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Abstract. In this work we show how to integrate prior statistical knowl-
edge, obtained through principal components analysis (PCA), into a con-
volutional neural network in order to obtain robust predictions even when
dealing with corrupted or noisy data. Our network architecture is trained
end-to-end and includes a specifically designed layer which incorporates
the dataset modes of variation discovered via PCA and produces predic-
tions by linearly combining them. We also propose a mechanism to focus
the attention of the CNN on specific regions of interest of the image in
order to obtain refined predictions. We show that our method is effective
in challenging segmentation and landmark localization tasks.

1 Introduction and Related Work

In the past decade multiple authors proposed approaches to perform tasks such
as medical image segmentation [1,4,12,14] and registration [3] using PCA.

When representing shapes through a fixed number of control points, PCA
can be used to build a point distribution model (PDM) by finding the principal
modes of variation of the shapes across the training dataset. A segmentation
algorithm can then rely on both image data and prior knowledge to fit a con-
tour that is in agreement with the shape model. The resulting segmentation
is anatomically correct, even when the image data is insufficient or unreliable
because of noise or artifacts. These approaches are referred to as active shape
models (ASM) in literature [5] and were shown to be applicable to a variety of
problems. For example in [1], a hardly visible portion of the brain, imaged by ul-
trasound through the temporal bone window of the skull, was reliably segmented
using a 3D active contour.

Several other approaches unite the advantages brought by active shape mod-
els with active appearance models. In [12], volumetric ultrasound and MRI im-
ages of the heart were segmented using 3D active appearance models. A common
shortcoming of these approaches is the difficulty to define an energy function to
optimize such that a contour evolves correctly and appropriately segments the
region of interest after a few hundred iterations of an optimization algorithm.

More recent approaches, mainly based on machine learning, have taken ad-
vantage of implicit prior knowledge and advanced handcrafted or learned features
in order to overcome the limitations of previous, optimization-based techniques.
In [11], a random Hough forest was trained to localize and segment the left
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ventricle of the heart. The notion of shape model was enforced through the
constraints imposed by the voting and segmentation strategy which relied on
re-projecting portions of the ground truth contours encountered during training
onto previously unseen examples. This idea was later extended in [8].

Deep learning-based approaches have been recently applied to medical im-
age analysis. Segmentation architecture leveraging a fully convolutional neural
network was proposed to process 2D images [13] and volumes [2,10]. These meth-
ods do not make use of any statistical shape model and rely only on the fact
that the large receptive field of the convolutional neural network will perceive the
anatomy of interest all at once and therefore improbable shapes will be predicted
only rarely in modalities such as MRI and microscopy images. An interesting ap-
proach [7,9] fusing Hough voting with CNNs was applied to ultrasound images
and MRI brain scans. Although the Hough-CNN delivered accurate results, its
design prevents end-to-end training.

In this work we propose to include statistical prior knowledge obtained
through PCA into a deep neural convolutional network. Our PCA layer incor-
porates the modes of variation of the data at hand and produces predictions
as a linear combination of the modes. This process is used in a procedure that
focuses the attention of the subsequent CNN layers on the specific region of
interest to obtain refined predictions. Importantly, the network is trained end-
to-end with the shape encoded in a PCA layer and the loss imposed on the final
location of the points. In this way, we want to overcome the limitations of previ-
ous deep learning approaches which lack strong shape priors and the limitations
of active shape models which miss advanced pattern recognition capabilities.
Our approach is fully automatic and therefore differs from most previous meth-
ods based on ASM which require human interaction. The network outputs the
prediction in a single step without requiring any optimization loop.

We apply our method to two challenging ultrasound image analysis tasks.
In the first task, the shape modeling improves the accuracy of the landmark
localization in 2D echocardiography images acquired from the parasternal long
axis view (PLA). In the second task, the algorithm improves the dice coefficient
of the left ventricle segmentation masks on scans acquired from the apical two
chamber view of the heart.

