
input MR data ) ; ( 5 ) aligning the first set of MR images and 
the second set of MR images using a neural network model 
to obtain aligned first and second sets of MR images , the 
neural network model comprising a first neural network and 
a second neural network ; ( 6 ) combining the aligned first and 
second sets of MR images to obtain a combined set of one 
or more MR images ; and ( 7 ) outputting the combined set of 
one or more MR images . 
[ 0214 ] In some embodiments , the aligning may include : 
( a ) estimating , using the first neural network , a first trans 
formation ( e.g. , a first rigid transformation expressed as a 
combination of one or more translations and / or one or more 
rotations ) between the first set of MR images and the second 
set of MR images ; ( b ) generating a first updated set of MR 
images from the second set of MR images using the first 
transformation ; ( c ) estimating , using the second neural net 
work , a second transformation ( e.g. , a second rigid trans 
formation expressed as a combination of one or more 
translations and / or one or more rotations ) between the first 
set of MR images and the first updated set of MR images ; 
and ( d ) aligning the first set of MR images and the second 
set of MR images at least in part by using the first trans 
formation and the second transformation ( e.g. , by using a 
composition of the estimated two transformations . In some 
embodiments , a software program may perform the above 
described acts . Alternately , one or more of these acts may be 
implemented using hardware . Accordingly , the MR image 
generation techniques described herein may be implemented 
using hardware , software , or any suitable combination of 
hardware and software . 
[ 0215 ] In some embodiments , obtaining the second input 
MR data may be performed after obtaining the first input 
MR data . For example , the first input MR data may contain 

MR data for each of multiple slices of a volume , the second 
input MR data may contain MR data for the same slices of 
the same volume , and all of the second input MR data may 
be acquired after the first input MR data . In other embodi 
ments , the acquisition of the first and second input MR data 
may be interlaced : MR data for a first slice is obtained twice 
( the first instance will be part of the first set of input MR data 
and the second instance will be part of the second set of input 
MR data ) , then MR data for a second slice is obtained twice 
( the first instance will be part of the first set of input MR data 
and the second instance will be part of the second set of input 
MR data ) , then MR data for a third slice is obtained twice 
( the first instance will be part of the first set of input MR data 
and the second instance will be part of the second set of input 
MR data ) , and so on . 
[ 0216 ] In some embodiments , generating the first updated 
set of MR images from the second set of MR images , 
comprises applying the first transformation to the second set 
of MR images . The first transformation may , for example , be 
a rigid transformation . In some embodiments , the first 
transformation may include one or more translations and / or 
one or more rotations determined by the first neural network . 
The translations may describe one or more translations along 
the x- , y- , and / or z - directions . The rotations may describe 
one or more rotations about the x , y , and / or z axes . In some 
embodiments , the rotations may be described by rotation 
angles ( e.g. , Euler rotation angles ) . In some embodiments , 
estimating the first transformation may be performed at least 
in part by using the aligning is performed by at least one 
graphics processing unit ( GPU ) part of the MRI system . 
[ 0217 ] In some embodiments , generating the first updated 
set of MR images additionally comprises interpolating 
results of applying the first transformation to the second set 
of MR images . For example , a pixel value of an image of the 
second set of MR images may be , after a transformation is 
applied , located “ between ” pixels of the pixel array of the 
transformed MR image . Pixel values of the transformed MR 
image may be interpolated based on , for example , an aver 
age of signal values within a vicinity of each pixel or in any 
other suitable way , as aspects of the technology described 
herein are not limited in this respect . 
[ 0218 ] In some embodiments , aligning the first set of MR 
images and the second set of MR images may comprise 
calculating a composed transformation by composing the 
first and second transformations . For example , in some 
embodiments , the composed transformation may be 
obtained by composing the rotation and translation param 
eters of the first and second transformations . The composed 
transformation may be applied to the second set of MR 
images to obtain a set of MR images aligned to the first set 
of MR images . Alternatively , in some embodiments , align 
ing the first set of MR images and the second set of MR 
images may comprise obtaining a set of MR images aligned 
to the first set of MR images from the first set of updated MR 
images . In some embodiments , the aligning may be per 
formed by at least one processor part of the MRI system . 
[ 0219 ] In some embodiments , the neural network model 
additionally includes a third neural network . In such 
embodiments , the aligning of the first set of MR images and 
the second set of MR images further comprises : ( e ) gener 
ating a second updated set of MR images from the first 
updated set of MR images using the second transformation ; 
( f ) estimating , using the third neural network , a third trans 
formation between the first updated set of MR images and 
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the second updated set of MR images ; and ( g ) aligning the 
first set of MR images and the second set of MR images at 
least in part by using the first transformation , the second 
transformation , and the third transformation ( e.g. , by com 
position of at least the first , second , and third transforma 
tions ) . 
[ 0220 ] In some embodiments , the first neural network 
comprises one or more two - dimensional ( 2D ) convolutional 
layers . In some embodiments , the first neural network com 
prises one or more three - dimensional ( 3D ) convolutional 
layers configured to simultaneously process data in multiple 
images of the first set of MR images ( e.g. , to process 
volumetric data ) . 
[ 0221 ] In some embodiments , the first set of MR images 
may consist of one image and the second set of MR images 
may consist of one MR image . In such embodiments , the 
first set of MR images and the second set of MR images may 
describe a single slice of the imaging volume . Alternately , 
the alignment of first and second sets of MR images may be 
performed by the neural network an image - at - a - time ( e.g. , 
by comparing single MR images rather than comparing 
multiple MR images that describe the entire imaging vol 
ume ) . 
[ 0222 ] In some embodiments , combining the aligned first 
and second sets of MR images comprises averaging images 
of the aligned first and second sets of MR images . For 
example , images of the aligned first and second sets of MR 
images corresponding to a same slice of the imaging volume 
may be averaged to increase SNR in the resulting combined 
image . 
[ 0223 ] FIG . 6 is a diagram of an example neural - network 
based architecture 600 for aligning one or more MR images , 
in accordance with some embodiments of the technology 
described herein . As can be appreciated from FIG . 6 , the 
architecture 600 is cascaded because it comprises a cascade 
of neural networks , each configured to estimate a respective 
transformation between two sets of MR images . Since the 
transformation may account for patient motion during col 
lection of the two sets of MR images , these neural networks 
are termed motion estimation networks . 
[ 0224 ] In the embodiment of FIG . 6 , the cascaded archi 
tecture 600 includes two motion estimation networks : first 
motion estimation network 610 and second motion estima 
tion network 620 configured to determine motion transfor 
mation parameters ( e.g. , rotation and / or translation param 
eters ) between reference volume 602 and moving volume 
604. Though it should be appreciated that , in other embodi 
ments , the cascaded architecture may include more than two 
motion estimation neural networks ( e.g. , three , four , five , 
six , seven , eight nine , ten , etc. ) , as aspects of the technology 
described herein are not limited to using exactly two motion 
estimation networks . 
[ 0225 ] The inventors have appreciated that using a cas 
cade of multiple neural networks to estimate a series of 
transformations to align the sets of images may lead to 
improved performance relative to the implementation where 
only one motion estimation neural net is used because a 
single transformation may not achieve a perfect alignment , 
but a series of transformations , each aligning a moving 
volume successively closer to the reference volume , may 
achieve a much higher degree of alignment . Though it 
should be appreciated that , in some embodiments , a single 
motion estimation neural network may be used . 

[ 0226 ] In some embodiments , the reference volume 602 
may include a set of one or more MR images generated 
based on a first set of MR data obtained by imaging a patient 
using the MRI system . In some embodiments , the set of MR 
images may be real - valued images ( phase information may 
be discarded ) . For example , the reference volume 602 may 
include multiple MR images , each of which corresponds to 
a different volumetric slice of the imaged patient ( e.g. , the 
multiple MR images may include multiple sagittal slices , 
multiple axial slices , or multiple coronal slices ) obtained 
from a first instance of an MR imaging protocol ( e.g. , a 
series of one or more pulse sequences for imaging the 
patient ) . In some embodiments , the reference volume 602 
may be provided as an input to each of the motion estimation 
networks 610 and 620 of the cascaded architecture 600 . 

[ 0227 ] In some embodiments , the moving volume 604 
may include a set of one or more MR images generated 
based on a second set of MR data obtained by imaging a 
patient using the MRI system . For example , the moving 
volume 604 may include MR images each of which corre 
sponds to a different volumetric slice of the patient ( e.g. , the 
MR images may include multiple sagittal slices , multiple 
axial slices , or multiple coronal slices ) , and each of the 
images in the moving volume 604 may have a corresponding 
image included in reference volume 602. In some embodi 
ments , the moving volume 604 may be used as an input of 
the first motion estimation network 610 and the first esti 
mated parameter resampler ( EPR ) 614 , as described below . 
[ 0228 ] In some embodiments , first motion estimation net 
work 610 may be a neural network configured to take two 
sets of MR images ( e.g. , reference volume 602 and moving 
volume 604 ) as input and output estimated transformation 
parameters ( e.g. , first transformation parameters 612 ) , which 
describe a transformation for aligning the moving volume 
604 to the reference volume 602 ( the misalignment being 
caused , for example , by patient movement during imaging ) . 
[ 0229 ] In some embodiments , the first motion estimation 
network 610 may be a convolutional neural network having 
one or more convolutional layers , one or more transpose 
convolutional layers , one or more non - linearity layers , and / 
or one or more fully connected layers . In some embodi 
ments , the network 610 may be a 2D convolutional neural 
network or a 3D convolutional neural network . An example 
architecture of network 610 is described herein including 
with reference to FIG . 7 . 

[ 0230 ] In some embodiments , the first transformation 
parameters 612 output by first motion estimation network 
610 may include parameters of a rigid transformation for 
aligning the reference volume 602 and the moving volume 
604 to one another . For example , the first transformation 
parameters 612 may include one or more translation param 
eters to describe translation along X- , y- , and / or z - directions . 
Alternatively or additionally , the first transformation param 
eters 612 may include rotation angles ( e.g. , Euler rotation 
angles ) describing rotation about the x , y , and / or z axes . 
[ 0231 ] Next , as shown in FIG . 6 , the first transformation 
parameters 612 are used to transform the moving volume 
604 to obtain an updated moving volume 606. This trans 
formation may be performed by Estimated Parameter Resa 
mpler 614. For example , the first transformation parameters 
612 may include one or more rotation and / or translation 
parameters , and the EPR 614 may transform the moving 
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volume 604 by applying one or more rotations and / or 
translations defined by the parameters 612 to the moving 
volume 604 . 
[ 0232 ] In some embodiments , generating the updated 
moving volume 606 may also include interpolating one or 
more points within the first updated set of MR images of the 
updated moving volume 606. As an example , each MR 
image of the moving volume 604 is formed from an array of 
magnitude values , each magnitude value being associated 
with a pixel of the MR image . When a rotation translation is 
applied to an MR image , the magnitude values may no 
longer cleanly align with the pixel array of the updated MR 
image ( e.g. , the magnitude may correspond to a location 
“ between ” array locations , pixels at the edge of the image 
may be cut off or missing ) . Interpolation may therefore be 
used to assign magnitude values to each pixel of the array 
forming the updated MR image . Any suitable type of inter 
polation technique may be used , as aspects of the technology 
described herein are not limited in this respect . 
[ 0233 ] Next , the reference volume 602 and the updated 
moving volume 606 are provided as input to the second 
motion estimation network 620. Second motion estimation 
network 620 may be configured to take in two sets of MR 
images ( e.g. , reference volume 602 and updated moving 
volume 606 ) and output estimated transformation param 
eters ( e.g. , transformation parameters 622 ) which describe 
an estimated magnitude and type of “ motion ” represented by 
the differences between reference volume 602 and updated 
moving volume 606 . 
[ 0234 ] In some embodiments , the network 620 may be a 
convolutional neural network having one or more convolu 
tional layers , one or more transpose convolutional layers , 
one or more non - linearity layers , and / or one or more fully 
connected layers . In some embodiments , the network 610 
may be a 2D convolutional neural network or a 3D convo 
lutional neural network . In some embodiments , the second 
motion estimation network 620 may have the same archi 
tecture as the first motion estimation network 610 , but with 
different parameter values since it is trained to perform a 
different task ( correcting a much smaller misalignment than 
the first motion estimation network ) . In other embodiments , 
the second motion estimation network 620 may have a 
different architecture ( e.g. , different number of convolu 
tional layers , different convolutional kernel size , different 
number of features , different non - linearity , and / or any other 
suitable difference ) . 
[ 0235 ] As shown in FIG . 6 , the second motion estimation 
network 620 outputs second transformation parameters 622 . 
In some embodiments , the parameters 622 include param 
eters of a rigid transformation between reference volume 
602 and updated moving volume 606. For example , the 
parameters 622 may include one or more translation param 
eters to describe translation along X- , y- , and / or z - directions . 
Alternatively or additionally , the first transformation param 
eters 612 may include rotation angles ( e.g. , Euler rotation 
angles ) describing rotation about the x , y , and / or z axes . 
[ 0236 ] In some embodiments , an output of the cascaded 
architecture 600 may include a final transformed volume 
( not pictured ) . In the example of cascaded architecture 600 , 
as depicted in FIG . 6 , the final transformed volume is 
generated after second EPR 624 resamples updated moving 
volume 606. The final transformed volume may include the 
cumulative transformations and interpolations as applied by 

the one or more motion estimation networks as the moving 
volume has been updated through cascaded architecture 600 . 
[ 0237 ] In some embodiments , the cascaded architecture 
600 may alternatively or additionally output the transforma 
tion parameters ( e.g. , transformation parameters 614 and 
622 ) determined by its constituent motion estimation net 
works . The transformations defined by these parameters 
may be composed , and the composed transformation may be 
applied to the moving volume 604 , with an interpolation step 
optionally following , to obtain a volume that is aligned with 
reference volume 602 . 
[ 0238 ] As one non - limiting example , the transformation 
parameters { R1 , ... , R. , C1 , ... , Cn } may be used to generate 
a composed transformation according to 

I final = Th * Tn - 1 * * T 

[ 0239 ] where T ; = [ RIC ;; 011 ] is a 4x4 transformation 
matrix and “ * ” is a matrix multiplication . The composed 
transformation , then be applied to moving volume 
604 , with an interpolation step optionally following , to 
obtained a volume that is aligned with reference volume 
602 . 
[ 0240 ] In some embodiments , the first motion estimation 
network 610 may be trained using a loss function based on 
error in the first transformation parameters 612. However , 
this approach suffers from multiple drawbacks ( e.g. , there 
are multiple transformation parameters that may achieve the 
same result and computing the error on a small number of 
parameters , for example 6 , may not be sufficiently informa 
tive for training purposes ) . Instead , the inventors have 
recognized that the estimated transformation 612 may be 
used to resample the moving volume 604 and to compute the 
loss function for training the network 610 based on the 
image - domain error between the reference volume 602 and 
the resampled moving volume 604 . 
[ 0241 ] For example , in embodiments where the architec 
ture 600 includes only the network 610 , the loss function 
may be computed by resampling MR images of moving 
volume 604 based on the first transformation parameters 
612. The resampling may be performed by first EPR 614 . 
The loss function would then be given by : 

