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Retinal Vessel Centerline Extraction Using Multiscale
Matched Filters, Confidence and Edge Measures
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Abstract— Motivated by the goals of improving detection of low-
contrast and narrow vessels and eliminating false detections at non-
vascular structures, a new technique is presented for extracting
vessels in retinal images. The core of the technique is a new likeli-
hood ratio test that combines matched-filter responses, confidence
measures and vessel boundary measures. Matched filter responses
are derived in scale-space to extract vessels of widely varying widths.
A vessel confidence measure is defined as a projection of a vector
formed from a normalized pixel neighborhood onto a normalized
ideal vessel profile. Vessel boundary measures and associated con-
fidences are computed at potential vessel boundaries. Combined,
these responses form a 6-dimensional measurement vector at each
pixel. A training technique is used to develop a mapping of this
vector to a likelihood ratio that measures the “vesselness” at each
pixel. Results comparing this vesselness measure to matched filters
alone and to measures based on the Hessian of intensities show
substantial improvements both qualitatively and quantitatively. The
Hessian can be used in place of the matched filter to obtain
similar but less-substantial improvements or to steer the matched
filter by preselecting kernel orientations. Finally, the new vesselness
likelihood ratio is embedded into a vessel tracing framework,
resulting in an efficient and effective vessel centerline extraction
algorithm.

Index Terms— vessel extraction, vessel tracing, matched filters,
likelihood ratio, retina images

I. I NTRODUCTION

T HE leading causes of retina-related vision impairment and
blindness in the U.S. are diabetic retinopathy, age-related

macular degeneration (AMD), and glaucoma. Current estimates
indicate that they affect 4.1, 1.8, and 2.2 million adults over age
40, respectively, with projected increases to 7.2, 2.9, and 3.3
million individuals by the year 2020 [1]–[3]. It is believed that
half of all blindness can be prevented [4], in part through pe-
riodic screening and early diagnosis. Automated image analysis
techniques should play a central role because the huge volume
of images precludes strictly manual analysis.

Reliable vessel extraction is a prerequisite for subsequent
retinal image analysis and processing because vessels are the
predominant and most stable structures appearing in the im-
ages. Many published algorithms for optic disc detection [5]–
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Fig. 1. Illustration of the challenges of retinal vessel extraction. Arrows drawn
on the image [in yellow / with dashed lines] indicate pathologies, the boundary
of the optic disc and the boundary of the retina, all of which tend to cause false
positives in vessel detection. Arrows drawn [in white / with solid lines] highlight
narrow or low-contrast vessels which are difficult to detect.

[7], image registration [8]–[14], change detection [15]–[21],
pathology detection and quantification [22], tracking in video se-
quences [23]–[25], and computer-aided screening systems [26]–
[29] depend on vessel extraction. The techniques published in
the research literature in response to the importance of retinal
vessel extraction may be roughly categorized into methods based
on matched filters [24], [30], [31], adaptive thresholds [31],
[32], intensity edges [33], [34], region growing [35], statistical
inferencing [36], mathematical morphology [16], [35], [37], and
Hessian measures [22], [38]–[40]. This wide range of techniques
closely corresponds to the suite of methods that have been
applied throughout the medical image analysis literature [41].
Of particular note, the recent literature has been dominated by
Hessian-based methods because of their utility in characterizing
the elongated structure of vessels [38], [42]–[45].

Several challenges of vessel extraction in retinal images are
illustrated by the images shown in Figures 1 and 2. These
challenges may be outlined as follows:

• There is a wide range of vessel widths — from less than a
pixel to 12 pixels wide in the example shown.

• Vessels may be low contrast. The central intensity of some
vessels differ from the background by as little as 4 grey
levels, yet the background noise standard deviation is 2.3
grey levels. Narrow vessels often have the lowest contrast.

• A variety of structures appears in the images, including the
retina boundary, the optic disc, and pathologies. The latter
are particularly challenging for automatic vessel extraction
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(a) Matched filter (b) Lindeberg

(c) Frangi (d) Mahadevan

(e) Edge responses (f) LRV measure

Fig. 2. Illustration of the challenges of retinal vessel extraction on the
image shown in Figure 1.(a) Matched filter response based on a Gaussian
vessel profile;(b) Lindeberg’s ridge measure [49];(c) Frangi’s Hessian-based
vesselness measure [42]; and(d) Mahadevan’s robust model-based measure [36].
All measures show spurious responses to non-vascular structures such as the
fundus boundary, the optic disc boundary and pathologies. Edge response image
(e) shows numerous edges to which the vesselness measures are sensitive. The
proposed Likelihood Ratio Vesselness (LRV) measure(f) suppresses the response
to the bright pathology on the right, highlights thin and low-contrast vessels (e.g.
the vessel above the same pathology), and completely removes the boundary of
the retina. (Response images in(a)-(f) were stretched to[0, 255] for display.)

because they may appear as a series of bright spots, some-
times with narrow, darker gaps in between.

• Wider vessels sometimes have a bright strip running down
the center (the “central reflex”), causing a complicated inten-
sity cross-section. Locally, this may be hard to distinguish
from two side-by-side vessels.

Our focus in this paper is on techniques needed to solve the
first three problems — detecting low-contrast vessels and narrow
vessels, while avoiding false responses near pathologies and other
non-vascular structures.