2 Method

We are given a training set containing N images I = {I1, . . . , IN} and the
associated ground truth annotations Y = {y1, . . . ,yN} , yi ∈ R2P consisting of
coordinates referring to P key-points which describe the position of landmarks.
We use the training set to first obtain the principal modes of variation of the
coordinates in Y and then train a CNN that leverages it. In order to contrast
the loss of fine-grained details across the CNN layers, we propose a mechanism
that focuses the attention of the network on full-resolution details by cropping
portions of the image in order to refine the predictions (Figure 1 and 2). Our
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architecture is trained end-to-end, and all the parameters of the network are
updated at every iteration.
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Fig. 1. Schematic representation of the proposed network architecture.

2.1 Building a shape model through PCA

Much of the variability of naturally occurring structures, such as organs and
anatomical details of the body, is not arbitrary: symmetries and correlations exist
between different shape portions or anatomical landmarks. Principal component
analysis (PCA) [15] can be used to discover the principal modes of variation
of the dataset at hand. When we describe shapes as aligned points sets across
the entire dataset, PCA reveals what correlations exist between different points
and defines a new coordinates frame where the principal modes of variation
correspond to the axes. First, we subtract mean of each shape point in every
shape yi as

ỹi = yi − µ, with µ =
1

N

∑
i

yi. (1)
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We then construct matrix Ỹ all samples in our dataset by stacking {yi} column-
wise. Finally, we compute the eigenvectors of the covariance matrix ỸỸ>. This
corresponds to U in

Ỹ = UΣV> (2)

which is obtained via singular value decomposition (SVD). The matrix Σ is
diagonal and contains elements {σ2

1 , . . . , σ
2
K} which are the eigenvalues of the

covariance matrix and represent the variance associated with each principal com-
ponent in the eigenbase.

Any example in the dataset can be synthesized as a linear combination of
the principal components.

yi = Uw + µ (3)

Each coefficient of the linear combination governs not only the position of one,
but multiple correlated points that, in our case, describe the shape at hand.
Imposing constraints on the coefficients weighting the effect of each principal
component, or reducing their number until the correct balance between percent-
age of retained variance and number of principal components is reached, it is
possible to synthesize shapes that respect the concept of ”legal shape” introduced
before.

2.2 Network architecture

In this work we use a CNN, schematically represented in Figure 1, to perform
predictions using the principal components stored in the matrix U.

We do not train the CNN to perform regression on the weights w in Equation
3, but we resort to an end-to-end architecture instead: the network directly uses
the PCA eigenbase to make predictions ỹi ∈ R2P from an image Ii in form of
key-points locations. This has direct consequences on the training process. The
network learns, by minimizing the loss l =

∑
i ‖ỹi − yi‖22, to steer the coefficients

while being ”aware” of their effect on the results. Each of the weighs wj controls
in fact the location of multiple correlated key-points simultaneously. Since the
predictions are obtained as a liner combination of the principal components, they
obey the the concept of ”legal shape” and therefore are more robust to missing
data, noise and artifacts.

Our network comprises two branches. The first employs convolutional, pool-
ing and fully connected layers, and produces a coarse estimate of the key-point
locations via PCA. The second operates on full resolution patches cropped from
the input image around the coarse key-point locations. The output of the sec-
ond network refines the predictions made by the first by using more fine-grained
visual information. Both the branches are trained simultaneously and are fully
differentiable. The convolutions are all applied without padding and they use
kernels of size 3× 3 in the first CNN branch and 5× 5 in the second, shallower,
branch. The nonlinearities used throughout the network are rectified linear func-
tions. All the inputs of the PCA layer, are not processed through nonlinearities.
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Our PCA layer implements a slightly modified version of the synthesis equa-
tion in 3. In addition to the weights w, which are supplied by a fully connected
layer of the network, we also provide a global shift s that is applied to all the
predicted points. Through the bi-dimensional vector s we are able to cope with
translations of the anatomy of interest. With a slight abuse of notation we can
therefore re-write the modified Equation 3 as

yi = Uw + µ+ s. (4)