L ( O ) = || Vref - EPR ( NN ( Vmovl0 ) ) || 2 
where is the network parameter to be optimized during 
training , Vref is the reference volume ( e.g. , reference volume 
602 ) , V is the moving volume ( e.g. , moving volume 604 ) , 
and NN ( Vmolo ) is the output of the neural network ( e.g. , the 
output of first motion estimation network 610 ) for a speci 
fied Vmoy and 0 . 
[ 0242 ] When the architecture 600 includes multiple ( say 
n ) motion estimation networks ( as is the case for FIG . 6 ) , a 
different loss function may be used as described below , the 
loss function , Ly ( 0 ) may be used , which is calculated based 
on the resampling performed by the EPRs ( e.g. , first EPR 
614 and EPR 624 ) according to : 

L ; O = || Vrer - EPR ( NN , ( ... ( EPR ( NN2 ( EPR ( NN 
( Vmolo ) ) ) ) ... ) 2 

where 0 is the network parameter to be optimized during 
training , Vrefis the reference volume ( e.g. , reference volume 
602 ) , V. is the moving volume ( e.g. , moving volume 604 ) , 
and NN , ( V moulo ) is the output of the n motion estimation 
network . 
[ 0243 ] FIG . 7 is a diagram 700 of the architecture of an 
illustrative neural network 710 for aligning one or more MR 

mov 

mov 
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images , in accordance with some embodiments of the tech 
nology described herein . Neural network 710 may be used 
as one or more of the motion estimation networks of 
cascaded architecture 600 , as described in connection with 
FIG . 6 . 
[ 0244 ] In some embodiments , neural network 710 may be 
configured a first set of MR images 702 and a second set of 
MR images 704. For example , in embodiments where 
motion estimation network 710 is used as first motion 
estimation network 610 of cascaded architecture 600 , the 
first set of MR images 702 may be reference volume 602 and 
the second set of MR images 704 may be moving volume 
604. As another example , in embodiments where neural 
network 710 is used as a subsequent motion estimation 
network ( e.g. , second motion estimation network 620 ) , the 
first set of MR images 702 may be reference volume 602 and 
the second set of MR images 704 may be an updated moving 
volume ( e.g. , updated moving volume 606 ) generated by an 
EPR ( e.g. , EPR 615 ) . 
[ 0245 ] In some embodiments , neural network 710 may be 
a convolutional neural network comprising one or more 
convolutional layers 712. For example , convolutional layers 
712 may be two - dimensional ( 2D ) convolutional layers . In 
such embodiments , neural network 710 may be configured 
to process individual , 2D MR images ( e.g. , representing a 
single volumetric slice ) . The processing of an entire imaging 
volume may be performed a slice at a time . Alternately , in 
some embodiments , convolutional layers 712 may comprise 
three - dimensional ( 3D ) convolutional layers . In such 
embodiments , neural network 710 may be configured to 
simultaneously process multiple MR images representing an 
entire imaging volume . 
[ 0246 ] In some embodiments , one or more fully connected 
layers 714 may be applied to the output of convolutional 
layers 712. In some embodiments , the output of convolu 
tional layers 712 may be reshaped into a one - dimensional 
( 1D ) vector before the application of the one or more fully 
connected layers 714. Additionally , in some embodiments , a 
dropout layer ( not shown ) may be included after one or more 
( or each ) of the fully connected layers 714 . 
[ 0247 ] Although not expressly shown in FIG . 7 , a non 
linearity layer ( e.g. , a rectified linear unit or ReLU , sigmoid , 
etc. ) may be applied after any of the one or more layers 
shown in the neural network 710. For example , a non 
linearity layer may be applied after one or more ( or each ) of 
the convolutional layers 712. Additionally or alternately , a 
non - linearity layer may be applied after one or more ( or 
each ) of the fully connected layers 714 . 
[ 0248 ] In some embodiments , neural network 710 may be 
implemented as a 3D convolutional network having the 
following architecture : 
[ 0249 ] 1. 3D Convolution , kernel size = 3x3 , stride = 1 , 8 
features , ReLU 
[ 0250 ] 2. 3D Convolution , kernel size = 3x3 , stride = 1 , 8 
features , ReLU 
[ 0251 ] 3. 3D Convolution , kernel size = 3x3 , stride = 1 , 8 
features , ReLU 
[ 0252 ] 4. 3D Convolution , kernel size = 3x3 , stride = 2 , 8 
features , ReLU 
[ 0253 ] 5. 3D Convolution , kernel size = 3x3 , stride = 1 , 16 
features , ReLU 
[ 0254 ] 6. 3D Convolution , kernel size = 3x3 , stride = 1 , 16 
features , ReLU 

[ 0255 ] 7. 3D Convolution , kernel size = 3x3 , stride = 1 , 16 
features , ReLU 
[ 0256 ) 8. 3D Convolution , kernel size = 3x3 , stride = 2 , 16 
features , ReLU 
[ 0257 ] 9. 3D Convolution , kernel size = 3x3 , stride = 1 , 32 
features , ReLU 
[ 0258 ] 10. 3D Convolution , kernel size = 3x3 , stride = 1 , 32 
features , ReLU 
[ 0259 ] 11. 3D Convolution , kernel size = 3x3 , stride = 1 , 32 
features , ReLU 
[ 0260 ] 12. 3D Convolution , kernel size = 3x3 , stride = 2 , 32 
features , ReLU 
[ 0261 ] 13. 3D Convolution , kernel size = 3x3 , stride = 1 , 64 
features , ReLU 
[ 0262 ] 14. 3D Convolution , kernel size = 3x3 , stride = 1 , 64 
features , ReLU 
[ 0263 ] 15. 3D Convolution , kernel size = 3x3 , stride = 1 , 64 
features , ReLU 
[ 0264 ] 16. Reshape the volume to a 1D vector 
[ 0265 ] 17. Fully Connected Layer to 256 features , RELU 
[ 0266 ] 18. Dropout Layer 
[ 0267 ] 19. Fully Connected Layer to 256 features , RELU 
[ 0268 ] 20. Dropout Layer 
[ 0269 ] 21. Fully Connected Layer to 256 features 
It may be appreciated that the above neural network archi 
tecture is by way of example only , and that neural network 
710 may have any other suitable architecture , as aspects of 
the technology described herein are not limited in this 
respect . 
[ 0270 ] In some embodiments , the fully connected layers 
may determine relative values of rotation , AD , and relative 
values of translation , A? , between the first set of MR images 
702 and the second set of MR images 704. The relative 
values of rotation , At , may comprise estimated rotation 
angles ( e.g. , Euler angles ) describing rotation of the motion 
corrupted set of MR images 704 about the x , y , and / or z axes 
relative to the reference set of MR images 702. The relative 
values of translation , A? , may comprise estimated transla 
tion values ( e.g. , distances ) of the second set of MR images 
704 along X- , y- , and / or z - directions relative to the first set 
of MR images 702 . 
[ 0271 ] In some embodiments , motion estimation network 
700 may use the determined relative values of rotation , 40 , 
and the determined relative values of translation , At ' , to 
estimate rigid transformation parameters 720. Rigid trans 
formation parameters 720 may describe a rigid transforma 
tion that maps the second set of MR images 704 to the first 
set of MR images 702. The motion estimation network 700 
may , in some embodiments , output rigid transformation 
parameters 720 as a set of transformation parameters ( e.g. , 
values of rotation angles , values of translations ) . In some 
embodiments , the motion estimation network 700 may out 
put rigid transformation parameters 720 as a composed 
transformation function . 
[ 0272 ] FIG . 8A is a flowchart of an illustrative process 800 
for aligning one or more MR images , in accordance with 
some embodiments of the technology described herein . 
Process 800 may be executed using any suitable computing 
device . For example , in some embodiments , the process 800 
may be performed by a computing device co - located ( e.g. , 
in the same room ) with an MRI system that obtained the MR 
data by imaging a subject ( or object ) . As another example , 
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in some embodiments , the process 800 may be performed by 
one or more processors ( e.g. , one or more GPUs ) located on 
the MRI system that obtained the MR data . Alternately , in 
some embodiments , the process 800 may be performed by 
one or more processors located remotely from the MRI 
system ( e.g. , as part of a cloud computing environment ) that 
obtained the input MR data . 
[ 0273 ] Process 800 begins at act 810 , where first input MR 
data is obtained . In some embodiments , the first input MR 
data had been previously obtained by an MRI system and 
stored for subsequent analysis , so that it is accessed at act 
810. In other embodiments , the first input MR data may be 
obtained by an MRI system ( including any of the MRI 
systems described herein ) as part of process 800 . 
[ 0274 ] At act 820 , second input MR data is obtained . In 
some embodiments , the second input MR data had been 
previously obtained by the MRI system and stored for 
subsequent analysis , so that it is accessed at act 820. In other 
embodiments , the second input MR data may be obtained by 
an MRI system ( including any of the MRI systems described 
herein ) as part of process 800 . 
0275 ] In some embodiments , first input MR data and 
second input MR data may be obtained by the MRI system 
as repetitions of similar or same MR imaging protocols . For 
example , first input MR data and second input MR data may 
correspond , in some embodiments , to first and second MR 
imaging instances of the same imaging volume and / or slice . 
Patient motion may cause the contents of first and second 
input MR data to be misaligned in the image domain ( e.g. , 
post - reconstruction ) . 
[ 0276 ] After obtaining the first and second input MR data , 
a first set of one or more MR images and a second set of one 
or more MR images may be generated from the first input 
MR data in act 830 and from the second input MR data in 
act 840 , respectively , in accordance with some embodiments 
of the technology described herein . The first and second sets 
of MR images may be generated , for example , by recon 
structing the first and second input MR data to transform the 
first and second input MR data from the spatial frequency 
domain to the image domain . The reconstruction may be 
performed in any suitable way , including linear and non 
linear methods . For example , when the spatial frequency 
domain data is spaced on a Cartesian grid , the data may be 
transformed using an inverse 2D Fourier transformation 
( e.g. , using the inverse 2D fast Fourier transform ) . As 
another example , when the spatial frequency domain data is 
under - sampled , the data may be transformed using an 
inverse non - uniform Fourier transformation , using a neural 
network model ( e.g. , reconstruction neural network 212 ) , 
using compressed sensing and / or any other suitable meth 
ods , as aspects of the technology described herein are not 
limited in this respect . 
[ 0277 ] Next , process 800 moves to act 850 , in which the 
first set of MR images and the second set of MR images are 
aligned using a neural network model to obtain aligned first 
and second sets of MR images , in accordance with some 
embodiments of the technology described herein . The neural 
network model may be applied in the image domain and may 
have any suitable architecture , including any of the archi 
tectures described herein . In some embodiments , the pro 
cessing at act 850 may be performed , as described herein 
including with reference to cascaded architecture 600 and / or 
neural network 710. In some embodiments , the neural 
network model may comprise multiple neural networks 

( e.g. , as in first motion estimation network 610 and second 
motion estimation network 620 of cascaded architecture 
600 ) . 
[ 0278 ] In some embodiments , act 850 of process 800 may 
include one or more additional acts to align the first set of 
MR images with the second set of MR images , as described 
by the flowchart of FIG . 8B . In some embodiments , a first 
transformation between the first set of MR images and the 
second set of MR images may be estimated using a first 
neural network in act 852. The processing at act 852 may be 
performed by a neural network having any suitable neural 
network architecture , including any of the architectures 
described herein . In some embodiments , the processing at 
act 852 may be performed as described herein , including 
with reference to neural network 710 . 
[ 0279 ] In some embodiments , the estimated first transfor 
mation may be any suitable transformation describing a 
transformation between the first and second sets of MR 
images , including any of the transformations described 
herein . For example , the first transformation may be a rigid 
transformation . In some embodiments , the first transforma 
tion may describe one or more translations ( e.g. , along any 
or each of the x- , y- , and / or z - directions ) and / or may 
describe one or more rotations ( e.g. , about any or each of the 
x , y , and / or z axes ) . In other embodiments , the first trans 
formation may be an affine or non - rigid transformation . 
[ 0280 ] After completing act 852 , process 800 moves to act 
854 , where a first updated set of MR images is generated 
from the second set of MR images using the first transfor 
mation . In some embodiments , the first updated set of MR 
images may be generated by applying the first transforma 
tion ( e.g. , any one of a number of translation and / or rota 
tions ) to the second set of MR images . In some embodi 
ments , generating the first updated set of MR images may 
include interpolating one or more pixel values of the first 
updated set of MR images . 
[ 0281 ] Next , process 800 moves to act 856 , where a 
second transformation between the first set of MR images 
and the first updated set of MR images is estimated using the 
second neural network . The processing at act 856 may be 
performed by any suitable neural network architecture , 
including any of the architectures described herein . In some 
embodiments , the processing at act 856 may be performed 
in any way described herein , including with reference to 
neural network 710 . 
[ 0282 ] In some embodiments , the estimated second trans 
formation may be any suitable transformation describing a 
transformation between the first set of MR images and the 
first updated set of MR images , including any of the trans 
formations described herein . For example , the first transfor 
mation may be a rigid transformation . In some embodi 
ments , the first transformation may describe one or more 
translations ( e.g. , along any or each of the x- , y- , and / or 
Z - directions ) and / or may describe one or more rotations 
( e.g. , about any or each of the x , y , and / or z axes ) . In some 
embodiments , the second transformation may be configured 
to correct any misalignment remaining after the application 
of the first transformation to the second set of MR images . 
[ 0283 ] Thereafter , process 800 moves to act 858 , where 
the first set of MR images and the second set of MR images 
are aligned at least in part by using the first transformation 
and the second transformation . In some embodiments , the 
first set of MR images and the second set of MR images are 
aligned by generating a second set of updated MR images 



