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Abstract. Accurate automatic detection of measurement points in ul-
trasound video sequences is challenging due to noise, shadows, anatomi-
cal differences, and scan plane variation. This paper proposes to address
these challenges by a Fully Convolutional Neural Network (FCN) trained
to regress the point locations. The series of convolutional and pooling lay-
ers is followed by a collection of upsampling and convolutional layers with
feature forwarding from the earlier layers. The final location estimates
are produced by computing the center of mass of the regression maps in
the last layer. The temporal consistency of the estimates is achieved by a
Long Short-Term memory cells which processes several previous frames
in order to refine the estimate in the current frame. The results on auto-
matic measurement of left ventricle in parasternal long axis view of the
heart show detection errors below 5% of the measurement line which is
within inter-observer variability.

1 Introduction

Regression modeling is an approach for describing a relationship between an
independent variable and one or more dependent variables. In machine learning,
this relationship is described by a function whose parameters are learned from
training examples. In deep learning models, this function is a composition of
logistic (sigmoid), hyperbolic tangent, or more recently rectified linear functions
at each layer of the network. In many applications, the function learns a mapping
between input image patches and a continuous prediction variable.

Regression has been used to detect organ [4] or landmark locations in im-
ages [2], visually track objects and features [8], and estimate body poses [T4/T3].
The deep learning approaches have outperformed previous techniques especially
when a large annotated training data set is available. The proposed architec-
tures used cascade of regressors [I4], refinement localization stages [11/4], and
combining cues from multiple landmarks [9] to localize landmarks. In medical
images, the requirements on accurate localization are high since the landmarks
or measurement points are used to help in diagnosis. When tracking the mea-
surements in video sequences, the points must be accurately detected in each
frame while ensuring temporal consistency of the detections.

This paper proposes a Fully Convolutional Network for accurate localization
of anatomical measurement points in video sequences. The advantage of the



Fully Convolutional Network is that the responses from multiple windows cov-
ering the input image can be computed in a single step. The network is trained
end-to-end and outputs the locations of the points. The regressed locations are
mapped at the last convolutional layer into a location using a new center-of-mass
layer which computes mean position of the predictions. This approach has ad-
vantages to regressing heatmaps, since the predictions can have subpixel values
and the regression objective can penalize measurement length differences from
the ground truth. The temporal consistency of the measurements is improved
by Convolutional Long Short-term Memory (CLSTM) cells which process the
feature maps from several previous frames and produce updated features for the
current frame in order to refine the estimate. The evaluation is fast to process
each frame of a video sequence at near frame rate speeds.

2 Related Work

Regression forests were previously trained to predict locations and sizes of anatom-
ical structures [2]. The initial estimates were refined via Hough regression forests
[3] or local regressors guided by probabilistic atlas [4]. Automatic X-ray land-
mark detection in [I] estimated landmark positions via a data-driven non-convex
optimization method while considering geometric constraints defined by relative
positions.

Recently, deep learning approaches have been shown to effectively train rep-
resentations that outperform traditional methods [7UI0]. Multiple landmark lo-
calization in [9] was achieved by combining local appearance each landmark
and spatial configuration of all other landmarks. The final combined heatmap of
likely landmark location was obtained from appearance and spatial configuration
heatmaps computed by convolutional layers. This approach requires to specify
a hyperparameter of the heatmap Gaussian at the ground truth locations.

Long short-term memory (LSTM) architectures [5] were proposed to address
the difficulties of training Recurrent Neural Networks (RNNs). The regression
capability of Long Short-Term Memory (LSTM) networks in the temporal do-
main can be used to concatenate high-level visual features produced by CNNs
with region information [8]. The target coordinates are directly regressed taking
advantage of the joint spatio-temporal model. Convolutional LSTMs [15] replace
the matrix multiplication by the weight vector with a convolution. As a result,
the model captures spatial context.