The limitations of some existing methods are illustrated in
Figure 2. All these “vesselness measures” produce substantial
responses to non-vascular structures such as the optic disc and
the pathologies. All measures produce stronger responses at the
boundary of the retina, near the optic disc, and along central
pathological structures than for the thin and low-contrast vessels.
This problem occurs with measures designed to compensate for
responses to edges [42], [43], [46], [47] without directly finding
edges, using only the measurement at the hypothetical vessel
center. The problem also appears in the results of edge-based

tracing techniques [33], [48] where the vesselness measure is the
average of the left and right edge responses.

The main contribution of this paper is the development of an
enhanced vesselness measure that addresses the issues illustrated
in Figure 1. Motivated by the apparent effectiveness of the
matched filter in highlighting low-contrast and narrow vessels
and by recent success in using matched filters for retina vessel
segmentation [31], we introduce a multi-scale matched filter for
vessels, using an appropriate normalizing multiplier to allow
the combination of responses across scales. We then augment
the matched-filter responses with a new vessel “confidence”
measure, analogous to the edge-based measure presented in
[50]. It determines how closely an image region follows an
ideal vessel profile. Importantly, unlike the matched filter, this
measure is independent of amplitude. To these vessel response
and confidence values we add edge detection filter responses and
confidences taken from the boundary of the purported vessel.
This produces a six degree-of-freedom measurement vector at
each pixel. Then, we use a training technique to develop a
mapping from this vector to a single likelihood ratio that serves as
the final “vesselness” measure. This gives a measure at each pixel
which may be used either for segmentation of vessel pixels or for
identifying the centerline vessel pixels and vessel widths when
used in combination with non-maximum suppression. We focus
on the latter because the measures are designed to have maximum
response along the centerline of the vessel, and because this
provides a more compact, geometric description of the vessels
than segmentation alone.

We show that the new Likelihood Ratio Vesselness (LRV)
measure outperforms the multiscale matched-filter and existing
Hessian-based measures using quantitative analysis and using
visual inspection of results on retinal images. We also show
how the multiscale Hessian may be used to steer the matched
filter by selecting its orientation at each pixel and scale. This
way, the matched filter is applied only once at each pixel and
scale, eliminating much of the excess computation. Alternatively,
the Hessian may be used in place of the matched-filter in the
LRV measure, producing substantial improvements in Hessian-
based vesselness measures. The advantage of this is a lower
overall computational cost than the matched-filter-based measure
in exchange for a slight decrease in effectiveness.

The new vesselness measure may be used as a low-level
operator in many existing vessel extraction techniques for the
retina [35], [38]–[40], [51] and in related applications [41], [52]–
[55]. By employing a stronger preliminary indication of the
locations of vessels, each of these techniques should produce
better overall results. As an example of doing this, the last part
of this paper shows how to replace the parallel-edge measure
with the LRV measure in an efficient, exploratory vessel tracing
algorithm [33], [48] which extracts the vessel centerlines and
widths without having to analyze each pixel of the image. We
compare this new LRV tracing algorithm side-by-side with the
result of applying the LRV measure at each pixel and with
parallel-edge tracing algorithm [33], [48]. The paper concludes
with a summary of remaining issues in retinal vessel extraction.

The paper is organized as follows. In Section II, we give an
overview of vessel extraction methods in the research literature
with focus on matched filters and the Hessian. We derive the
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vessel matched filter in scale space in Section III, and then define
the confidence and edge measures in Section IV. We show how
these are combined into the single vesselness measure — our
LRV measure — using a training technique in Section V. In
Section VI, we present a summary of our evaluation technique
and extensive experimental results. We propose a tracing version
of the LRV measure in Section VII and report experimental
results using it in Section VIII. We conclude the paper in Section
IX.

II. BACKGROUND

Our background discussion is focused on the core “vesselness”
measures that have been proposed in the literature.

Several articles have introduced techniques for vessel or ridge
extraction based on the eigen-decomposition of the Hessian
computed at each image pixel [38], [42], [49], [56]–[60]. We
choose two specific measures here for our analysis, [42] and [49],
which have been applied in a number of papers [38]–[40], [44],
[45], [55]. They both start from the definition of thescale-space
representationL : R2 × R+ → R

L(x, y; t) = g(x, y; t) ∗ f(x, y), (1)

where g(·; t) is a Gaussian function with variancet, f is an
image,(x, y) is a pixel location, and∗ represents the convolution
operation [59]. The Hessian of an intensity image in scale space
can be obtained at each point by computing

H(x, y) =

[
∂2L
∂x2

∂2L
∂x∂y

∂2L
∂y∂x

∂2L
∂y2

]
=

[
Lxx Lxy

Lyx Lyy

]
. (2)

The partial derivatives are computed by convolving the imagef
with a derivative-of-Gaussian kernel. Frangi et al. [42] proposed
computing the ratio of the eigenvalues|λ1| ≤ |λ2| of the
Hessian, as a ridgeness scoreRB = λ1/λ2, computing the
Frobenius norm,S, of the Hessian to measure overall strength,
and combining these into a vesselness measure. This measure,
specialized to 2D images where vessels are darker than the
background, is

V0 =

{
0 λ2 > 0

exp
(
−RB2

2β2

) (
1− exp

(
− S2

2c2

))
otherwise

(3)

with parametersβ = 0.5 and c equal to half of the maximum
Frobenius norm of the Hessian. An example vesselness image
combined across scales is shown in Figure 2(c).