US 2020/0294229 Al Sep. 17 , 2020 
24 

after estimating the second transformation . For example , the 
second transformation may be applied to the first updated set 
of MR images to generate a second set of updated MR 
images . In some embodiments , generating the second set of 
updated MR images may include interpolating one or more 
pixel values of the second set of updated MR images . 
[ 0284 ] In some embodiments , the first set of MR images 
and the second set of MR images may be aligned by 
applying a composed transformation to the second set of MR 
images . For example , the neural network model may output 
one or more transformation parameters ( e.g. , of the first 
transformation , second transformation , and / or any other 
transformation ) which may be used to generated a composed 
transformation , as described herein in connection with FIG . 
6 . 
[ 0285 ] After acts 852-858 of act 850 , process 800 moves 
to act 860 , as shown in FIG . 8A , where the aligned first and 
second sets of MR images are combined to obtain a com 
bined set of one or more MR images . In some embodiments , 
the aligned first and second sets of MR images may be 
combined by averaging images of the first and second sets 
of MR images . For example , images corresponding to a 
same slice of the imaging volume may be averaged to 
increase SNR in the resulting MR image . In some embodi 
ments , the averaging may comprise a weighted average . 
After act 860 completes , process 800 moves to act 870 
where the combined set of MR images is output ( e.g. , saved 
for subsequent access , transmitted to a recipient over a 
network , displayed to a user of the MRI system , etc. ) . 
[ 0286 ] In some embodiments , the above - described net 
works and methods may be implemented as a part of a data 
processing pipeline , such as the example pipeline 900 of 
FIG . 9. In some embodiments , the pipeline 900 may receive 
a deep learning model 902 and MR images 904 as inputs . 
The deep learning model 902 may be any deep learning 
model configured to perform motion estimation and / or cor 
rection , as described herein . For example , the deep learning 
model any of the motion estimation networks 
described with reference to FIG . 6 or neural network 710. In 
some embodiments , the deep learning model 902 may be 
implemented in pipeline 900 as deep learning module 906 . 
[ 0287 ] In some embodiments , the input MR images 904 
may be any related MR images ( e.g. , series of MR images 
representing the same imaging volume , series of MR images 
representing the same slice ) . In some embodiments , the 
input MR images 904 may have been previously obtained by 
an MRI system and stored for subsequent analysis , so that 
the input MR images 904 are accessed for input into pipeline 
900. In other embodiments , the input MR images may be 
obtained by an MRI system ( including any of the MRI 
systems described herein ) including one or more processors 
to implement pipeline 900 . 
[ 0288 ] In some embodiments , pipeline 900 may select , 
using any suitable method , a first set of MR images from the 
input MR images 904 to be the set of reference MR images 
908. The pipeline 900 may provide the set of reference MR 
images 908 and the remaining MR images of the input MR 
images 904 to the deep learning module 906 for processing . 
[ 0289 ] In some embodiments , the deep learning module 
906 may align the remaining MR images of the input MR 
images 904 to the reference MR images 908. The deep 
learning module 906 may implement any suitable alignment 
method to align the remaining MR images of the input MR 
images 904 with the reference MR images 908. For 

example , the deep learning module 906 may implement 
process 800 to align the images , as described in connection 
with FIGS . 8A and 8B . 
[ 0290 ] The deep learning module may output one or more 
transformations 910 based on the reference MR images 908 
and the remaining MR images of the input MR images 904 , 
in some embodiments . The transformations 910 may be 
output as transformation parameters or as a composed 
transformation . In some embodiments , the transformations 
910 may be any suitable transformation as described herein . 
For example , the transformations may be rigid transforma 
tions . In some embodiments , the transformation may 
describe one or more translations ( e.g. , along any or each of 
the X- , y- , and / or z - directions ) and / or may describe one or 
more rotations ( e.g. , about any or each of the x , y , and / or z 
axes ) . 
[ 0291 ] In some embodiments , the remaining MR images 
of the input MR images 904 may be resampled by estimated 
parameter resampler 912 based on transformations 910 . 
Resampler 912 may use the transformations to transform the 
input MR images 902 ( e.g. , as described with reference to 
EPR 614 ) . 
[ 0292 ] In some embodiments , the pipeline 900 may evalu 
ate at junction 914 whether the transformations 910 repre 
sent estimated motion that should be corrected . Some trans 
formations 910 may not be a result of patient motion . For 
example , the partial volume effect , may result in small 
estimated transformations 910 that are not due to patient 
motion but are an artefact of the MR imaging process . In 
some embodiments , pipeline 900 may evaluate whether 
transformations 910 are above a certain threshold value . For 
example , pipeline 900 may evaluate whether a translation is 
above a translation threshold value ( e.g. , a translation of one 
pixel , a translation of two pixels , or any suitable threshold 
value ) and / or whether a rotation is above a rotation threshold 
value ( e.g. , a rotation of one degree , a rotation of two 
degrees , or any suitable threshold value ) . If the transforma 
tions 910 are not greater than the threshold values , pipeline 
900 may not correct the remaining MR images of the input 
MR images 904 . 
[ 0293 ] In some embodiments , pipeline 900 may output 
registered MR images 916. Registered MR images 916 may 
include reference MR image 908 and transformed remaining 
MR images of the input MR images 904. Transformed 
remaining MR images of the input MR images 904 may be 
transformed as a part of deep learning module 906 , in some 
embodiments . Alternately , one or more transformations 
based on transformations 910 may be applied to remaining 
MR images of the input MR images 904 in order to obtain 
transformed remaining MR images of the input MR images 
904 . 
[ 0294 ] Turning to FIG . 10 , additional aspects of training 
neural networks configured to perform motion estimation 
and / or correction are described , in accordance with some 
embodiments of the technology described herein . It may , in 
some instances , be difficult to acquire large scale real 
motion - corrupted data for training of any of the neural 
network models described herein . Accordingly , in some 
embodiments , it may be desirable to generate synthetic 
training data including reference MR images and synthetic 
motion - corrupted MR images based on existing datasets 
1002 of MR images . An illustrative process 1000 for gen 
erating such synthetic training dataset is described in con 
nection with FIG . 10 herein . 

may include 
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of FIG . 14B have been evaluated using the motion estima 
tion and correction method as described herein , though as no 
motion was detected by the neural network model , no 
correction to the MR images was performed . 

Self Ensembling 

[ 0295 ] Process 1000 may be executed using any suitable 
computing device . For example , in some embodiments , the 
process 1000 may be performed by a computing device 
co - located ( e.g. , in the same room ) with an MRI system . As 
another example , in some embodiments , the process 1000 
may be performed by one or more processors located 
remotely from the MRI system ( e.g. , as part of a cloud 
computing environment ) . 
[ 0296 ] To generate such synthetic training datasets , a 
volume may be selected and loaded in act 1004 from dataset 
1002. In some embodiments , only a magnitude portion of 
the volume may be loaded . After loading the selected 
volume in act 1004 , a random affine transformation matrix 
T may be sampled in act 1006. In some embodiments , the 
random affine transformation matrix T may be sampled from 
a number of affine transformation matrices ( e.g. , stored in a 
database ) or the random affine transformation matrix T may 
be randomly generated using any suitable random genera 
tion method . 
[ 0297 ] In some embodiments , the sampled random affine 
transformation matrix T may then be applied to the loaded 
volume in act 1008. The transformed volume may be stored 
as a reference volume . 
[ 0298 ] After generating the reference volume in act 1008 , 
the process 1000 may proceed to acts 1010-1016 to generate 
the moving volume . In act 1010 , a random rotation matrix R 
and a random translation vector c may be sampled . In some 
embodiments , the rotational matrix R and the random trans 
lation vector c may be sampled from a number of rotation 
matrices and translation vectors ( e.g. , stored in a database ) , 
or the random rotational matrix Rand the random translation 
vector c may be randomly generated using any suitable 
random generation method . In act 1012 , the sampled rota 
tion matrix R and translation vector c may be applied to the 
reference volume to generate a moving volume . 
[ 0299 ] To better train the neural network model , it may be 
desirable to include synthetic noise in the synthetic training 
data ( e.g. , to simulate non - ideal MR imaging conditions ) . In 
act 1014 , Gaussian noise may be sampled in act 1014. The 
Gaussian noise may be selected to match the volume size of 
the loaded volume . Alternatively or additionally , in some 
embodiments , noise may be added to the reference volume 
and the moving volume by undersampling a percentage of 
the MR data in k - space . In act 1016 , the Gaussian noise may 
be added to the reference volume and the moving volume to 
form the synthetic training data pair for use by the neural 
network model . 
[ 0300 ] In some embodiments , additional non - rigid trans 
formations ( not pictured ) may be applied to the moving 
volume to simulate pulse sequence - specific deformations 
that may be encountered by the neural network . Examples of 
such non - rigid transformations include dilation of the vol 
ume and / or shearing of the volume . 
[ 0301 ] FIGS . 11A , 12A , and 13A show examples of 
motion - corrupted MR images of different patients ' brains . 
FIGS . 11A , 12A , and 13A were all acquired using a balanced 
steady - state free precession ( bSSFP ) pulse sequence using a 
low - field MRI system , as described herein . FIGS . 11B , 12B , 
and 13B show corresponding examples of motion - corrected 
MR images , the motion correction being performed using 
motion estimation and correction methods as described 
herein . 
[ 0302 ] FIGS . 14A and 14B show an example of MR 
images of a phantom unaffected by motion . The MR images 

[ 0303 ] The inventors have developed techniques for 
improving non - linear MR reconstruction methods using 
self - ensembling . For example , in the context of MR image 
reconstruction using neural network models , self - ensem 
bling may reduce or remove errors introduced by the neural 
network model in each MR image without requiring that 
additional training of the neural network model be per 
formed . 

[ 0304 ] The idea behind self ensembling is to create one or 
more variants of the input MR data ( prior to reconstruction ) 
by applying one or more invertible functions to the input MR 
data . Then the original input MR data and its variant ( s ) are 
reconstructed , inverse ( s ) of the invertible function ( s ) are 
applied to the reconstructed variant ( s ) , and the resulting 
images are averaged . 
[ 0305 ] The self - ensembling techniques described herein 
may suppress ( e.g. , reduce or eliminate ) any errors intro 
duced through the neural network reconstruction , which 
may result in higher - quality , higher SNR images . The self 
ensembling techniques described herein are not limited to 
being applied in embodiments where neural networks are 
used to perform image reconstruction and may be applied in 
the context of any non - linear MR reconstruction method 
( e.g. , compressed sensing ) . 
[ 0306 ] Accordingly , the inventors have developed tech 
niques for self - ensembling of MR data . Some embodiments 
provide for systems and methods for generating MR images 
of a subject from MR data obtained by an MRI system . The 
method comprises : ( 1 ) obtaining input MR data obtained by 
imaging the subject using the MRI system ; ( 2 ) generating a 
plurality of transformed input MR data instances by apply 
ing a respective first plurality of transformations to the input 
MR data ; ( 3 ) generating a plurality of MR images from the 
plurality of transformed input MR data instances and the 
input MR data using a non - linear MR image reconstruction 
technique ; ( 4 ) generating an ensembled MR image from the 
plurality of MR images at least in part by : ( a ) applying a 
second plurality of transformations ( e.g. , to mitigate the 
effects of the first plurality of transformations in the image 
domain ) to the plurality of MR images to obtain a plurality 
of transformed MR images ; and ( b ) combining the plurality 
of transformed MR images to obtain the ensembled MR 
image ; and ( 5 ) outputting the ensembled MR image . In some 
embodiments , a software program may perform the above 
described acts . Alternately , one or more of these acts may be 
implemented using hardware . Accordingly , the MR image 
generation techniques described herein may be implemented 
using hardware , software , or any suitable combination . 
[ 0307 ] In some embodiments , applying the first plurality 
of transformations to the input MR data comprises applying 
one or more of a selection of transformations in the spatial 
frequency domain . For example , the first plurality of trans 
formations may include any one of a constant phase shift 
transformation , a linear phase shift transformation , a com 
plex conjugation transformation , a rotation transformation , a 
transpose transformation , and / or a reflection transformation . 
Applying the first plurality of transformations to the input 
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MR data may generate a plurality of transformed input MR 
data instances for use in self - ensembling the input MR data . 
[ 0308 ] In some embodiments , using the non - linear MR 
image reconstruction technique comprises applying a neural 
network model to the transformed input MR data instances 
to obtain the plurality of MR images . The non - linear MR 
image reconstruction technique may be any suitable neural 
network model configured to perform MR image reconstruc 
tion . For example , the neural network model may be recon 
struction neural network 212 , as described in connection 
with FIGS . 2A and 2C . 
[ 0309 ] In some embodiments , using the non - linear MR 
image reconstruction technique comprises using a com 
pressed sensing ( CS ) technique . The non - linear MR image 
reconstruction technique may be any suitable CS technique 
configured to perform MR image reconstruction . For 
example , the CS technique may be any one of an iterative 
soft thresholding algorithm ( ISTA ) , a sub - band adaptive 
iterative soft thresholding algorithm ( SISTA ) , fast iterative 
soft thresholding algorithm ( FISTA ) , energy preserving 
sampling ( ePRESS ) , exponential wavelet transform ( EWT ) , 
exponential wavelet transform iterative soft thresholding 
algorithm ( EWT - ISTA ) , exponential wavelet iterative 
shrinkage thresholding algorithm ( EWISTA ) , exponential 
wavelet iterative shrinkage thresholding algorithm with ran 
dom shift ( EWISTARS ) , and / or any other suitable CS tech 
niques . 
[ 0310 ] In some embodiments , applying the second plural 
ity of transformations to the plurality of MR images com 
prises applying the second plurality of transformations to the 
plurality of MR images in an image domain . The second 
plurality of transformations may be selected to suppress 
( reduce and / or eliminate ) the transformation effects of the 
applied first plurality of transformations in the spatial fre 
quency domain . For example , if a linear phase shift is first 
applied in the spatial frequency domain , a pixel shift may be 
applied thereafter in the image domain to mitigate the effects 
of the first transformation in the spatial frequency domain . 
Other examples of transformation pairs include : ( 1 ) a con 
stant phase shift in the spatial frequency domain and a 
constant phase shift in the image domain ; ( 2 ) a conjugation 
of data in the spatial frequency domain and a reflection in the 
image domain ; and ( 3 ) a rotation in the spatial frequency 
domain and a rotation in the image domain . 
[ 0311 ] In some embodiments , combining the plurality of 
transformed MR images to obtain the ensembled MR image 
comprises computing the ensembled MR image as 
weighted average of the plurality of transformed MR 
images . For example , the weight value of the weighted 
average may be determined based at least in part on the total 
number of varied model parameters and / or the total number 
of transformation functions applied to the input MR data . 
Alternately , the weight value of the weighted average may 
be based on which transformations are applied to the input 
MR data . 
[ 0312 ] It may be desirable , in some embodiments , to 
remove the effects of adjacent subject anatomy slices from 
a reconstructed image of a single subject anatomy slice . 
Accordingly , the inventors have developed methods for 
subtracting the contribution of a neighboring slice from a 
given slice as a part of a self - ensembling technique . In some 
embodiments , where the input MR data comprises a first 
spatial frequency MR data ( y ; ) for generating an image for 
a first subject anatomy slice and second spatial frequency 