3 Regressing Point Locations

Denote an input image of width w and height h as I € R**" (indepen-
dent variable) and the keypoint positions stacked columnwise into p (depen-
dent variable). The goal of the regression is to learn a function f(I;60) = p
parametrized by 6. We approximate f by a convolutional neural network and



train the parameters 6 using a database of images Z = I, ..., I,, and their corre-
sponding annotations P = {py, ..., P, }. Typically, a Euclidean loss L(Z,P;6) =
= Eszl [|f(Ix;0) — Px||3 is employed to train f using each annotated image.

Previously, regression estimates were obtained directly from the last layer of
the network, which was fully connected to previous layer. This is a highly non-
linear mapping [13], where the estimate is computed from the fully connected
layers after convolutional blocks.

3.1 Fully Convolutional Network with Center of Mass Layer

Instead of fully connected network, we propose to regress keypoint locations
using a Fully Convolutional Network (FCN). FCNs have been previously used for
image segmentation [6], for regressing heatmaps [9], and object localization [12].
Their advantage is that the estimates can be computed in a single evaluation
step. In our architecture, we obtain point coordinate estimates at each image
location.

The point coordinate predictions are computed in a new center of mass layer
from input at each predicting location 1;; (see Fig. [1).
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Fig. 1. Center of Mass layer computes the estimate as a center of mass computed
from the regressed location estimates at each location.

Center of mass layer makes it possible to design a loss function with a penalty
on the error of the measurement line length. Our penalty is defined as an absolute
value of the difference between estimated and ground truth lengths relative to the
ground truth length. This penalty is combined with the Euclidean loss discussed
above. The model is trained with an Adam optimizer with learning rate set as
0.0002 and converges within 100 epochs. The best model is selected based on
the lowest error of the point location estimates.

3.2 Convolutional Long Short-term Memory for Temporal
Consistency

Recurrent neural networks (RNN) can learn sequential context dependencies by
accepting input x; and updating a hidden vector h; at every time step t. The
RNN network can be composed of Long-short Term Memory (LSTM) units, each
controlled by a gating mechanism with three types of updates, i;, f;, 0 € R™ that



range between 0 and 1. The value 4; controls the update of each memory cell,
ft controls the forgetting of each memory cell, and o; controls the influence of
the memory state on the hidden vector. In Convolutional LSTMs (CLSTMs),
the input weights and hidden vector weights are convolved instead of multiplied
to model spatial constraints. The function introduces a non-linearity which we
chose as tanh. Denoting the convolutional operator as *, the values at the gates
are computed as follows:

forget gate: fi = sigm(Wy  [hy—1, z¢] + by) (2)
input gate: iy = sigm(W; * [he—1, x¢] + b;) (3)
output gate: op = sigm(W, * [ht—1, ¢] + bo) (4)
(5)

The parameters of the weights W and biases b are learned from training se-
quences. In addition to the gate values, each CLSTM unit computes state can-
didate values

gr = tanh(Wy * [hy_1, 2] + by),

where g; € R"™ ranges between -1 and 1 and influences memory contents. The
memory cell is updated by

c=fiOc1+iO©g

which additively modifies each memory cell. The update process results in the
gradients being distributed during backpropagation. The symbol ® denotes the
Hadamard product. Finally, the hidden state is updated as:

hy = o ® tanh(c;).

Fig. 2. (Left) Frame from an ultrasound sequence of the PLAx view of the left
ventricle and overlaid measurement line. There is an ambiguity in the annotation
points that can slide along the interface between myocardial wall and cavity and
along the interface between wall and pericardium as reflected by aggregated
prediction maps of the FCN regression model (Right).

In sequential processing of image sequences, the inputs into the LSTM consist
of the feature maps computed from a convolutional neural network. In this work,
we propose to use two architectures to compute the feature maps. The first
architecture is a neural network with convolutional and pooling layers. After



sequential processing the feature maps in CLSTM, the output is fed into fully
connected layers to compute the point location estimate (Fig. . In the second
architecture, the CLSTM inputs is the final layer of a convolutional path of the
Fully Convolutional Network (FCN). The point location estimates are computed
from the CLSTM output processed through the transposed convolutional part
of the FCN network (Fig. [4)). Similarly to [7/10], the feature maps are forwarded
using connections from the previous layers.
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Fig. 3. (a) Convolutional Neural Network (CNN) architecture to regress the
keypoint locations. (b) CNN with feature maps processed by a Convolutional
LSTM to model temporal constraints. CLSTM processes 256 feature maps and
its output is used to compute the point location estimate.