In Lindeberg [49] a ridge point is defined as a location for
which the intensity assumes a local maximum (minimum) in
the direction of the main principal curvature. Ridge strength is
evaluated as

Aγ−normL = t2γ
(
(Lxx − Lyy)2 + 4L2

xy

)
, (4)

where Lxx, Lyy and Lxy are from the Hessian andγ = 3/4.
An example response image computed across scales is shown
in Figure 2(b). In the context of retinal image analysis, Staal et
al. [39] described a retinal vessel segmentation algorithm that
combines a grouping technique with low-level, Hessian-based
classification of pixels.

Chaudhuri [30] et al. used a matched filter to detect retinal ves-

sels modeled as piecewise linear segments with Gaussian cross
sections. In Hoover’s algorithm [31] a piece of the blood vessel
network is hypothesized by probing an area of the matched-
filter response image and, while doing so, the threshold on the
matched filter is iteratively decreased. Gang et al. [61] proposes
an amplitude-modified second-order derivative of a Gaussian
filter to detect vessels at scales that match their widths. Steerable
filters are introduced in [62] and extended in [63]. In particular,
Freeman [62] et al. shows an example of applying steerable filters
to vessel enhancement.

Many techniques in the literature propose to detect vessels by
“tracing” along vessel centerlines starting from seed points. Ayl-
ward and Bullitt [38] apply Hessian-based vesselness measures in
a ridge-traversal method. The exploratory algorithm of Can et al.
[33], extended in Fritzsche [48], uses a set of two oriented edge
detection kernels to detect parallel vessel boundaries in tracing
retinal images.

A variety of other methods has been introduced specifically
for retinal vessel extraction. In [36] a model-based technique is
proposed for vessel detection in noisy retinal images. While this
works well for image regions involving only vessels, the example
in Figure 2(d) shows strong response to non-vascular structures.
Threshold-based methods find pixel grey levels that separate
vessels from non-vessels either in the source or in pre-processed
images. This is difficult even with adaptive thresholds [31], [32]
due to non-uniform illumination and the presence of pathologies.
In [33], [34] vessels are found by finding their intensity edges.
Methods based on mathematical morphology [16], [35], [37]
use linear structuring elements to enhance vessels. Tolias and
Panas [64] use fuzzy clustering of the vessel profiles in a tracing
algorithm starting from the optic disc. Tracing can provide
substantial speed-up but we have found experimentally that the
technique [33], [48] performs most poorly on narrow, low-
contrast vessels – exactly what we are concerned with in this
paper.

Overall, each of the primary techniques in the literature —
Hessian, matched-filter and parallel edge — has limitations when
used on images containing low-contrast and narrow vessels as
well as significant pathologies. The examples shown in Fig-
ures 2(a)–2(d) illustrate this. Recent papers in the literature have
built segmentation algorithms on top of the basic Hessian and
matched-filter measures, for example using adaptive thresholding
[31] and grouping methods [39]. Our approach here is to enhance
the primary image-based measures of vesselness. We start with
the matched filter because it provides the best overall response
to low-contrast and narrow vessels.

III. M ULTISCALE MATCHED FILTERS

We start by defining a multiscale matched filter for vessels
using a Gaussian vessel profile. The matched filter at one scale
is implemented by maximizing the responses over a discrete set
of kernel orientations at each pixel. Letf(u, v) be the image
intensity at pixel location(u, v). At each kernel orientation we
compute the response to a two-dimensional separable kernel
from the convolution of two one-dimensional kernels applied in
succession. The kernel in the tangential direction is simply a
Gaussian,g(·), with wide support in order to smooth responses
along the ridge. The kernel in the normal direction is a second-
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order derivative of the Gaussian,gvv(·). In a coordinate system
rotated to alignu with the tangential direction andv with the
normal direction, the matched-filter response is

M(u, v; tu, tv) =

−
∞∫

−∞

∞∫
−∞

gvv(v − v′; tv)g(u− u′; tu)f(u′, v′)du′dv′, (5)

where tu and tv are the variances of the Gaussian in each
direction. The scale parameter of the vessel matched filter is the
variancetv.

In order to detect vessels at a variety of widths, we apply the
matched filter at multiple scales (i.e. compute (5) for multiple
values of tv) and then combine the responses across scales.
Unfortunately, the output amplitudes of spatial operators such as
derivatives or matched filters generallydecreasewith increasing
scale. To compensate for this effect, Lindeberg [49] introduced
γ-normalized derivatives. We use this notion to define aγ-
normalized matched filter. The idea is to multiply the matched-
filter response at any scale by a normalization factor that takes the
form tγ/2 for scalet. In practice, this normalization is included
in the matched-filter kernel. Therefore, kernel coefficients sum
to 0 and they are normalized so that filter responses for different
kernel scales can be fairly compared to detect vessels of varying
widths.