MR data ( Yi + 1 ) for generating an image for a second subject 
anatomy slice , generating the plurality of transformed input 
MR data instances comprises generating a first transformed 
input MR data instance ( y ; +1 ) by adding the second spatial 
frequency MR data to the first spatial frequency MR data . 
Generating the plurality of MR images comprises generating 
a first MR image ( x : +1 ) from the first transformed data 
instance ( yi + ! ) and generating a second MR image ( Xi + 1 ) 
from the second MR spatial frequency data ( Yi + 1 ) . Gener 
ating the ensembled MR image then comprises subtracting 
the second MR image from the first MR image ( x : + 1 - X ; +1 ) . 
[ 0313 ] In some embodiments , the input MR data may 
comprise multiple MR data instances , and it may be desir 
able to remove the effects of multiple adjacent subject 
anatomy slices from a reconstructed MR image of a single 
subject anatomy slice . In such embodiments , the input MR 
data may comprise first spatial frequency MR data for 
generating an image for a first subject anatomy slice and 
second spatial frequency MR data for generating one or 
more images for one or more other subject anatomy slices . 
Generating the plurality of transformed input MR data 
instances may then comprise generating a first transformed 
input MR data instance by combining the first spatial 
frequency MR data and the second spatial frequency MR 
data . Additionally , generating the plurality of MR images 
may comprise generating a first MR image from the first 
transformed input MR data instance and generating one or 
more second MR images from the second spatial frequency 
MR data . Generating the ensembled MR image may then 
comprise subtracting the one or more second MR images 
from the first MR image . 
[ 0314 ] FIG . 15 is a diagram 1500 illustrating a self 
ensembling approach to non - linear MR image reconstruc 
tion , in accordance with some embodiments of the technol 
ogy described herein . The self - ensembling technique may be 
executed by any suitable computing device . For example , in 
some embodiments , the self - ensembling technique may be 
performed by a computing device co - located ( e.g. , in the 
same room ) with an MRI system that obtained the MR data 
by imaging a subject ( or object ) . As another example , in 
some embodiments , the self - ensembling technique may be 
performed by one or more processors located on the MRI 
system that obtained the MR data . Alternately , in some 
embodiments , the self - ensembling technique may be per 
formed by one or more processors located remotely from the 
MRI system ( e.g. , as part of a cloud computing environ 
ment ) that obtained the input MR data . 
[ 0315 ] The self - ensembling technique begins with an 
instance of input MR data 1502 , in some embodiments . The 
input MR data 1502 may be obtained by an MRI system 
( including any MRI systems as described herein ) using any 
suitable pulse sequence . Any suitable pre - processing may be 
performed to input MR data 1502 prior to self - ensembling . 
The input MR data 1502 may represent a single correspond 
ing MR image in the image domain ( e.g. , the input MR data 
1502 may represent a single MR data gathering instance ) . In 
some embodiments , the input MR data 1502 may represent 
a single anatomy slice of the imaged subject ( or object ) . 
[ 0316 ] The input MR data 1502 may be transformed by 
transformations T Ty to form transformed input MR 
data instances 1504-1 through 1504 - N , in some embodi 
ments . Transformations Ti ... Ty may be any suitable 
transformation function configured to alter the input MR 
data 1502. For example , transformations T , ... Ty may be 

a 



US 2020/0294229 A1 Sep. 17 , 2020 
27 

any one of a non - limiting group of transformations , includ 
ing linear phase shift transformations , constant phase shift 
transformations , complex conjugation transformations , rota 
tion transformations , transpose transformations , and / or 
reflection transformations . In some embodiments , the trans 
formations T ... Ty may include the identity transforma 
tion . Alternatively , an instance of the input MR data 1502 
may be preserved ( e.g. , no transformation may be applied to 
the oth instance of input MR data 1502 prior to MR image 
reconstruction ) . 
[ 0317 ] In some embodiments , the transformed input MR 
data instances 1504-1 through 1504 - N may be reconstructed 
to form a plurality of MR images 1508-0 through 1508 - N . 
The MR image reconstruction may be performed by a 
non - linear MR image reconstruction process 1506 , repre 
sented by : 

x = fly ) 

where y is the MR data in the spatial frequency domain , f ( ) 
is the non - linear reconstruction function , and x is the recon 
structed MR image in the image domain . 
[ 0318 ] The non - linear MR image reconstruction process 
1506 may be any suitable non - linear MR image reconstruc 
tion technique . In some embodiments , the non - linear MR 
image reconstruction process 1506 may be a neural network 
model configured to perform MR image reconstruction . For 
example , the neural network model may be reconstruction 
neural network 212 , as described in connection with FIGS . 
2A and 2C . Alternatively , in some embodiments , the non 
linear MR image reconstruction process 1506 may be any 
suitable CS technique , examples of which are described 
herein . 
[ 0319 ] In some embodiments , reverse transformations 

..Tn- may be applied to the plurality of MR images 
1508-0 through 1508 - N to form transformed MR images 
1508-0 through 1508 - N . In some embodiments , the reverse 
transformations may include the identity transformation , 
which may be applied to MR image 1508-0 . Alternatively , 
MR image 1508-0 may be preserved ( e.g. , no reverse 
transformation may be applied to MR image 1508-0 prior to 
ensembling ) . 
[ 0320 ] It is to be appreciated that because a non - linear MR 
reconstruction technique is employed between the transfor 
mations T ... Ty performed in the spatial frequency domain 
and the reverse transformations T1 T v performed in 
the imaging domain , that the reverse transformations T , 

Tn-- are not , strictly , inverse transformations of transfor 
mations Ty ... Tr . Rather , reverse transformations T , 
.Tv are selected to at least partially reverse and / or mitigate 
the effects of transformations T1 ... Ty in the image domain . 
For example , if a linear phase shift is first applied in the 
spatial frequency domain , a pixel shift may be applied 
thereafter in the image domain to mitigate the effects of the 
first transformation in the spatial frequency domain . Other 
examples of transformation pairs include : ( 1 ) a constant 
phase shift in the spatial frequency domain and a constant 
phase shift in the image domain ; ( 2 ) a conjugation of data in 
the spatial frequency domain and a reflection in the image 
domain ; and ( 3 ) a rotation in the spatial frequency domain 
and a rotation in the image domain . 
[ 0321 ] After obtaining a transformed MR images 1508-0 
through 1508 - N , an ensembled MR image 1512 may be 
formed , in some embodiments . The ensembled MR image 
1512 may be represented mathematically as : 

* self - ensemble = 2 ̂  T ; - ' [ { T ; y ) 

[ 0322 ] where N is the total number of transformation 
functions T ;, and w ; is the weight for the given reconstruc 
tion . In some embodiments , the weight W ; may be based on 
the total number of transformation functions ( e.g. , W = 1 / N ) . 
Alternatively , the weight w , may be based on the particular 
transformation functions applied . 
[ 0323 ] When the non - linear MR image reconstruction 
process 1506 is performed by using a neural network model , 
additional parameters , 0 , may be varied , such that the MR 
image reconstruction may be mathematically described by : 

x = fly10 ) 

[ 0324 ] and the ensembled MR image 1512 may be repre 
sented mathematically 

Xself - ensemble = 2 ; MXNw ; 7 ; ' { { T ; y | 0 ; ) 
[ 0325 ] where M is the total number of varied model 
parameters , 0 , and with is the weight for the given 
reconstruction . In some embodiments , the weight w ; may be 
based on the total number of transformation functions and 
the total number of varied model parameters ( e.g. , Wij = 1 / 
NM ) . Alternatively , the weight Wij may be based on the 
particular transformation functions applied . 
[ 0326 ] In some embodiments , it may be desirable to 
reduce or eliminate noise introduced into an MR image of a 
particular subject anatomy slice by one or more neighboring 
subject anatomy slices . Such noise contributions may be 
addressed within the context of self - ensembling , as 
described herein , by using a “ Mix - Up ” technique and intro 
ducing the following transformation function to a given first 
input MR data , Yi : 

y ; + 1 = T ( y : ) = y : + Yi + 1 
[ 0327 ] where yi + 1 is a subject anatomy slice proximate to 

Wij 

Iy -1 

slice Yi 

-1 

-1 1 ' ?. 

[ 0328 ] The non - linear MR image reconstruction process 
1506 may then be mathematically described as , for any 
non - linear reconstruction f ( y ) : 

xx + 1 = 16 : + ! ) „ X ; + 1 = f itu ) 

[ 0329 ] or , for a neural network model with additional 
parameters , 0 : 

x ; + 1 = f i + 110 ) .X ; +1 = f ( i + 110 ) 

[ 0330 ] After MR image reconstruction , reverse transfor 
mations may be applied to the reconstructed MR images to 
subtract the contribution of the one or more adjacent subject 
anatomy slices : 

x ; l = 1 * ( x + 1 ) = x + 1 – x ; +1 
[ 0331 ] In some embodiments , one may generate many 
images , x? ' , using any suitable number of adjacent subject 
anatomy slices ( e.g. , slices Yi + 1 Yi + n ) , which may be 
added to slice y ; as a part of transform T ( y ; ) . In such 
embodiments , the final ensembled image may be obtained 
by : 

-1 

* self - ensemble 

[ 0332 ] FIG . 16 is a flowchart of an illustrative process 
1600 for performing non - linear MR image reconstruction 
using self ensembling , in accordance with some embodi 
ments of the technology described herein . Process 1600 may 
be executed using any suitable computing device . For 
example , in some embodiments , the process 1600 may be 
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performed by a computing device co - located ( e.g. , in the 
same room ) with an MRI system that obtained the MR data 
by imaging a subject or object ) . As another example , in 
some embodiments , the process 1600 may be performed by 
one or more processors located on the MRI system that 
obtained the MR data . Alternately , in some embodiments , 
the process 1600 may be performed by one or more pro 
cessors located remotely from the MRI system ( e.g. , as part 
of a cloud computing environment ) that obtained the input 
MR data . 
[ 0333 ] Process 1600 begins at act 1602 , where input MR 
data in obtained . In some embodiments , the input MR data 
had been previously obtained by an MRI system and stored 
for subsequent analysis , so that it is accessed at act 1602. In 
other embodiments , the input MR data may be obtained by 
an MRI system ( including any of the MRI systems described 
herein ) as part of process 1600 . 
[ 0334 ] In some embodiments , one or more pre - processing 
steps may be performed prior to moving to act 1604 , where 
a plurality of transformed input MR data is generated by 
applying a respective first plurality of transformations to the 
input data . The transformations of the respective first plu 
rality of transformations may be any suitable transforma 
tions in the spatial frequency domain configured to alter the 
input MR data . For example , the transformations of the 
respective first plurality of transformations may be the 
transformations Ti Ty as described in connection with 
FIG . 15 herein . 
[ 0335 ] After act 1604 , the process 1600 may move to act 
1606 , where a plurality of MR images may be generated 
from the plurality of transformed input MR data instances 
and the input MR data using a non - linear MR image 
reconstruction technique . The non - linear MR image recon 
struction technique used to generate the plurality of MR 
images may be any suitable non - linear MR image recon 
struction technique , as described herein . In some embodi 
ments , the non - linear MR image reconstruction process 
1506 may be a neural network model configured to perform 
MR image reconstruction . For example , the neural network 
model may be reconstruction neural network 212 , as 
described in connection with FIGS . 2A and 2C . Alterna 
tively , in some embodiments , the non - linear MR image 
reconstruction process 1506 may be any suitable CS tech 
nique , as described herein . 
[ 0336 ] After act 1606 , the process 1600 may move to act 
1608 , where an ensembled MR image may be generated 
from the plurality of MR images , in some embodiments . The 
ensembled MR image may be generated at least in part by 
applying a second plurality of transformations to the plu 
rality of MR images to obtain a plurality of transformed 
images . The second plurality of transformations may include 
any suitable transformations to reverse and / or mitigate the 
effects of the first plurality of transformations in the image 
domain , as described herein . The ensembled MR image may 
also be generated at least in part by combining the plurality 
of transformed MR images to obtain the ensembled MR 
image , in some embodiments . Combining the plurality of 
transformed MR images to obtain the ensembled MR image 
may comprise , for example , performing an average or a 
weighted average ( e.g. , adding images weighted by positive 
and / or negative weights ) , as described herein . 
[ 0337 ] After act 1608 , the process 1600 may move to act 
1610 , where the ensembled MR image may be output . The 
ensembled MR image may be output using any suitable 

method . For example , the ensembled MR image may be 
output by being saved for subsequent access , transmitted to 
a recipient over a network , and / or displayed to a user of the 
MRI system . 
[ 0338 ] FIGS . 17A and 17B show example MR images of 
a subject's brain obtained without self - ensembling and with 
self - ensembling , respectively . The Mix - Up self - ensembling 
technique is used to produce FIG . 17B , which results in an 
MR image having sharper contrast as compared to the image 
reconstruction of FIG . 17A obtained without self ensem 
bling . 
[ 0339 ] FIGS . 18A and 18B show example MR images of 
a subject's brain obtained ( e.g. , by different RF coils ) 
without self - ensembling and with self - ensembling , respec 
tively . The self - ensembling technique used to produce FIG . 
18B is performed using geometrical data augmentation . In 
some such embodiments , the transformations used in self 
ensembling may include a complex conjugation transforma 
tion in the spatial frequency domain and a reflection in the 
image domain . The example of FIG . 18B employed the 
following example transformations in the spatial frequency 
domain : 

[ 0340 ] To = identity function 
( 0341 ) T , = complex conjugation 

[ 0342 ] and the following transformations in the image 
domain : 

[ 0343 ] To = reverse identity function 
( 0344 ) T - S = reflection 

[ 0345 ] to perform the following self - ensembling : 
Xself - ensemble = 2 , -0.57 ; ' ( Tylo ) . 

[ 0346 ] FIGS . 19A and 19B show example MR images of 
a subject's brain obtained without self - ensembling and with 
self - ensembling , respectively . The self - ensembling tech 
nique used to produce FIG . 19B includes the Mix - Up 
technique and geometrical data augmentation , as described 
herein . As may be observed from FIGS . 18A - B and 19A - B , 
self - ensembling produces sharper reconstructions having a 
higher contrast . 