The layer performing cropping follows an implementation inspired to spatial
transformers [6] which ensures differentiability. A regular sampling pattern is
translated to the coarse key-point locations and the intensity values of the sur-
rounding area are sampled using bilinear interpolation. Having P key-points we
obtain P patches for each of the K images in the mini-batch. The resulting KP
patches are then processed through a 3-layers deep convolutional neural network
using 8 filters applied without padding, which reduces their size by a total of 12
pixels. After the convolutional layers the patches are again arranged into a batch
of K elements having P × 8 channels, and further processed through three fully
connected layers, which ultimately compute wA having the same dimensionality
of w. The refined weights wF which are employed in the PCA layer to obtain a
more accurate key-point prediction, are obtained as wF = wA + w.
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Fig. 2. Schematic representation of the crop layer. The shifting sampling pattern
is centred at the landmark positions. High resolution patches are cropped from
the input image and organized in a batch.

3 Results

We tested our approach on two different ultrasound dataset depicting the human
heart. Our aim was to solve two different tasks. The first task is segmentation
of the left ventricle (LV) of the heart form scans acquired from the apical view,
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while the second task is a landmark localization problem where we aim to local-
ize 14 points of interest in images acquired from the parasternal long axis view.
In the first case our model leverages prior statistical knowledge relative to the
shape of the structures of interest, while in the second case our model captures
the spatiotemporal relationships between landmarks across cardiac cycles of dif-
ferent patients. For the segmentation task we employ a total of 1100 annotated
images, 953 for training and 147 for testing. The landmark localization task was
performed on a test set of 47 images by a network trained on 706 examples.
The total number of annotated images employed for the second task was there-
fore 753. There was no overlap between the training and test patients. All the
annotations were performed by expert clinicians specifically hired for this task.

Our python implementation relies on the popular Tensorflow framework. All
experiments have been performed on standard PC equipped with a Nvidia Tesla
K80 GPU, with 12 GB of video memory, 16 GB of RAM and a 4 Cores Intel
Xeon CPU running at 2.30 GHz. Processing a single frame took a fraction of a
second.

3.1 Segmentation

We represent the shapes of interest as a set of 32 corresponding key-points which
are interpolated using a periodic third degree B-spline. The result is a closed
curve delineating the left ventricle of the heart. We compare our results with:

– CNN with a structure similar to the one of the main branch of our architec-
ture, which does not employ a PCA layer but simply regresses the positions
of the landmarks without imposing further constraints.

– The U-Net architecture [13], which predicts segmentation masks having val-
ues comprised in the interval 0, 1which are then thresholded at 0.5.

We train all the architectures for 100 epochs, ensuring in this way convergence
The results are summarized in Table 1.

Table 1. Summary of the results obtained for the segmentation task.

Dice Score

Architecture Mean Min Max

Proposed 0.87 ± 0.041 0.80 0.96

CNN 0.86 ± 0.042 0.78 0.93

U-Net 0.88 ± 0.063 0.63 0.96

In Figure 3 we report the distribution of Dice scores obtained on the test set
in form of histogram.

3.2 Landmark localization

The results of the landmark localization task are presented in Table 2. The shape
modeling PCALayer introduces constraints that help improve accuracy of the
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Fig. 3. Distribution of Dice Scores on the test set.

measurements. Compared to the convolutional architecture with fully connected
layers regressing the point locations, the explicit shape constraints better guide
the relative displacement of the individual measurement points.

Table 2. Summary of the results obtained for the landmark localization task.

Distances in mm

Architecture Mean Min Max

Proposed 2.06 ± 1.89 0.01 10.46

CNN 2.33 ± 1.67 0.15 8.78

4 Conclusion

We proposed a method to incorporate prior shape constraints into deep neural
networks. This is accomplished by a new Principal Component Analysis (PCA)
layer which computes predictions from linear combinations of modes of shapes
variation. The predictions are used to steer the attention of the subsequent
convolutional layers to refine the prediction estimates.

The proposed architecture improves the robustness and accuracy of the seg-
mentation results and multiple measurements. Our experiments on the left ven-
tricle ultrasound scans in a two-chamber apical view showed higher minimum
dice coefficients (fewer failures and lower standard deviation) than a CNN ar-
chitecture regressing the point locations and a U-Net architecture predicting
the foreground probability map. Our results on multiple measurements of heart
structures in the parasternal long axis view show lower measurement errors.
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