Following [49] we computeγ by proposing an idealized model
of the desired feature and its scale,t0, and then finding the
value ofγ that causes the peak response in scale space to occur
at t = t0. Our appearance model of an idealized vessel is a
Gaussian cross-section with variancet0, and a constant intensity
in the tangential direction. Because of this, no normalization is
needed in the tangential direction and we may consider only
the normal direction in deriving the normalization factor. Scale
selection must be derived from the entity defining the ridge
(vessel) strength – in our case convolution of the vessel profile
with the matched-filter kernel of the same orientation. Exploiting
the properties of the Gaussian, theγ-normalized matched-filter
response to a Gaussian cross-section at location(0, 0) and scale
t is

Mγ−norm(0, 0; t)

=−
∞∫

−∞

t
γ
2

2π
√

t0t5
(v′2 − t) exp

(
−v′2

2

(
t + t0
tt0

))
dv′

=
t

γ
2

(2π)
1
2 (t0 + t)

3
2
.

(6)

To find the peak, we differentiate with respect to the scale
parameter and set the derivative to zero. This implies

γ
2 t

γ
2−1(t0 + t)− 3

2 t
γ
2

(t0 + t)3
= 0. (7)

Solving for t yields a maximum att = t0γ/(3 − γ). Forcing
this peak to occur as desired att = t0, the scale of our
model cross-section, we must haveγ = 3/2. Therefore, the
normalizing multiplier on the matched-filter response (5) at scale
t is t3/4. This multiplier has the same value as that derived by

Lindeberg [49]. Formally, a mapping may be derived between the
convolution for a matched filter in Equation (6) and Lindeberg’s
measure derived for second derivative operators applied to a
Gaussian ridge profile, but we presented the direct derivation
here for clarity and completeness.

A. Parameters and Computation

Using this normalization, the responses may now be fairly
compared across scales. Computing the best response, which we
will denote byrv, at each pixel simply requires computing the
maximum matched-filter response over all scales and all orien-
tations. We first describe a computationally-expensive approach
that uses a fairly small number of orientations and then show
how to increase the number of orientations while decreasing
the computational time. For the first approach, 9 matched-filter
orientations are used in20◦ increments, the range of scales,
tv, in the direction normal to the vessel is0.5 ≤

√
tv ≤ 3.0

pixels in 0.5 pixel increments, andtu = 9.0 for all values of
tv. We use a fixedtu for all tv because a largetu is needed
for small vessels in order to integrate more vessel pixels, while
enlarging tu further for largetv we found to be more costly
than beneficial, especially due to vessel curvature. Kernels cut-
offs are3

√
tv and 2

√
tu. We chose these parameters based on

our experiments with STARE and DRIVE databases which have
images with resolution700 × 605 and 565 × 584 and field of
view 35◦ and45◦, respectively.

Computing a matched-filter response at each pixel location,
orientation and scale is expensive. Fortunately, a large fraction
of the the cost may be eliminated by introducing two simple
heuristics. First, at each pixel and scale,tv, the Hessian is
computed, the eigenvector corresponding to its largest eigenvalue
is chosen, and its orientation is rounded to the nearest integer
degree. A matched filter is then applied with the normal in this
direction. In effect, the Hessian is used to steer the matched
filter. Because of symmetry, this results in 180 possible discrete
directions for which filter kernels are precomputed. Second, at
each pixel, scale-space peaks are found using a fine-to-coarse
search, stopping at the first peak. In this way, extra computation
at coarser scales is avoided. Overall, we have found that these
speed-ups eliminate 93% of the matched-filter computations and
even provide slightly improved results because the matched-
filter directions are chosen in finer increments. Unless otherwise
indicated, all results reported here use these speed-up techniques.

Once again, as compared to the Hessian-based operators dis-
cussed in Section II, the matched filter provides better responses
to thin vessels and to low-contrast vessels. Spurious responses
to non-vascular structures such as the fundus boundary, the optic
disc boundary and pathologies are still present, however. This,
together with a desire to further improve the response for low-
contrast vessels, motivates the use of the “confidence” and edge
measures we define next.

IV. CONFIDENCEAND EDGE MEASURES

While the multiscale matched filter alone provides better
response to low-contrast and narrow vessels than Hessian-based
measures (Figure 2(a)), it still provides spurious responses to
non-vascular structures. Insight for why this occurs can be
obtained by considering what happens when a matched filter
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edge offset

t

t

edge
MF kernel

MF resp

Fig. 3. Vessel matched-filter response to an offset edge. It is highest when the
offset is equal to the standard deviation

√
t of the matched filter.

is applied near a step edge. As in the previous section, the
constant intensity along the tangential direction allows us to
only consider a 1-D profile. Symmetry arguments show that
the matched-filter response is 0 when centered on the edge.
On the other hand, as the matched filter is shifted along the
normal to the edge, the responses start to increase in magnitude,
reaching a peak at an offset of

√
t (see Figure 3). These responses

are often much stronger than the responses to lower contrast
vessels, as illustrated around the retina boundary, the pathologies,
and the optic disc in Figure 2(a). Similar problems occur with
Hessian-based measures. The confidence and edge measures
defined in this section are intended to add the information needed
to distinguish these spurious responses from responses to true
vessels.