- 1 

Coil Estimation 

[ 0347 ] As described herein , in some embodiments , an 
MRI system may include multiple RF coils configured to 
detect MR data while the MRI system is imaging a subject . 
In such embodiments , the MR data obtained from each of 
the multiple RF coils may be combined to generate one or 
more images of the subject . 
[ 0348 ] For example , in some embodiments , multiple MR 
images may be generated from spatial frequency data col 
lected by a respective plurality of RF coils , and the multiple 
MR images may be combined to generate a single image of 
the subject . This is sometimes termed “ parallel imaging ” . 
For example , starting with Ncoil MR images : Xig ... , XNooit 
these images may be combined using the following 
weighted combination , for each pixel location r in the image 
x ( r ) : 

N. coil 
X = ? 2 s x ; 

diel Scoil sys 

[ 0349 ] where ( ) * denotes complex conjugation , where S ; 
represents the profile of the jth RF coil , and where the index 
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r is suppressed for clarity . The coil profile S , for the jth RF 
coil may indicate the sensitivity of the jth coil to MR signals 
at various locations in the field of view . For this reason , a 
coil profile may sometimes be termed a coil sensitivity 
profile . In some embodiments , a coil profile may be speci 
fied at a per - pixel or per - voxel level , each entry indicative of 
the sensitivity of a coil to MR signals emitted from that pixel 
or voxel . The sensitivity of a coil may be a higher for a 
pixel / voxel closer to the coil than for a pixel / voxel in a 
region far from the coil . 
[ 0350 ] In situations where the noise correlation L is known 
( e.g. , is an N coifxNcoil matrix ) , the individual images , one per 
coil , may be combined according to the following equation 
in matrix form ( again pixel - wise for each r ) : 

x = ( $ HL - ' $ ) - 141-1 

[ 0351 ] where 2 = [ X1 , ... , Xcod ] , ? = [ S , ... , Sw ] for each 
pixel location . 
[ 0352 ] Parallel imaging is a popular reconstruction tech 
nique because the resulting combined image has a higher 
signal - to - noise ratio than the constituent RF coil images . 
When the RF coil profiles are known in advance , then the 
combination equations described above are optimal esti 
mates of the combined image in a least - squares sense ( or in 
the maximum likelihood sense under a Gaussian noise 
assumption ) . The above equations can be used when the RF 
coil profiles are known . When the RF coil profiles are not 
known , not the images may be computed according to a 
residual sum of squares ( RSS ) technique , but this results in 
a lower - quality and lower - SNR image . 
[ 0353 ] Accordingly , in some embodiments , the inventors 
have developed a neural network model ( e.g. , the neural 
network model shown in FIG . 20B ) for estimating the 
sensitivity profile of an RF coil from data collected by the 
RF coil . The sensitivity profiles estimated by the neural 
network may be used to combine images obtained during 
parallel imaging with multiple RF coils to obtain combined 
images of a subject . The resulting neural - network based 
parallel imaging technique developed by the inventors out 
performs both conventional parallel imaging based on 
residual sum of squares estimates of coil sensitivity and the 
adaptive reconstruction technique described in D.O. Walsh , 
A. F. Gmitro , and M. W. Marcellin , “ Adaptive Reconstruc 
tion of Phased Array MR Imagery , ” Magnetic Resonance in 
Medicine 42 : 682-690 ( 2000 ) . 
[ 0354 ] Accordingly , some embodiments provide for a 
method for generating magnetic resonance ( MR ) images 
from MR data obtained by an MRI system comprising a 
plurality of RF coils ( e.g. , 8 , 16 , 32 , etc. ) configured to detect 
RF signals . The method includes : ( A ) obtaining a plurality 
of input MR datasets ( e.g. , 8 , 16 , 32 , etc. ) obtained by the 
MRI system while imaging a subject , each of the plurality of 
input MR datasets comprising spatial frequency data and 
obtained using a respective RF coil in the plurality of RF 
coils ; ( B ) generating a respective plurality of MR images 
from the plurality of input MR datasets by using an MR 
image reconstruction technique ( e.g. , using a neural net 
work , compressed sensing , a non - uniform Fourier transfor 
mation , a Fourier transformation , etc. ) ; ( C ) estimating , using 
a neural network model , a plurality of RF coil profiles 
corresponding to the plurality of RF coils ; ( D ) generating an 
MR image of the subject using the plurality of MR images 
and the plurality of RF coil profiles ; and ( E ) outputting the 
generated MR image . 

[ 0355 ] In some embodiments , generating the MR image of 
the subject using the plurality of MR images and the 
plurality of RF coil profiles comprises generating the MR 
image of the subject as a weighted combination of the 
plurality of MR images , each of the plurality of MR images 
being weighted by a respective RF coil profile in the 
plurality of RF coil profiles . In some embodiments , the 
plurality of MR images comprises a first MR image gener 
ated from a first input MR dataset obtained using a first RF 
coil of the plurality of RF coils , and wherein generating the 
MR image of the subject comprises weighting different 
pixels of the first MR image using different values of a first 
RF coil profile among the plurality of RF coil profiles , the 
first RF coil profile being associated with the first RF coil . 
[ 0356 ] In some embodiments , the neural network may be 
a convolutional neural network . The neural network may be 
a 2D or a 3D convolutional neural network . The neural 
network may include one or more convolutional layers , one 
or more non - linearity layers ( e.g. , rectified linear unit lay 
ers ) , and / or one or more fully connected layers . In some 
embodiments , the neural network's input may be ( e.g. , 
complex - valued ) input obtained from MR measurements 
detected by an RF coil ( e.g. , not just the magnitude of the 
reconstructed image , but both the magnitude and the phase ) 
and the output may be the sensitivity profile for the RF coil . 
[ 0357 ] An illustrative example of a neural network archi 
tecture that may be used for estimating coil profiles , in some 
embodiments , is shown in FIG . 20B . This is a 2D convo 
lutional neural network having the following layers and 
associated parameters : 

[ 0358 ] Layer 1 : 2D convolution , kernel size = 3x3 , 
stride = 1 , 64 features , ReLU 

[ 0359 ] Layer 2 : 2D convolution , kernel size = 3x3 , 
stride = 1 , 64 features , ReLU 

[ 0360 ] Layer 3 : 2D convolution , kernel size = 3x3 , 
stride = 2 , 64 features , ReLU 

[ 0361 ] Layer 4 : 2D convolution , kernel size = 3x3 , 
stride = 1 , 128 features , ReLU 

[ 0362 ] Layer 5 : 2D convolution , kernel size = 3x3 , 
stride = 1 , 128 features , ReLU 

[ 0363 ] Layer 6 : 2D convolution , kernel size = 3x3 , 
stride = 2 , 128 features , ReLU 

[ 0364 ] Layer 7 : 2D convolution , kernel size = 3x3 , 
stride = 1 , 256 features , ReLU 

[ 0365 ] Layer 8 : 2D convolution , kernel size = 3x3 , 
stride = 1 , 256 features , ReLU 

[ 0366 ] Layer 9 : 2D convolution , kernel size = 3x3 , 
stride = 1 , 256 features , ReLU 

[ 0367 ] Layer 10 : 2D transposed convolution , kernel 
size = 4x4 , stride = 2 , 64 features , ReLU 

[ 0368 ] Concatenate output from Layer 6 and Layer 10 
[ 0369 ] Layer 12 : 2D convolution , kernel size = 3x3 , 

stride = 1 , 64 features , ReLU 
[ 0370 ] Layer 13 : 2D convolution , kernel size = 3x3 , 

stride = 1 , 64 features , ReLU 
[ 0371 ] Layer 14 : 2D transposed convolution , kernel 

size = 4x4 , stride = 2 , 64 features , ReLU 
[ 0372 ] Layer 15 : 2D convolution , kernel size = 3x3 , 

stride = 1 , 64 features , ReLU 
[ 0373 ] Layer 16 : 2D convolution , kernel size = 3x3 , 

stride = 1 , 64 features , ReLU 
[ 0374 ] Layer 17 : 2D convolution , kernel size = 3x3 , 

stride = 1 , 64 features , Tan h 
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[ 0375 ) Aneural network , like the network of FIG . 20B , for 
estimating coil profiles may be trained in any of numerous 
ways . In some embodiments , training the neural network 
may comprise generating training data by simulating com 
plex phase for various MR images and training the neural 
network to predict the coil profile from complex - valued 
image data . In some embodiments , the neural network may 
take as input individual coil reconstructions and produce the 
corresponding estimated coil profile Srec - i = fcnn ( Xrec- ; 10 ) , or 
take all Ncoil input and produce coil sensitivity profiles 
jointly . Given the dataset D that contains the coil weighted 
images X1 , ... , X .. and the ground truth sensitivity maps 
S , ... So the network can be trained using the following 
loss function : 

| D Ncoil 
L ( O ) = | s - Sage - ill2 

j = 1 ; = 1 

[ 0376 ] Alternatively , in some embodiments , a neural net 
work may be trained to directly obtain a coil combination . 
Let fenn ( : 10 ) express a convolutional neural network , where 
the input to the network is Ncoil reconstructed images Xrec - 19 

The network output is a complex - valued 
combined image Xcombined . In such a situation , the loss 
function can be expressed as : 

Xrec - N coil 

one or more processors ( e.g. , central processing units and / or 
graphics processing units ) part of the MRI system and / or by 
one or more processors external to the MRI system ( e.g. , 
computers in an adjoining room , computers elsewhere in a 
medical facility , and / or on the cloud ) . 
[ 0379 ] Process 2000 begins at act 2002 , where a plurality 
of input MR datasets previously obtained by an MRI system 
are accessed . The MRI system includes multiple RF coils 
( say “ N ” coils , without loss of generality ) , and each of the 
plurality of input MR data sets includes data collected by a 
respective RF coil from among the multiple RF coils . 
[ 0380 ] Next , process 2000 proceeds to act 2004 , where a 
plurality of MR images are generated from the plurality of 
input datasets obtained at act 2002 using an MR image 
reconstruction technique . Any suitable MR image recon 
struction technique may be used . For example , the recon 
struction may be performed using any neural network recon 
struction technique described herein ( e.g. , using neural 
network 212 ) . As another example , the reconstruction may 
be performed using compressed sensing and / or any other 
suitable type of non - linear reconstruction technique . As yet 
another example , the reconstruction may be performed using 
a uniform or a non - uniform Fourier transformation . The 
plurality of MR images may include both magnitude and 
phase information ( they may be complex - valued ) . 
[ 0381 ] Next , at act 2006 , estimates of the plurality of RF 
coil profiles are generated by providing the plurality of MR 
images as input to a neural network model . In some embodi 
ments , the estimates of the RF coil profiles may be generated 
jointly — the plurality of MR images generated at act 2004 
are simultaneously provided as input to the neural network 
model . In other embodiments , the estimates of the RF coil 
profiles may be generated separately — a profile for a par 
ticular RF coil may be generated by applying a neural 
network to an image generated from data collected by the 
particular RF coil . Examples of neural network models that 
may be applied at act 2006 are described herein including 
with reference to FIG . 20B . In some embodiments , the 
output of the neural network may be smoothed ( e.g. , using 
a median or Gaussian filter ) prior to being used at act 2008 . 
[ 0382 ] Next , at act 2008 , the plurality of MR images are 
combined to generate an image of the subject using the RF 
coil profiles generated at act 2006. This may be done in any 
suitable way . For example , the combined image of the 
subject may be generated as a weighted combination of the 
plurality of MR images , each of the plurality of MR images 
being weighted by a respective RF coil profile in the 
plurality of RF coil profiles . The weighting may be com 
puted according to : 

DI 

LO ) = 2 || ** ) – Combined || 2 se 
j = 1 

In this alternative approach , the sensitivity profile is implic 
itly learnt , and the network will perform optimal combina 
tion based on the data . 
[ 0377 ] In some embodiments , training data for training a 
neural network for estimating coil profiles may be generated 
synthetically from a dataset of existing MR scans . For 
example , in some embodiments , an MR image x may be 
loaded from a dataset and random phase may be added to 
this image to obtain a complex - valued image ( since only 
magnitudes are typically available in existing datasets ) . 
Complex - valued coil profiles S ; for N coils may be 
synthesized next . For example , the sensitivity values for 
particular pixels / voxels may be sampled according to a 
Gaussian distribution and random phase may be added . 
Next , Gaussian noise e ; may be added ( potentially with a 
simulated noise correlation matrix ) to obtain simulated coil 
images x , according to : 

coil 

x ; = Sx + e ; for i = 1 .Ncoil coil 
x = ? 2 S ; X ; 

di = 1 Excoil SS ; The resulting images x ; may be transformed to the spatial 
frequency domain and , optionally , undersampled to simulate 
the type of sampling trajectories that might be expected to be 
used in practice . This simulation process may be repeated 
for any suitable number of images from the data set ( of e.g. , 
brain scans or any other type of MR scans ) . 
[ 0378 ] FIG . 20A is a flowchart of an illustrative process 
2000 for generating an MR image from input MR spatial 
frequency data collected by multiple RF coils , in accordance 
with some embodiments of the technology described herein . 
Process 2000 may be performed by any suitable computing 
device ( s ) . For example , process 2000 may be performed by 

where the RF coil profiles S , are estimated using the neural 
network at act 2006 of process 2000 . 
[ 0383 ] After the combined image is computed at act 2008 , 
the combined image is output at act 2010 ( e.g. , to a screen , 
saved to a memory , sent to another computing device , etc. ) . 
[ 0384 ] FIGS . 20C - 20H illustrate performance of the neu 
ral network coil profile estimation techniques described 
herein . FIGS . 20C and 20D show reconstructions a phantom 
imaged using multiple RF coils using conventional the 
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residual sum of squares and adaptive approaches ( of D. O. 
Walsh , A. F. Gmitro , and M. W. Marcellin ) . FIGS . 20E and 
20F show results obtained using the neural network tech 
niques described herein . Both FIGS . 20E and 20F show 
results obtained by estimating individual RF coil profiles 
using the neural network of FIG . 20B , with the results of 
FIG . 20F differing only in that the output of the neural 
network was smoothed prior to the combination of the 
images . The higher SNR and quality of the resulting images 
in FIGS . 20E and 20F ( as compared to the results shown in 
FIGS . 20C and 20D ) are readily apparent . 
[ 0385 ] FIG . 20G ( top ) shows images of a patient's brain 
obtained using parallel imaging and the conventional 
residual sum of squares technique , which are of lower 
quality and have lower SNR than the images shown in the 
bottom half of FIG . 20G , which were obtained using the 
neural network techniques described herein . 
[ 0386 ] FIG . 20H ( top ) shows images of another patient's 
brain obtained using parallel imaging and the conventional 
residual sum of squares technique , which are of lower 
quality and have lower SNR than the images shown in the 
bottom half of FIG . 20H , which were obtained using the 
neural network techniques described herein . 

MxNcoil 

Coil Compression 
[ 0387 ] In some of the embodiments in which multiple RF 
coils are used to collect MR data in parallel ( parallel 
imaging ) , the data may be transformed as though it were 
observed by a smaller number of virtual RF coils , with the 
data “ observed ” by the virtual RF coils being derived from 
the data actually observed by the physical RF coils part of 
the MRI system . 
[ 0388 ] For example , in some embodiments , if the MRI 
system collects data using 16 RF coils , the collected data 
may be transformed using a linear transformation A as 
though it were observed by 8 virtual RF coils . As a specific 
non - limiting example , suppose each of the 16 RF coils were 
to collect 100 measurements , then measurements may be 
organized in a 16x100 matrix M of data . In turn , the linear 
transformation A may be a 8x16 matrix , such that when it is 
applied to the data ( by computing the matrix product AM ) , 
the resulting data for the virtual coils is an 8x100 matrix of 
data in which at each of 100 time points , eight data points 
corresponding to eight virtual RF coils are to be used for 
further processing instead of 16 data points corresponding to 
16 physical RF coils . 
[ 0389 ] There are numerous benefits to performing such a 
transformation , which is sometimes termed " geometric coil 
compression . ” Generally , one benefit is that geometric coil 
compression will transform the data so that the signals from 
the dominant RF coils are emphasized in subsequent pro 
cessing . Moreover , the inventors have recognized that geo 
metric coil compression has particular benefits when used in 
conjunction with the neural network techniques described 
herein . First , using coil compression to reduce the input data 
to a fixed number of virtual RF coils allows the neural 
networks described herein to be trained independently of the 
number of physical RF coils in the MRI system in which the 
neural networks will be deployed . In this way , neural net 
works trained for processing data from M virtual RF coils 
may be deployed in any MRI system that has M or more 
physical RF coils . This also provides flexibility if one or 
more RF coils in an MRI system is taken offline . 