4 Results

We evaluated the proposed network architectures on a dataset of ultrasound
videos showing parasternal long axis (PLAx) view of the heart (Fig. [2). The
data was acquired in several clinics and hospitals with four ultrasound systems:
Siemens Acuson Aspen 7.0 and X300, Phillips iE33, and Sonosite M-Turbo. A
total of 4981 annotated video frames were used for training and 628 for validation
(model selection). The testing data set had 90501 frames of which 2048 were
annotated. Our datasets are substantially larger than data sets often used in
the medical literature. Two experienced sonographers annotated the frames by
manually placing two measurement line calipers (keypoints) perpendicular to
the left ventricle (LV) long axis, and measured at the level of the mitral valve
leaflet tips. Calipers were positioned on the interface between myocardial wall
and cavity and the interface between wall and pericardium. Average locations
across annotators were used for training.
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Fig. 4. (a) FCN with featu(re)maps processed by a C(()Izvolutional LSTM to model
temporal constraints. (b) Fully Convolutional Network (FCN) architecture to
regress the keypoint locations. CLSTM processes 256 feature maps and its output
is used to compute the point location estimate. In both cases, center of mass layer
is used to compute the final estimate.

We computed the following error measures to compare the different archi-
tectures. Define the ground truth measurement line based on two keypoints as
Iy = ||t —5k||, Px = (Tr,5k)". Estimated measurement line I}, is defined similarly
using points detected at ¥ and §;. The length error is defined as el = |l_k—fk |/1k.
The temporal error is defined as ety = |||fx — Fp—1]| + ||Sk — Sp—1]] ‘/QZk. We ex-
perimented with various frame sequence lengths and report results on sequences
of 3 frames for the CNN + CLSTM model and 6 frames for the FCN + CSLSTM
model. The results summarized in Tab. [1| show 50th, 75th, and 95th percentiles
to present distribution of errors and evaluate difficult cases more directly.

Overall, the temporal modeling with CLSTM improves results to frame-wise
processing. The final detection accuracy at the 50th percentile is 4.87% of the
measurement length which is within average inter-observer error of 4.98%.

82k

5 Conclusion

This paper proposed to detect measurement keypoint locations by computing
their regression estimates with a Fully Convolutional Network (FCN). The esti-



error length x 100% temporal x 100%
network 50th|  75th| 95th|| 75th|  95th
CNN 5.67| 10.02] 21.10 3.52 8.73
CNN+CLSTM 4.89 8.68| 17.51 2.92 7.13
FCN 5.00 9.36] 19.32 3.36 8.28

FCN+CLSTM 4.87 8.86| 18.27 2.67 6.70
Table 1. Average length and temporal errors computed on the testing data
set. The errors are computed relative to the length of the measurement line
for different percentiles (50th, 75th, 95th). Convolutional LSTM improves the
accuracy and temporal stability. FCN 4+ CLSTM model performs best overall.

5.95 0.54 2.31

11.98 3.10 1.66

Fig. 5. Several examples of the detection results showing the measurement line
(white) and ground truth annotations (red). Errors are shown as a percentage
of the ground truth line length. Accurate measurements are obtained despite
the shape and appearance variability and despite the ambiguity of the point
annotations that can slide along the myocardial wall.

mates at each pixel location are mapped into the predicted location with a new
center-of-mass (CoM) layer. The CoM layer makes it possible to define penalty
loss on the measurement line. Spatial context is modeled with Convolutional
Long-Short Term Memory (CLSTM) cells.

The results showed errors below 5% of the left ventricle measurement which
is within inter-observer variability. The automated measurement was computed
in the Parasternal Long Axis (PLAx) view of the heart which has not been
previously proposed in the literature. The measurement is an important indicator
of the left ventricular function and can be used to compute ejection fraction.



Our current work focuses on exploiting variance of the regressed predictions for
regularization and on estimating additional measurements.
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