A. Vessel Confidence Measures

We consider a discrete version of the matched filter at pixel
locationxT = (u, v):

M(x) = −
∑

i

∑
j

G(i, j)F(u− i, v − j). (8)

Here,G is the matched-filter kernel andF is the discrete image.
We can rearrangeG and the corresponding pixels ofF by putting
their columns one-by-one into vectorsg and f(x), respectively.
For example, matrixG with M columns andN rows will be
rearranged into vectorg with M · N elements. Doing this, (8)
may be rewritten as

M(x) = −f(x)>g. (9)

In other words, the matched filter at a fixed location is expressed
as a dot product of the kernel and image neighborhood both
rearranged into vectors. Ifg is normalized (without loss of
generality) to unit magnitude, this may be considered as a
projection off(x) onto directiong. As in any projection, a great
deal of information is lost. In particular, the projectionf(x)>g
says nothingabout how wellf(x) fits the profile represented by
the kernelg. This is simply becausef(x) is unnormalized. A
vector f(x) formed from an ideal, low-contrast vessel will be
nearly parallel tog, but may have a much smaller projection
than a vectorf(x) formed by an offset step edge (as previously
discussed) or even a region made up solely of large magnitude

Fig. 4. Vessel confidences for the image in Figure 1. Usually, the confidences are
highest at vessel locations but they can still be high around locations offset from
edges and other non-vessel structures. Confidence image was stretched linearly
to [0, 255] for display.

noise.
We now introduce a vessel “confidence measure” (borrowing

terminology from [50]). At each pixel, we determine the peak
matched-filter response scale and direction, as described in
Section III. We then letgm be a vector formed from a segment
with the ideal Gaussian profile at the current orientation and
scale,tv — i.e. a Gaussian along the vessel normal and constant
along the vessel tangent. (We use the same parameters as in the
matched filter.) Letf(x) be a vector of the image intensity values
taken from pixels overlaid by this template. The values in vectors
f(x) andgm are independently centered and normalized by first
subtracting their mean (so that the sum of the elements in each
vector is zero) and then dividing by their magnitude (so that
the vectors have magnitude of one). We define the confidence
measure at this pixel as

ηv(x) = −f(x)>gm. (10)

This can be viewed as normalized cross-correlation or cosine
distance between model and sample vectors. It provides an
indication of how closely-aligned the pixels are with the ideal
Gaussian vessel profile. In particular, the value is 1 at the center
of a Gaussian profile at the exact width, 0 at the center of an
ideal step edge, and 0.79 for the peak response when offset by√

tv normal to a step edge. Interestingly, the latter response is
still relatively high. An example result is shown in Figure 4.

B. Edge Measures

We have seen that the matched filter, even with an added con-
fidence measure, is not enough to entirely eliminate non-vessel
responses. What is needed is a more direct measure of what
occurs at the boundary of a purported vessel. To illustrate more
concretely why this is important, consider again the difference
between the matched-filter response to an offset step edge and
the matched-filter response to a true vessel. In the first case,
there will be an edge on one side of the region, but not on the
other, while in the second case there will be edges on both sides.
Stated more strongly, the fact that the second edge is missing is
the most significant difference between a vessel and an offset step
edge. We capture this information by combining edge strength
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and confidence information with the matched-filter strength and
confidence.

The first step in doing this is to compute the gradient direction
and magnitude at each image pixel in scale space. This is done
by applying the algorithm of [49] as implemented in ITK [65].
The maximum normalized response and associated direction are
saved at each pixel. The range of scaleste is 0.5 ≤

√
te ≤ 1.75

in 0.25 increments, and kernel cutoffs are3
√

te. Note that this
range is much narrower than the range of scales for the matched
filter. If the vessels followed an ideal Gaussian profile then the
optimum sets of edge and vessel scales would correspond. In
practice however the vessel scale depends on the width of the
vessel, whereas the edge scale depends on the diffuseness of
the vessel boundary. In particular, wider vessels in real images
often have edges steeper than the Gaussian-modeled vessels of
the same width. Therefore finding edge scale independently of
the vessel scale yields better results; we have found the given
range sufficient.

The following shows how the edge responses are combined
with the independently-computed matched-filter responses (and
confidences). At a given pixel locationx, let n be the (unit)
normal to the vessel andw = 2

√
t0 be the approximate vessel

width, both determined by the peak matched-filter response in
orientation and in scale (t0). Given these values, the vessel edges
should pass (roughly) through pixel locationsx1 = x + (w/2)n
and x2 = x − (w/2)n. Moreover, at these locations, the edge
gradient directions should point outward, away fromx (for dark
vessels) in directionn. Therefore, at each of the two potential
edge locationsx1 and x2, we search in a±1 pixel interval
alongn for the pixel whose gradient vector, when projected onto
the outward normal (n for x1 and−n for x2), has the largest
positive value. The±1 pixel interval – giving 3 possible locations
overall – accounts for the modeling error caused by asymmetric
vessels. This is only a slight shift in the location and is needed
because of discretization effects, because of slight asymmetries
in the appearance of the vessel, and because of diffuseness of the
edges. We record these largest values along with the matched-
filter and confidence responses atx — in other words at the
center of the purported vessel. In doing so, we order the two edge
responses by their magnitude, denoting the stronger byres(x)
and the weaker byrew(x). This ordering makes the measure
more discriminating and easier to train. To illustrate, this offset
step edge is distinguished by a low value of the weaker response
rather than by which side this response occurs on.