[ 0390 ] Second , RF coil compression allows for improved 
training of neural networks because each of the virtual RF 
channels contains more information than the physical RF 
channels would have , which makes it easier for the neural 
network training algorithms to extract information for esti 
mating neural network rates , resulting in faster training ( e.g. , 
fewer iterations thereby reducing computational resources 
required for training ) and improved performance . Reducing 
the number of channels also reduces the overall number of 
parameters to be estimated in the neural network models 
described herein , which also improves training performance . 
[ 0391 ] Accordingly , in some embodiments , the neural 
network models described herein may be trained to process 
data that has been coil compressed . In this way , when a 
neural network ( e.g. , the reconstruction neural network 212 
or any other neural network described herein ) is deployed to 
process MR data collected by multiple RF coils , the col 
lected data is first coil compressed ( e.g. , by a suitable 
transformation A ) and then provided to the neural network . 
[ 0392 ] In some embodiments , the linear transformation A 
( sometimes termed the coil compression matrix ) may be 
found as follows . Let three - dimensional ( 3D ) k - space be 
indexed by each location k = [ ky , k ,, k ] " , and let a multi - coil 
k - space value be given by v ( k ) = [ v ( k ) , v2 ( k ) .. 
where Ncoil represents the number of physical RF coils in an 
MRI system ( e.g. , 4 , 8 , 16 , 32 , 64 , 128 , any number of coils 
between 16 and 64 , any number of coils between 32 and 128 , 
or any other suitable number or range within these ranges ) . 
Let the coil compression matrix be a complex - valued 

matrix AEC MxNcoil such that y ' = Av , and v is the 
corresponding k - space data represented as M virtual coils . In 
some embodiments , the coil compression matrix A may be 
determined according to : 

min . || ( A A - 1 ) v ( k ) || 2s.t . AAH = 1 . 
[ 0393 ] In some embodiments , the process of 2000 gener 
ating an MR image from input MR spatial frequency data 
collected by multiple coils may be adapted to utilize the 
geometric coil compression techniques described herein . An 
illustrative example is described next with reference to FIG . 
21 , which is a flowchart of an illustrative process 2100 for 
generating an MR image using geometric coil compression 
from data obtained by multiple physical RF coils , in accor 
dance with some embodiments of the technology described 
herein . Process 2100 may be performed by any suitable 
computing device ( s ) . For example , process 2100 may be 
performed by one or more processors ( e.g. , central process 
ing units and / or graphics processing units ) part of the MRI 
system and / or by one or more processors external to the MRI 
system ( e.g. , computers in an adjoining room , computers 
elsewhere in a medical facility , and / or on the cloud ) . 
[ 0394 ] Process 2100 begins at act 2102 , where a plurality 
of input MR datasets previously obtained by an MRI system 
are accessed . The MRI system includes multiple RF coils 
( say “ N ” coils , without loss of generality ) , and each of the 
plurality of input MR data sets includes data collected by a 
respective RF coil from among the multiple RF coils . 
[ 0395 ] Next , process 2100 proceeds to act 2104 , where 
geometric coil compression is performed on the data 
accessed at act 2102. Applying geometric coil compression 
to the plurality of input MR datasets generates a respective 
plurality of virtual input data sets . In some embodiments , 
generating the virtual input data sets involves : ( 1 ) determin 
ing the coil compression matrix A ; and ( 2 ) applying the coil 
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compression matrix A to the plurality of input MR data sets 
to obtained the respective plurality of virtual input MR 
datasets . In some embodiments , determining the coil com 
pression matrix A may involve determining the coil com 
pression matrix from the data in the plurality of input MR 
datasets . The determining may be performed using an opti 
mization such as , for example , ( min . || ( AWA - I ) ( k ) s.t. 
AAH = I . 
[ 0396 ] In some embodiments , the geometric coil compres 
sion may reduce the number of channels by a factor of 2 
( e.g. , from 16 physical RF coils to 8 virtual RF coils or 
fewer , from 32 physical RF coils to 16 virtual RF coils or 
fewer , etc. ) , by a factor of 4 ( e.g. , from 32 physical RF coils 
to 8 virtual RF coils or fewer ) , or by any other suitable 
factor , as aspects of the technology described herein are not 
limited in this respect . 
[ 0397 ] Next , process 2100 proceeds to act 2106 , where a 
plurality of MR images is generated from the plurality of 
virtual input MR data . This may be performed using any 
suitable reconstruction technique . For example , the recon 
struction may be performed using any neural network recon 
struction technique described herein ( e.g. , using neural net 
work 212 ) . As another example , the reconstruction may be 
performed using compressed sensing and / or any other suit 
able type of non - linear reconstruction technique . As yet 
another example , the reconstruction may be performed using 
a uniform or a non - uniform Fourier transformation . 
[ 0398 ] Next , at act 2108 , the plurality of MR images are 
combined to generate an image of the subject . This may be 
done in any suitable way including in any of the ways 
described with respect to act 2008 of process 2000. The 
generated image is then output at act 2110 . 

described herein . In particular , some embodiments involve 
determining the pre - whitening matrix W such that Vpw = Wv , 
where v is the original k - space measurement , v is the 
prewhitened k - space measurement , and so that W satisfies 
W ? w = 4-1 . Applying W to the input data allows for the 
received signals to be decorrelated , which in turn improves 
the quality and SNR of the images obtained from these data . 
[ 0402 ] The pre - whitening matrix W may be estimated in 
any suitable way . For example , in some embodiments , W 
may be determined using zero - phase component analysis 
( ZCA ) according to : W = y = 1 / 2 . As another example , in some 
embodiments , W may be determined using principal com 
ponents analysis ( PCA ) according to : W = T - IU ?, where 
V = UT - 1 / 2U7 is the singular value decomposition ( SVD ) of 
4. As yet another example , in some embodiments , W may 
be determined used the Cholesky decomposition according 
to : W = L - 1 , where LLH = Y is the Cholesky decomposition . 
k - Space Weighting 
[ 0403 ] The inventors have appreciated that the neural 
network techniques described herein may be improved if the 
input MR spatial frequency data were weighted in the spatial 
frequency domain ( k - space ) . In particular , the inventors 
have appreciated that weighting input MR spatial frequency 
data in k - space prior to reconstruction may improve the 
quality of the reconstruction . Accordingly , in some embodi 
ments , the input MR spatial frequency data may be weighted 
in k - space prior to or as part of reconstruction . 
[ 0404 ] In some embodiments , the input MR spatial fre 
quency data may be weighted by using a weighting function 
known in advance . For example , individual input MR spatial 
frequency data points may be weighted based on their 
distances to the k - space origin ( e.g. , points closer to the 
origin of k - space are given greater weight or points closer to 
the origin of k - space are given less weight ) . As another 
example , input MR spatial frequency data may be weighted 
using a weighting function based on the wavelet transform 
given by : 

1 28w 
Ws ( w ) = 12 12 % w / sin ( 29w ) / 4 2 2sw / 4 ? 4 ) expl - 2 25 2 

Pre - Whitening 
[ 0399 ] The inventors have appreciated that , when MR data 
are being collected in parallel by multiple RF coils ( " parallel 
imaging " ) , different RF coils may detect different amounts 
and / or types of noise . As a result , the received noise may be 
unevenly distributed among the multiple receive channels . 
For example , even if the noise were uncorrelated and 
uniformly distributed among k - space locations , there may 
nonetheless be noise level differences between the indi 
vidual RF coils , and the noise detected by one RF coil may 
be correlated with the noise detected by another RF coil . 
Left uncorrected , such level differences and correlations 
may lead to a reduction of image quality and SNR . 
[ 0400 ] Accordingly , in some embodiments , the relation 
ship of noise signals received by multiple receive coils may 
be represented by an NxN matrix , where N is the number of 
coils , expressed as Y = Mint ) , where ni is the noise 
component of the ith signal . This matrix will not be he 
identity matrix due to correlation among the noise signals 
received using different RF coils and / or relatively different 
amounts of noise observed by the different RF coils . In some 
embodiments , specific values of such a matrix may be 
obtained during a calibration stage when the RF coils 
measure noise levels without a subject being imaged so that 
no MR signal is present . Any suitable correlation estimation 
technique may be used in this regard , as aspects of the 
technology described herein are not limited in this respect . 
[ 0401 ] Accordingly , given the matrix Yj , in some embodi 
ments , a pre - whitening matrix W may be estimated from the 
matrix W , and subsequently applied to the input data prior 
to the data being processed by the neural network algorithms 

where w is a frequency , which can be k | for n - dimensional 
k - space data , and s is a scale , which may be determined 
based on the image resolution , k - space grid size , and / or the 
degree to which the data is undersampled in k - space . 
[ 0405 ] Additionally or alternatively , the k - space weight 
ing may be learned . In some embodiments , for example , the 
neural network ( e.g. , reconstruction neural network 212 ) 
may include a layer for weighting the input data non 
uniformly in the spatial frequency domain . The weights of 
this neural network layer may be learned during training , 
and the loss function used for training the neural network 
may include one or more terms to guide the type of weight 
ing that is to be learned ( e.g. , to weight more near the 
k - space origin , away from the k - space origin , near a par 
ticular region of k - space , or in any other suitable way ) . In 
this way , the weighting may not only be learned ( resulting 
in improved performance relative to known weightings that 
are fixed in advance ) , but also may be learned jointly with 
other parameters of the neural networks described herein , 
further improving overall reconstruction performance . 



US 2020/0294229 A1 Sep. 17 , 2020 
33 

Example MRI Systems 
[ 0406 ] Some embodiments of the technology described 
herein may be implemented using portable low - field MRI 
systems , aspects of which are described below with refer 
ence to FIGS . 22 , 23 , 24A - B , and 25A - B . Some aspects of 
such portable low - field MRI systems are further described in 
U.S. Pat . No. 10,222,434 , filed on Jan. 24 , 2018 , titled 
“ Portable Magnetic Resonance Imaging Methods and Appa 
ratus , ” which is incorporated by reference in its entirety 
herein . 
[ 0407 ] FIG . 22 is a block diagram of example components 
of a MRI system 2200. In the illustrative example of FIG . 
22 , MRI system 2200 comprises workstation 2204 , control 
ler 2206 , pulse sequences store 2208 , power management 
system 2210 , and magnetic components 2220. It should be 
appreciated that system 2200 is illustrative and that an MRI 
system may have one or more other components of any 
suitable type in addition to or instead of the components 
illustrated in FIG . 22 . 
[ 0408 ] As illustrated in FIG . 22 , magnetic components 
2220 comprise B , magnet 2222 , shims 2224 , RF transmit 
and receive coils 2226 , and gradient coils 2228. B , magnet 
2222 may be used to generate , at least in part , the main 
magnetic field Bo . B , magnet 2222 may be any suitable type 
of magnet that can generate a main magnetic field , and may 
include one or more B , coils , correction coils , pole pieces , 
etc. In some embodiments , B , magnet 2222 may be a 
permanent magnet . For example , in some embodiments , B. 
magnet 222 may comprise multiple permanent magnet 
pieces organized in a bi - planar arrangement of concentric 
permanent magnet rings as described herein including with 
reference to FIG . 23. In some embodiments , B , magnet 2222 
may be an electromagnet . In some embodiments , In some 
embodiments , B , magnet 2222 may be a hybrid magnet 
comprising one or more permanent magnets and one or more 
electromagnets . 
[ 0409 ] In some embodiments , shims 2224 may be used to 
contribute magnetic field ( s ) to improve the homogeneity of 
the B , field generated by magnet 2222. In some embodi 
ments , shi 2224 may be permanent magnet shims . In 
some embodiments , shims 2224 may be electromagnetic and 
may comprise one or more shim coils configured to generate 
a shimming magnetic field . In some embodiments , gradient 
coils 2228 may be arranged to provide gradient fields and , 
for example , may be arranged to generate gradients in the 
magnetic field in three substantially orthogonal directions 
( X , Y , Z ) to localize where MR signals are induced . In some 
embodiments , one or more magnetics components 2220 
( e.g. , shims 2224 and / or gradient coils 2228 ) may be fab 
ricated using the laminate techniques . 
[ 0410 ] In some embodiments , RF transmit and receive 
coils 2226 may comprise one or multiple transmit coils that 
may be used to generate RF pulses to induce a magnetic field 
Bi . The transmit / receive coil ( s ) may be configured to gen 
erate any suitable type of RF pulses configured to excite an 
MR response in a subject and detect the resulting MR signals 
emitted . RF transmit and receive coils 2226 may include one 
or multiple transmit coils and one or multiple receive coils . 
The configuration of the transmit / receive coils varies with 
implementation and may include a single coil for both 
transmitting and receiving , separate coils for transmitting 
and receiving , multiple coils for transmitting and / or receiv 
ing , or any combination to achieve single channel or parallel 
MRI systems . 