Finally, we compute confidences for the strong and weak
edge responses. Similar to the matched-filter confidence, the
edge confidences measure how well the edge profile fits the
expected shape, independent of the magnitude of the edge. To
compute confidence, the ideal vessel edge profile is modeled by
the cumulative distribution of the Gaussian, with variancet set to
the peak scale of the edge. Following the same procedure as for
the vessel confidence, each edge confidence measure is computed
by projecting the local intensity window onto a segment with
the ideal profile oriented along direction±n and centered at
the detected edge locations (from the±1 pixel interval). The
resulting confidences are denotedηes(x) andηew(x) and together
with the responses recorded at the center pixel,x (the vessel
pixel). Figure 5 shows an example result. Confidences and
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Fig. 6. Logarithm of the Chernoff bound as a function of the number of bins
(a) for vessel, strong edge, and weak edge responses,(b) for vessel, strong edge,
and weak edge confidences. The discriminative power of the weak edge is higher
than that of the strong edge because the existence of the weak edge is the most
significant difference between a vessel and an offset step edge.

responses of both edges are high at vessel locations, but the
weaker edge response and its confidence are low near edges and
other non-vessel structures.

Overall, the combined vessel and edge computations give us
three strength measures and three confidence measures at each
pixel. We combine these into a six-dimensional vectorΘ(x) =
(rv(x), res(x), rew(x), ηv(x), ηes(x), ηew(x)).

V. TRAINING AND DECISION CRITERIA

Our next step is to map the 6-D response/confidence mea-
surement vectorΘ into a single “vesselness” measure at each
pixel. The measure we choose is the optimal test statistic by the
Neyman-Pearson Lemma [66], thelikelihood ratio:

LRV(Θ) =
p(Θ|on)P (on)
p(Θ|off)P (off)

. (11)

HereP (on) is the prior probability of a pixel location being on
the centerline of a vessel,P (off) = 1 − P (on), and p(Θ|on),
p(Θ|off) represent the corresponding conditional probability
density functions (pdfs) for measurement vectorΘ. LRV is the
desired “Likelihood Ratio Vesselness” measure. Note that when
the likelihood ratio is 1.0, it indicates an equal chance that the
current location represents vessel or non-vessel. With increasing
values of likelihood, we are more sure that a vessel is present.

To train these pdfs we use manual-segmented retinal images,
such as in the STARE [31] and DRIVE [51] data sets, as ground
truth. Only pixel locations for which the matched-filter response
is positive are considered because negative responses will never
be a vessel. Non-maximum suppression is applied to the matched
filter responses so that pixels near the vessel boundaries are not
used in training. The manual segmentations were not thinned for
training because even small (1-2) pixel errors in the localization
would change decision about whether a response is a vessel or
not. Training P (on) is accomplished simply through counting
the number of matched filter responses marked as vessels in the
manual segments and dividing by the total number of responses.
Since we only consider positive matched filter responses, our
prior P (on) is the probability of a pixel location with a positive
matched filter response being a vessel centerline pixel.P (off) =
1−P (on). Training the conditional pdfs uses a histogram-based
method adapted from [67]. We chose histograms to estimate the



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 25, NO. 12, DECEMBER 2006 1537

Fig. 5. Confidence(left column) and response(right column) images of the stronger(top) and weaker(middle) vessel edge for the source image shown at
the bottom. These are displayed as 3D plots. Confidences and responses of both edges are high (and positive) at vessel locations. Around pathologies and other
non-vascular structures the weaker edge responses and confidences are close to zero (if no weaker edge is detected) or negative (if it is located on the same diffuse
edge as the stronger edge).

distributions because of their simplicity, although clearly other
options such as Parzen windows,k-nearest neighbor classifiers,
and decision trees could be considered [68]. Two six-dimensional
histograms are formed, one to representp(Θ|on) for the “on”
pixels and one to representp(Θ|off) for the “off” pixels. The
histograms are normalized to unit magnitude. Because of the
high dimensionality, the choice of bin size is crucial: making the
bins too small leads to explosion in the number of bins; making
them too large leads to a loss in precision. To solve this problem,
bin boundaries are chosen adaptively, with the same boundaries
used in both histograms.

The choice of boundaries is based on the Chernoff bound on
the error for the likelihood ratio [67], [68]:

P (error) ≤ P ξ(on)P 1−ξ(off)
∫

pξ(Θ|on)p1−ξ(Θ|off)dΘ,

(12)

where 0 ≤ ξ ≤ 1. To obtain the bound, the right hand side
of the inequality is minimized overξ. Computationally, the pdf
is replaced by a normalized histogram with a discrete set of
bins, and the integral in (12) is therefore replaced by a discrete
summation.

We now describe how to determine the bin boundaries. Each
dimension is handled separately, which means we look for bound-
aries partitioning 6 1-D histograms. The resulting sequences of
boundaries for every dimension are combined by taking their
Cartesian product to form the corner points of the axis-aligned
bins in 6 dimensions. (Note that the same boundaries are used for
bothp(Θ|on) andp(Θ|off).) In order to determine the boundaries
in one dimension, we start by assigning all measurements from
the training images to bins in a fine-grained 1D histogram. The
Chernoff bound (12) is then minimized overξ for each boundary
point, treating the boundary point as a partition that assigns all
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measurements below it to one bin and all measurements above to
another bin. The point for which the overall minimum of (12) is
achieved is selected as the first partitioning boundary. The second
partitioning boundary is determined in a similar manner with the
first boundary fixed. Every additional boundary decreases the
minimum Chernoff bound, which reaches an asymptotic value
when enough boundaries have been added. Figure 6 shows that
this happens quickly and only 6 bins per dimension are sufficient
to model the distributions accurately. This gives a total of66 ≈
4.7× 104 bins, which is a manageable size. Typically, only 15%
of the histogram bins are filled. Although this suggests that a
more compact representation could be used, the total number of
bins is too small for this to be a substantial concern.

The training also gives insight to the discriminating power
of each measure we have developed. In particular, the left plot
of Figure 6 shows the Chernoff bound as a function of the
number of bins for vessel, weak edge, and strong edge responses,
while the right shows corresponding plots for the confidences.
Overall, the strength measures are more discriminating than the
confidence measures, but not dramatically so. This substantiates
the motivation for using both types of measures. Below we
show experimentally the improvement in the detection rates by
augmenting the vessel matched filter with vessel confidences and
further improvement when the edge measures are added.

VI. EXPERIMENTAL EVALUATION

The likelihood ratio (11) is our final “vesselness” measure,
LRV, intended to be used similarly as the vessel measure of
Frangi et al. [42] (3) and the ridge measure of Lindeberg [49]
(4). Non-maximum suppression is applied to the LRV values in
the direction normal to the vessel orientation at detected points.
A threshold is then applied to the surviving LRV values to make
the final vessel / non-vessel decisions. A faster but less effective
version of the LRV measure is obtained by substituting Frangi
vesselness (3) for the matched filter in the measurement vector.
All the other steps of the algorithm, including scale selection,
remain unchanged.

In our evaluation, we first quantify the improvement gained
by using vessel confidences and edge measures together with
the matched filter. We then compare detection results using LRV
and Frangi’s measure on all retinal vessels in an image. We then
present detection experiments focused on thin vessels and on low
contrast vessels. Finally, we show qualitative comparison of the
LRV measure and the vessel matched filter.

A. Evaluation Technique

We evaluate our technique both quantitatively and qualitatively
using two publicly-available data sets with images of diseased
retinas, the STARE database [31] and the DRIVE database [51].
There are advantages and disadvantages to each database. STARE
includes images with a wider range of appearances and more
large-scale pathological structures, but there are fewer images
(only 20) and there are substantial interobserver variabilities on
the manual segmentations: one observer consistently highlighted
more small-scale vessels. More images are available in DRIVE
and the interobserver agreement is better, but the pathologies are
less prominent. Because of our interest in narrow vessels and
avoiding false response to pathological structures, most of the

results we present here are taken from the STARE database with
the segmentation produced by the observer who marked more
small-scale vessels.

During training we use a leave-one-out strategy for the STARE
data set and the dedicated training set for the DRIVE data set. Of
the two image databases, DRIVE contains mask images for filter-
ing background and STARE does not. Automatic masking is easy
in carefully controlled imaging environments. In practice many
images have illumination artifacts, double boundaries caused by
acquisition, numbers and tags and different fields of view, which
all make masking hard. Moreover, one of the advantages of our
technique is that masking is not necessary. Therefore, in this
paper, masks were used in experiments only on the DRIVE image
set which has the mask images included.

Our analysis is based on vessel centerlines, even though other
published results are based on vessel segmentations [31], [32],
[39], [51]. There are a number of reasons for this. First, all
components of the LRV measure — the matched filter, the two
edge responses and all of the confidences — strongly emphasize
detecting the center of the vessel. The measures are much weaker
near the boundaries of vessel. Second, these centerline points,
sometimes together with approximate widths, are what is most
needed in algorithms such as registration [12] and optic disc
detection [6] that depend on vessel extraction. Third, since
the boundaries of the vessels are diffuse and fade subtly into
the background, boundary localization is non-exact and highly-
subjective, making the labelling of pixels near boundaries less
useful in quantitative analysis. Finally, quantitative measures of
segmentation are dominated by the performance on wide vessels,
simply because wide vessels have more pixels.

Following training we gather performance statistics on test
images. For any test image we can determine the number of true
positive, false positive, and false negative vessel centerlines ex-
tracted using our LRV measure for any choice of final threshold.
We define these counts by comparing against a thinned version
(using the thinning code in Matlab) of the manual segmentations.
A true positive is any detected point within 2 pixels of a point
in the thinned manual segmentation. False negatives are counted
as the number of points in the thinned manual segmentation not
within 2 pixels of a detected centerline point. The tolerance of 2
pixels was chosen to account for localization errors in both the
thinned manual segmentation and in the centerline peak location
(essentially allowing 1 pixel of error in each).

Finally, we have the question of how to evaluate the quanti-
tative results. ROC curves, which are widely-used, are not very
informative when the total number of negatives (in the ground
truth) is much larger than the total number of positives; in our
case fewer than 3% of the pixels are vessel centerlines. This
means a large number of false positives — e.g. equal to the total
number of true positives — will be small in terms of percentages
of true negatives (see discussion in [69]). This produces an
extremely steep, almost step-like, ROC curve. A better measure
for evaluating vessel detection is a (1−Precision)-Recall curve.
Recall equals the true-positive detection rate just as defined for
ROC curves. (1−Precision) is defined as the number of false
positives divided by the total number of detections. In another
words, it defines the fraction of detections that are wrong.
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Fig. 7. ROC curves (left) and (1−Precision)-Recall curves (middle) showing the effectiveness of the LRV measure. Comparisons are made between the full
measure (LRV), the measure with only vessel confidences, and the multiscale matched filter alone. (1−Precision)-Recall curves are more suitable for comparison
because of large number of negatives (non-vessel pixels) in the ground truth. Notice in the middle plot that the matched filter with vessel confidences is as powerful
as the full LRV measure until about 50% of all traces are detected. Plot on the right compares the LRV measure (with the matched filter) to the LRV using Frangi’s
Hessian-based measure and to the matched filter and Frangi’s measure alone.