[ 0411 ] In some embodiments , RF transmit and receive 
coils 2226 include multiple RF coils , which allow the MRI 
system 2200 to concurrently receive MR signals on multiple 
channels . In some embodiments , the MR signals received by 
multiple RF coils may be processed and combined using the 
techniques described herein including with reference to 
FIGS . 20 and 21 . 
[ 0412 ] Power management system 2210 includes electron 
ics to provide operating power to one or more components 
of the low - field MRI system 2200. For example , power 
management system 2210 may include one or more power 
supplies , gradient power amplifiers , transmit coil amplifiers , 
and / or any other suitable power electronics needed to pro 
vide suitable operating power to energize and operate com 
ponents of the low - field MRI system 2200 . 
[ 0413 ] As illustrated in FIG . 22 , power management sys 
tem 2210 comprises power supply 2212 , amplifier ( s ) 2214 , 
transmit / receive switch 2216 , and thermal management 
components 2218. Power supply 2212 includes electronics 
to provide operating power to magnetic components 2220 of 
the low - field MRI system 2200. For example , in some 
embodiments , power supply 2212 may include electronics to 
provide operating power to one or more B , coils ( e.g. , B. 
magnet 2222 when it is an electromagnet ) to produce the 
main magnetic field for the low - field MRI system , one or 
more shims 2224 , and / or one or more gradient coils 1628. In 
some embodiments , power supply 2212 may be a unipolar , 
continuous wave ( CW ) power supply . Transmit / receive 
switch 2216 may be used to select whether RF transmit coils 
or RF receive coils are being operated . 
[ 0414 ] In some embodiments , amplifier ( s ) 2214 may 
include one or more RF receive ( Rx ) pre - amplifiers that 
amplify MR signals detected by RF receive coil ( s ) ( e.g. , 
coils 2224 ) , RF transmit ( Tx ) amplifier ( s ) configured to 
provide power to RF transmit coil ( s ) ( e.g. , coils 2226 ) , 
gradient power amplifier ( s ) configured to provide power to 
gradient coil ( s ) ( e.g. , gradient coils 2228 ) , and / or shim 
amplifier ( s ) configured to provide power to shim coil ( s ) 
( e.g. , shims 2224 in embodiments where shims 2224 include 
one or more shim coils ) . 
[ 0415 ] In some embodiments , thermal management com 
ponents 2218 provide cooling for components of low - field 
MRI system 2200 and may be configured to do so by 
facilitating the transfer of thermal energy generated by one 
or more components of the low - field MRI system 2200 away 
from those components . Thermal management components 
2218 may include components to perform water - based or 
air - based cooling , which may be integrated with or arranged 
in close proximity to MRI components that generate heat 
including , but not limited to , B , coils , gradient coils , shim 
coils , and / or transmit / receive coils . 
[ 0416 ] As illustrated in FIG . 22 , low - field MRI system 
2200 includes controller 2206 ( also referred to as a console ) 
having control electronics to send instructions to and receive 
information from power management system 2210. Control 
ler 2206 may be configured to implement one or more pulse 
sequences , which are used to determine the instructions sent 
to power management system 2210 to operate the magnetic 
components 2220 according to a desired sequence . For 
example , controller 2206 may be configured to control the 
power management system 2210 to operate the magnetic 
components 2220 in accordance with a balanced steady - state 
free precession ( bSSFP ) pulse sequence , a low - field gradient 
echo pulse sequence , a low - field spin echo pulse sequence , 
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a low - field inversion recovery pulse sequence , arterial spin 
labeling , diffusion weighted imaging ( DWI ) , and / or any 
other suitable pulse sequence . 
[ 0417 ] In some embodiments , controller 2206 may be 
configured to implement a pulse sequence by obtaining 
information about the pulse sequence from pulse sequences 
repository 2208 , which stores information for each of one or 
more pulse sequences . Information stored by pulse 
sequences repository 2208 for a particular pulse sequence 
may be any suitable information that allows controller 2206 
to implement the particular pulse sequence . For example , 
information stored in pulse sequences repository 2208 for a 
pulse sequence may include one or more parameters for 
operating magnetics components 2220 in accordance with 
the pulse sequence ( e.g. , parameters for operating the RF 
transmit and receive coils 2226 , parameters for operating 
gradient coils 2228 , etc. ) , one or more parameters for 
operating power management system 2210 in accordance 
with the pulse sequence , one or more programs comprising 
instructions that , when executed by controller 2206 , cause 
controller 2206 to control system 2200 to operate in accor 
dance with the pulse sequence , and / or any other suitable 
information . Information stored in pulse sequences reposi 
tory 2208 may be stored on one or more non - transitory 
storage media . 
[ 0418 ] As illustrated in FIG . 22 , in some embodiments , 
controller 2206 may interact with computing device 2204 
programmed to process received MR data ( which , in some 
embodiments , may be spatial frequency domain MR data ) . 
For example , computing device 2204 may process received 
MR data to generate one or more MR images using any 
suitable image reconstruction process ( es ) including using 
any of the techniques described herein that make use of 
neural network models to generate MR images from spatial 
frequency MR data . For example , computing device 2204 
may perform any of the processes described herein with 
reference to FIGS . 2D , 2D , 8A - 8B , 16 , 20 , and 21. Con 
troller 2206 may provide information about one or more 
pulse sequences to computing device 2204 for the process 
ing of data by the computing device . For example , controller 
2206 may provide information about one or more pulse 
sequences to computing device 2204 and the computing 
device may perform an image reconstruction process based , 
at least in part , on the provided information . 
[ 0419 ] In some embodiments , computing device 2204 
may be any electronic device ( s ) configured to process 
acquired MR data and generate image ( s ) of the subject being 
imaged . However , the inventors have appreciated that it 
would be advantageous for a portable MRI system to have 
sufficient onboard computing capability to perform neural 
network computations to generate MR images from input 
spatial frequency data because in many settings ( e.g. , hos 
pitals ) , there is limited network bandwidth available for 
offloading spatial frequency MR data from the MRI machine 
for processing elsewhere ( e.g. , in the cloud ) . Accordingly , in 
some environments where the MRI system 2200 may be 
deployed , the inventors have recognized that it is advanta 
geous for the MRI system to include hardware specialized 
for neural network calculations to perform some of the 
processes described herein . 
[ 0420 ] Accordingly , in some embodiments , computing 
device 2204 may include one or multiple graphics process 
ing units ( GPU ) configured to perform neural network 
calculations that are to be performed when the neural 

network models described herein ( e.g. , neural network 
model 204 , pre - reconstruction neural network 210 , recon 
struction neural network 212 , post reconstruction neural 
network 214 , any of their constituent neural networks , 
and / or any other neural networks ) . In some such embodi 
ments , computing device 2204 may be onboard ( e.g. , within 
the housing of the low - field MRI system 2200 ) . Accord 
ingly , in some embodiments , MRI system 2200 may include 
one or more GPU ( s ) and the GPU ( s ) may be onboard , for 
example by being housed within the same housing as one or 
more components of the power components 2210. Addition 
ally or alternatively , computing device 2204 may include 
one or more hardware processors , FPGAs , and / or ASICS 
configured to process acquire MR data and generate image 
( s ) of the subject being imaged . 
[ 0421 ] In some embodiments , a user 2202 may interact 
with computing device 2204 to control aspects of the 
low - field MR system 2200 ( e.g. , program the system 2200 
to operate in accordance with a particular pulse sequence , 
adjust one or more parameters of the system 2200 , etc. ) 
and / or view images obtained by the low - field MR system 
2200 . 

[ 0422 ] FIG . 23 illustrates bi - planar permanent magnet 
configurations for a B , magnet , in accordance with some 
embodiments of the technology described herein . FIG . 23 
illustrates a permanent B , magnet 2300 formed by perma 
nent magnets 2310a and 2310b arranged in a bi - planar 
geometry and a yoke 2320 that captures electromagnetic flux 
produced by the permanent magnets and transfers the flux to 
the opposing permanent magnet to increase the flux density 
between permanent magnets 2310a and 2310b . Each of 
permanent magnets 2310a and 2310b is formed from a 
plurality of concentric permanent magnet rings . As shown in 
FIG . 23 , permanent magnet 2310b comprises an outer ring 
of permanent magnets 2314a , a middle ring of permanent 
magnets 2314b , an inner ring of permanent magnets 2314c , 
and a permanent magnet disk 2314d at the center . Though 
shown with four concentric permanent magnet rings , per 
manent magnet 2310b ( and permanent magnet 2310a ) may 
have any suitable number of permanent magnet rings . Per 
manent magnet 2310a may be formed substantially identi 
cally to permanent magnet 2310b and , for example , com 
prise the same set of permanent magnet rings as permanent 
magnet 2310b . 
[ 0423 ] As shown in FIG . 23A , yoke 2320 comprises a 
frame 2322 and plates 2324a and 2324b . Plates 2324a and 
2324b may capture magnetic flux generated by permanent 
magnets 2310a and 2310b and direct it to frame 2122 to be 
circulated via the magnetic return path of the yoke to 
increase the flux density in the field of view of the B. 
magnet . Yoke 2320 may be constructed of any desired 
ferromagnetic material , for example , low carbon steel , CoFe 
and / or silicon steel , etc. to provide the desired magnetic 
properties for the yoke . 
[ 0424 ] FIGS . 24A and 24B illustrate views of a portable 
MRI system 2400 , in accordance with some embodiments of 
the technology described herein . Portable MRI system 2400 
comprises a B , magnet 2410 formed in part by an upper 
magnet 2410a and a lower magnet 2410b having a yoke 
2420 coupled thereto to increase the flux density within the 
imaging region . The B , magnet 2410 may be housed in 
magnet housing 2412 along with gradient coils 2415. The B. 
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magnet 2410 may be the permanent magnet 2310a and 
2310b described with reference to FIG . 23 and / or any other 
suitable type of magnet . 
[ 0425 ] Illustrative portable MRI system 2400 further com 
prises a base 2450 housing the electronics that operates the 
MRI system . For example , base 2450 may house electronics 
including , but not limited to , one or more gradient power 
amplifiers , an on - system computer ( e.g. , including one or 
more GPUs to perform neural network calculations in accor 
dance with some embodiments of the technology described 
herein ) , a power distribution unit , one or more power 
supplies , and / or any other power components configured to 
operate the MRI system using mains electricity ( e.g. , via a 
connection to a standard wall outlet and / or a large appliance 
outlet ) . For example , base 2470 may house low power 
components , such as those described herein , enabling at 
least in part the portable MRI system to be powered from 
readily available wall outlets . Accordingly , portable MRI 
system 2400 can be brought to the patient and plugged into 
a wall outlet in his or her vicinity . 
[ 0426 ] Portable MRI system 2400 further comprises 
moveable slides 2460 that can be opened and closed and 
positioned in a variety of configurations . Slides 2460 include 
electromagnetic shielding 2465 , which can be made from 
any suitable conductive or magnetic material , to form a 
moveable shield to attenuate electromagnetic noise in the 
operating environment of the portable MRI system to shield 
the imaging region from at least some electromagnetic 
noise . 
[ 0427 ] In portable MRI system 2400 illustrated in FIGS . 
24A and 24B , the moveable shields are configurable to 
provide shielding in different arrangements , which can be 
adjusted as needed to accommodate a patient , provide access 
to a patient , and / or in accordance with a given imaging 
protocol . For example , for an imaging procedure such as a 
brain scan , once the patient has been positioned , slides 2460 
can be closed , for example , using handle 2462 to provide 
electromagnetic shielding 2465 around the imaging region 
except for the opening that accommodates the patient's 
upper torso . As another example , for imaging procedure 
such as a knee scan , slides 2460 may be arranged to have 
openings on both sides to accommodate the patient's leg or 
legs . Accordingly , moveable shields allow the shielding to 
be configured in arrangements suitable for the imaging 
procedure and to facilitate positioning the patient appropri 
ately within the imaging region . Electrical gaskets may be 
arranged to provide continuous shielding along the periph 
ery of the moveable shield . For example , as shown in FIG . 
24B , electrical gaskets 2467a and 2467b may be provided at 
the interface between slides 2460 and magnet housing to 
maintain to provide continuous shielding along this inter 
face . In some embodiments , the electrical gaskets are beryl 
lium fingers or beryllium - copper fingers , or the like ( e.g. , 
aluminum gaskets ) , that maintain electrical connection 
between shields 2465 and ground during and after slides 
2460 are moved to desired positions about the imaging 
region . 
[ 0428 ] To facilitate transportation , a motorized component 
2480 is provide to allow portable MRI system to be driven 
from location to location , for example , using a control such 
as a joystick or other control mechanism provided on or 
remote from the MRI system . In this manner , portable MRI 
system 2400 can be transported to the patient and maneu 
vered to the bedside to perform imaging . 

[ 0429 ] FIG . 25A illustrates a portable MRI system 2500 
that has been transported to a patient's bedside to perform a 
brain scan . FIG . 25B illustrates portable MRI system 2500 
that has been transported to a patient's bedside to perform a 
scan of the patient's knee . As shown in FIG . 25B , shielding 
2565 includes shields 2560 having electrical gaskets 2467c . 
[ 0430 ] FIG . 26 is a diagram of an illustrative computer 
system on which embodiments described herein may be 
implemented . An illustrative implementation of a computer 
system 2600 that may be used in connection with any of the 
embodiments of the disclosure provided herein is shown in 
FIG . 26. For example , the processes described with refer 
ence to FIGS . 2D , 8A - 8B , 16 , 20 , and 21 may be imple 
mented on and / or using computer system 2600. As another 
example , the computer system 2600 may be used to train 
and / or use any of the neural network statistical models 
described herein . The computer system 2600 may include 
one or more processors 2610 and one or more articles of 
manufacture that comprise non - transitory computer - read 
able storage media ( e.g. , memory 2620 and one or more 
non - volatile storage media 2630 ) . The processor 2610 may 
control writing data to and reading data from the memory 
2620 and the non - volatile storage device 2630 in any 
suitable manner , as the aspects of the disclosure provided 
herein are not limited in this respect . To perform any of the 
functionality described herein , the processor 2610 may 
execute one or more processor - executable instructions 
stored in one or more non - transitory computer - readable 
storage media ( e.g. , the memory 2620 ) , which may serve as 
non - transitory computer - readable storage media storing pro 
cessor - executable instructions for execution by the proces 
sor 2610 . 
[ 0431 ] Having thus described several aspects and embodi 
ments of the technology set forth in the disclosure , it is to be 
appreciated that various alterations , modifications , and 
improvements will readily occur to those skilled in the art . 
Such alterations , modifications , and improvements are 
intended to be within the spirit and scope of the technology 
described herein . For example , those of ordinary skill in the 
art will readily envision a variety of other means and / or 
structures for performing the function and / or obtaining the 
results and / or one or more of the advantages described 
herein , and each of such variations and / or modifications is 
deemed to be within the scope of the embodiments described 
herein . Those skilled in the art will recognize , or be able to 
ascertain using no more than routine experimentation , many 
equivalents to the specific embodiments described herein . It 
is , therefore , to be understood that the foregoing embodi 
ments are presented by way of example only and that , within 
the scope of the appended claims and equivalents thereto , 
inventive embodiments may be practiced otherwise than as 
specifically described . In addition , any combination of two 
or more features , systems , articles , materials , kits , and / or 
methods described herein , if such features , systems , articles , 
materials , kits , and / or methods are not mutually inconsis 
tent , is included within the scope of the present disclosure . 
[ 0432 ] The above - described embodiments can be imple 
mented in any of numerous ways . One or more aspects and 
embodiments of the present disclosure involving the perfor 
mance of processes or methods may utilize program instruc 
tions executable by a device ( e.g. , a computer , a processor , 
or other device ) to perform , or control performance of , the 
processes or methods . In this respect , various inventive 
concepts may be embodied as a computer readable storage 



US 2020/0294229 A1 Sep. 17 , 2020 
36 

medium ( or multiple computer readable storage media ) 
( e.g. , a computer memory , one or more floppy discs , com 
pact discs , optical discs , magnetic tapes , flash memories , 
circuit configurations in Field Programmable Gate Arrays or 
other semiconductor devices , or other tangible computer 
storage medium ) encoded with one or more programs that , 
when executed on one or more computers or other proces 
sors , perform methods that implement one or more of the 
various embodiments described above . The computer read 
able medium or media can be transportable , such that the 
program or programs stored thereon can be loaded onto one 
or more different computers or other processors to imple 
ment various ones of the aspects described above . In some 
embodiments , computer readable media may be non - transi 
tory media . 
[ 0433 ] The terms “ program ” or “ software ” are used herein 
in a generic sense to refer to any type of computer code or 
set of computer - executable instructions that can be 
employed to program a computer or other processor to 
implement various aspects as described above . Additionally , 
it should be appreciated that according to one aspect , one or 
more computer programs that when executed perform meth 
ods of the present disclosure need not reside on a single 
computer or processor , but may be distributed in a modular 
fashion among a number of different computers or proces 
sors to implement various aspects of the present disclosure . 
[ 0434 ] Computer - executable instructions may be in many 
forms , such as program modules , executed by one or more 
computers or other devices . Generally , program modules 
include routines , programs , objects , components , data struc 
tures , etc. that perform particular tasks or implement par 
ticular abstract data types . Typically the functionality of the 
program modules may be combined or distributed as desired 
in various embodiments . 
[ 0435 ] Also , data structures may be stored in computer 
readable media in any suitable form . For simplicity of 
illustration , data structures may be shown to have fields that 
are related through location in the data structure . Such 
relationships may likewise be achieved by assigning storage 
for the fields with locations in a computer - readable medium 
that convey relationship between the fields . However , any 
suitable mechanism may be used to establish a relationship 
between information in fields of a data structure , including 
through the use of pointers , tags or other mechanisms that 
establish relationship between data elements . 
[ 0436 ] When implemented in software , the software code 
can be executed on any suitable processor or collection of 
processors , whether provided in a single computer or dis 
tributed among multiple computers . 
[ 0437 ] Further , it should be appreciated that a computer 
may be embodied in any of a number of forms , such as a 
rack - mounted computer , a desktop computer , a laptop com 
puter , or a tablet computer , as non - limiting examples . Addi 
tionally , a computer may be embedded in a device not 
generally regarded as a computer but with suitable process 
ing capabilities , including a Personal Digital Assistant 
( PDA ) , a smartphone or any other suitable portable or fixed 
electronic device . 
[ 0438 ] Also , a computer may have one or more input and 
output devices . These devices can be used , among other 
things , to present a user interface . Examples of output 
devices that can be used to provide a user interface include 
printers or display screens for visual presentation of output 
and speakers or other sound generating devices for audible 

presentation of output . Examples of input devices that can be 
used for a user interface include keyboards , and pointing 
devices , such as mice , touch pads , and digitizing tablets . As 
another example , a computer may receive input information 
through speech recognition or in other audible formats . 
[ 0439 ] Such computers may be interconnected by one or 
more networks in any suitable form , including a local area 
network or a wide area network , such as an enterprise 
network , and intelligent network ( IN ) or the Internet . Such 
networks may be based on any suitable technology and may 
operate according to any suitable protocol and may include 
wireless networks , wired networks or fiber optic networks . 
[ 0440 ] Also , as described , some aspects may be embodied 
as one or more methods . The acts performed as part of the 
method may be ordered in any suitable way . Accordingly , 
embodiments may be constructed in which acts are per 
formed in an order different than illustrated , which may 
include performing some acts simultaneously , even though 
shown as sequential acts in illustrative embodiments . 
[ 0441 ] All definitions , as defined and used herein , should 
be understood to control over dictionary definitions , defini 
tions in documents incorporated by reference , and / or ordi 
nary meanings of the defined terms . 
[ 0442 ] The indefinite articles “ a ” and “ an , ” as used herein 
in the specification and in the claims , unless clearly indi 
cated to the contrary , should be understood to mean “ at least 
one . ” 
[ 0443 ] The phrase “ and / or , " as used herein in the speci 
fication and in the claims , should be understood to mean 
“ either or both ” of the elements so conjoined , i.e. , elements 
that are conjunctively present in some cases and disjunc 
tively present in other cases . Multiple elements listed with 
" and / or ” should be construed in the same fashion , i.e. , “ one 
or more ” of the elements so conjoined . Other elements may 
optionally be present other than the elements specifically 
identified by the “ and / or ” clause , whether related or unre 
lated to those elements specifically identified . Thus , as a 
non - limiting example , a reference to “ A and / or B ” , when 
used in conjunction with open - ended language such as 
" comprising " can refer , in one embo nent , to A only 
( optionally including elements other than B ) ; in another 
embodiment , to B only ( optionally including elements other 
than A ) ; in yet another embodiment , to both A and B 
( optionally including other elements ) ; etc. 
[ 0444 ] As used herein in the specification and in the 
claims , the phrase “ at least one , ” in reference to a list of one 
or more elements , should be understood to mean at least one 
element selected from any one or more of the elements in the 
list of elements , but not necessarily including at least one of 
each and every element specifically listed within the list of 
elements and not excluding any combinations of elements in 
the list of elements . This definition also allows that elements 
may optionally be present other than the elements specifi 
cally identified within the list of elements to which the 
phrase " at least one ” refers , whether related or unrelated to 
those elements specifically identified . Thus , as a non - limit 
ing example , " at least one of A and B ” ( or , equivalently , “ at 
least one of Aor B , ” or , equivalently “ at least one of A and / or 
B ” ) can refer , in one embodiment , to at least one , optionally 
including more than one , A , with no B present ( and option 
ally including elements other than B ) ; in another embodi 
ment , to at least one , optionally including more than one , B , 
with no A present ( and optionally including elements other 
than A ) ; in yet another embodiment , to at least one , option 
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ally including more than one , A , and at least one , optionally 
including more than one , B ( and optionally including other 
elements ) ; etc. 
[ 0445 ] In the claims , as well as in the specification above , 
all transitional phrases such as " comprising , " " including , " 
" carrying , ” “ having , ” “ containing , ” “ involving , ” “ holding , " 
" composed of , ” and the like are to be understood to be 
open - ended , i.e. , to mean including but not limited to . Only 
the transitional phrases “ consisting of ” and “ consisting 
essentially of ” shall be closed or semi - closed transitional 
phrases , respectively . 
[ 0446 ] The terms “ approximately ” and “ about " may be 
used to mean within + 20 % of a target value in some 
embodiments , within 110 % of a target value in some 
embodiments , within + 5 % of a target value in some embodi 
ments , within + 2 % of a target value in some embodiments . 
The terms “ approximately ” and “ about ” may include the 
target value . 

What is claimed is : 
1. A method for generating magnetic resonance ( MR ) 

images of a subject from MR data obtained by a magnetic 
resonance imaging ( MRI ) system , the method comprising : 

obtaining input MR data obtained by imaging the subject 
using the MRI system ; 

generating a plurality of transformed input MR data 
instances by applying a respective first plurality of 
transformations to the input MR data ; 

generating a plurality of MR images from the plurality of 
transformed input MR data instances and the input MR 
data using a non - linear MR image reconstruction tech 
nique ; 

generating an ensembled MR image from the plurality of 
MR images at least in part by : 
applying a second plurality of transformations to the 

plurality of MR images to obtain a plurality of 
transformed MR images ; and 

combining the plurality of transformed MR images to 
obtain the ensembled MR image ; and 

outputting the ensembled MR image . 
2. The method of claim 1 , wherein using the non - linear 

MR image reconstruction technique comprises applying a 
neural network model to the transformed input MR data 
instances to obtain the plurality of MR images . 

3. The method of claim 1 , wherein using the non - linear 
MR image reconstruction technique comprises using a com 
pressed sensing technique . 

4. The method of claim 1 , wherein applying a first 
plurality of transformations to the input MR data comprises 
applying one or more of a constant phase shift transforma 
tion , a linear phase shift transformation , a complex conju 
gation transformation , a rotation transformation , a transpose 
transformation , and / or a reflection transformation . 

5. The method of claim 1 , wherein : 
applying the first plurality of transformations to the input 
MR data comprises applying the first plurality of trans 
formations to the input MR data in a spatial frequency 
domain ; 

applying the second plurality of transformations to the 
plurality of MR images comprises applying the second 
plurality of transformations to the plurality of MR 
images in an image domain ; and 

the second plurality of transformations are selected to 
reverse effects of applying the first plurality of trans 
formations in the spatial frequency domain . 

6. The method of claim 1 , wherein the input MR data 
comprises first spatial frequency MR data ( yi ) for generating 
an image for a first anatomy slice of a subject and second 
spatial frequency MR data ( Yi + 1 ) for generating an image for 
a second anatomy slice of the subject , and wherein : 

generating the plurality of transformed input MR data 
instances comprises generating a first transformed 
input MR data instance ( y ; +1 ) by adding the second 
spatial frequency MR data to the first spatial frequency 
MR data ; 

generating the plurality of MR images comprises : 
generating a first MR image ( x , + 1 ) from the first trans 

formed data instance ( y ; +1 ) , and 
generating a second MR image ( Xi + 1 ) from the second 
MR spatial frequency data ( Yi + 1 ) ; and 

generating the ensembled MR image comprises : 
subtracting the second MR image from the first MR 
image ( x + 1 - x + 1 ) 

7. The method of claim 1 , wherein the input MR data 
comprises first spatial frequency MR data for generating an 
image for a first anatomy slice of a subject and second 
spatial frequency MR data for generating one or more 
images for one or more other anatomy slices of the subject , 
and wherein : 

generating the plurality of transformed input MR data 
instances comprises generating a first transformed 
input MR data instance by combining the first spatial 
frequency MR data and the second spatial frequency 
MR data ; 

generating the plurality of MR images comprises : 
generating a first MR image from the first transformed 

input MR data instance , and 
generating one or more second MR images from the 

second spatial frequency MR data ; and 
generating the ensembled MR image comprises : 

subtracting the one or more second MR images from 
the first MR image . 

8. The method of claim 1 , wherein the first plurality of 
transformations includes a complex conjugation transforma 
tion and the second plurality of transformations includes a 
reflection transformation . 

9. The method of claim 1 , wherein combining the plurality 
of transformed MR images to obtain the ensembled MR 
image comprises computing the ensemble MR image as a 
weighted average of the plurality of transformed MR 
images . 

10. At least one non - transitory computer - readable storage 
medium storing processor - executable instructions that , 
when executed by at least one processor , cause the at least 
one processor to perform a method for generating magnetic 
resonance ( MR ) images of a subject from MR data obtained 
by a magnetic resonance imaging ( MRI ) system , the method 
comprising 

obtaining input MR data obtained by imaging the subject 
using the MRI system ; 

generating a plurality of transformed input MR data 
instances by applying a respective first plurality of 
transformations to the input MR data ; 

generating a plurality of MR images from the plurality of 
transformed input MR data instances and the input MR 
data using a non - linear MR image reconstruction tech 
nique ; 

generating an ensembled MR image from the plurality of 
MR images at least in part by : 
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applying a second plurality of transformations to the 
plurality of MR images to obtain a plurality of 
transformed MR images ; and 

combining the plurality of transformed MR images to 
obtain the ensembled MR image ; and 

outputting the ensembled MR image . 
11. The at least one non - transitory computer readable 

storage medium of claim 10 , wherein using the non - linear 
MR image reconstruction technique comprises applying a 
neural network model to the transformed input MR data 
instances to obtain the plurality of MR images . 

12. The at least one non - transitory computer readable 
storage medium of claim 10 , wherein using the non - linear 
MR image reconstruction technique comprises using a com 
pressed sensing technique . 

13. The at least one non - transitory computer readable 
storage medium of claim 10 , wherein applying a first plu 
rality of transformations to the input MR data comprises 
applying one or more of a constant phase shift transforma 
tion , a linear phase shift transformation , a complex conju 
gation transformation , a rotation transformation , a transpose 
transformation , and / or a reflection transformation . 

14. The at least one non - transitory computer readable 
storage medium of claim 10 , wherein : 

applying the first plurality of transformations to the input 
MR data comprises applying the first plurality of trans 
formations to the input MR data in a spatial frequency 
domain ; 

applying the second plurality of transformations to the 
plurality of MR images comprises applying the second 
plurality of transformations to the plurality of MR 
images in an image domain ; and 

the second plurality of transformations are selected to 
reverse effects of applying the first plurality of trans 
formations in the spatial frequency domain . 

15. The at least one non - transitory computer readable 
storage medium of claim 10 , wherein the input MR data 
comprises first spatial frequency MR data ( yd ) for generating 
an image for a first anatomy slice of a subject and second 
spatial frequency MR data ( Yi + 1 ) for generating an image for 
a second anatomy slice of the subject , and wherein : 

generating the plurality of transformed input MR data 
instances comprises generating a first transformed 
input MR data instance ( y ; +1 ) by adding the second 
spatial frequency MR data to the first spatial frequency 
MR data ; 

generating the plurality of MR images comprises : 
generating a first MR image ( x : + l ) from the first trans 

formed data instance ( y ; +1 ) , and 
generating a second MR image ( X ; +1 ) from the second 
MR spatial frequency data ( Yi + 1 ) ; and 

generating the ensembled MR image comprises : 
subtracting the second MR image from the first MR 

image ( x : + 1-11 ) 
16. The at least one non - transitory computer readable 

storage medium of claim 10 , wherein the input MR data 
comprises first spatial frequency MR data for generating an 
image for a first anatomy slice of a subject and second 

spatial frequency MR data for generating one or more 
images for one or more other anatomy slices of the subject , 
and wherein : 

generating the plurality of transformed input MR data 
instances comprises generating a first transformed 
input MR data instance by combining the first spatial 
frequency MR data and the second spatial frequency 
MR data ; 

generating the plurality of MR images comprises : 
generating a first MR image from the first transformed 

input MR data instance , and 
generating one or more second MR images from the 

second spatial frequency MR data ; and 
generating the ensembled MR image comprises : 

subtracting the one or more second MR images from 
the first MR image . 

17. The at least one non - transitory computer readable 
storage medium of claim 10 , wherein the first plurality of 
transformations includes a complex conjugation transforma 
tion and the second plurality of transformations includes a 
reflection transformation . 

18. The at least one non - transitory computer readable 
storage medium of claim 10 , wherein combining the plural 
ity of transformed MR images to obtain the ensembled MR 
image comprises computing the ensemble MR image as a 
weighted average of the plurality of transformed MR 
images . 

19. A magnetic resonance imaging ( MRI ) system config 
ured to capture a magnetic resonance ( MR ) image , the MRI 
system comprising : 

a magnetics system having a plurality of magnetics com 
ponents to produce magnetic fields for performing 
MRI ; and 

at least one processor configured to perform : 
obtaining input MR data obtained by imaging the 

subject using the MRI system ; 
generating a plurality of transformed input MR data 

instances by applying a respective first plurality of 
transformations to the input MR data ; 

generating a plurality of MR images from the plurality 
of transformed input MR data instances and the input 
MR data using a non - linear MR image reconstruc 
tion technique ; 

generating an ensembled MR image from the plurality 
of MR images at least in part by : 
applying a second plurality of transformations to the 

plurality of MR images to obtain a plurality of 
transformed MR images ; and 

combining the plurality of transformed MR images 
to obtain the ensembled MR image ; and 

outputting the ensembled MR image . 
20. The MRI system of claim 19 , wherein the plurality of 

magnetics components comprises at least one permanent B. 
magnet configured to generate a B , magnetic field , the at 
least one permanent B , magnet comprising a plurality of 
permanent magnet rings . 