B. Overall Results

The first part of our quantitative analysis uses overall re-
sults combined across all 20 images in the STARE data set
(Figure 7). As shown in Figure 7(a), the ROC curves are not
very informative, with only very minor differences separating
the measures. The (1−Precision)-Recall plots in the rest of the
figure are much more informative. Plot (b) shows that use of the
matched filter and its associated confidence — a two-component
measurement vector at each pixel — in forming the likelihood
ratio dramatically improves the performance of the matched
filter, while adding the edge responses and confidences needed
to form the complete 6-component vector provides significant
further improvements. Plot (c) shows that both the Hessian-based
(Frangi) and the matched-filter-based LRV measures substantially
outperform the original measures, but the matched-filter LRV
is clearly superior. (Lindeberg’s ridge measure performs slightly
worse than Frangi’s vesselness measure, so it was left out of
the the plots.) Finally, the seemingly-strange non-monotonic
shape of the matched-filter and Frangi measures alone is easily
explained. The highest responses for these measures occur at
the retina boundary, the optic disc boundary, and the boundary
of pathologies (though perhaps slightly offset from the true
boundary, as discussed above), because they are of much higher-
contrast than even the more distinct vessels. Hence, for very high
thresholds, these are the only responses that survive thresholding.

C. Thin Vessels and Low-Contrast Vessels

In the second part of our analysis we consider the specific
problems that motivated our work: detecting thin and low-
contrast vessels while avoiding false detection of vessels near
pathologies and other non-vascular structures.

We filter the overall quantitative results to develop a fairly
rough but indicative analysis of the performance on both thin
vessels and low-contrast vessels. For thin vessels, we process
the ground truth vessels, eliminating those from the image that
are wider than 2 pixels. We do something similar for low-contrast
vessels, eliminating those where the difference between the

average foreground intensity and the average nearby background
intensity is more than 3 noise standard deviations. (1−Precision)-
Recall curves for these two computed using the STARE data set
[31] are shown in Figure 8.

We also evaluated the performance using the DRIVE database
of images [51] tested for both observers with training using the
separate dedicated training set (Figure 9). The improvements are
similar but less substantial because the images are of higher
quality: their contrast is higher, a brightness does not vary
significantly, imaging artifacts such as blur are minimal, the
image background is masked out, and the images contain fewer
substantial pathologies. The overall higher detection performance
of all algorithms can be seen from larger area under the curves.

D. Qualitative Results - Pathologies

In order to give a qualitative feel for the results, several “chips”
from the most challenging images are shown in Figure 10.
These include a variety of pathologies and thin vessels that are
so subtle they sometimes completely fade into the noise. (To
obtain the operating point for the qualitative results we set a
threshold ofτ = 2.0 on the LRV measure, which corresponds
to a pixel being twice as likely to be on-vessel as off.) The
first thing to observe about the results is that the matched filter
(2nd column of Figure 10) highlights many of the vessels, but
produces even stronger responses at non-vascular structures, such
as the optic disc (4th row) and the pathologies (2nd, 3rd and 5th
rows). When the matched filter is combined with the confidence
and edge measures in producing the LRV measure, these false
responses are dramatically reduced (3rd column). Moreover, the
subtle vessels start to stand out (all rows). Occasionally, some
of the pathologies still produce strong responses. These cases
(row 5, bottom right of the image) usually involve two bright
pathologies separated by a narrow strip in which the darker
retinal background appears. The LRV measure correctly detects
many vessels with central reflex (3rd row, yellow arrow). When
the central reflex is severe, more complicated vessel models
could be used (both for computing responses and confidences).
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After applying the threshold most of the narrow vessels still
appear, although on occasion these are broken up into short
segments. Overall, the results on these challenging images appear
qualitatively to be better than other results in the literature.

E. Discussion

One question that arises in studying these results is how to
use the performance curves to establish an operating threshold
on the LRV measure and any other measure. This is particularly
difficult for low-contrast and narrow vessels. For example, when
the LRV measure is set to 50% recall of narrow vessels, the
1−precision rate for the narrow vessels (percentage of detections
that are false) is 10% for DRIVE and 35% for STARE. For 50%
recall of low-contrast vessels, the 1−precision rates are 31% for
DRIVE and 57% for STARE. For the matched filter alone, at
50% recall, the 1−precision rates jump to 17% (DRIVE) and

65% (STARE) for narrow vessels and to 43% (DRIVE) and 80%
(STARE) for low-contrast vessels.

There are several explanations for these low overall perfor-
mance numbers. The first can be seen by evaluating the reliability
of the manual segmentations used as ground truth. With the
DRIVE database, we can use the thinned binary labelling of one
observer as the ground truth to test the other. This yields a recall
rate of 91% and 1−precision of 9% across all images, but with
some images the recall rate drops as low as 76% and with others
the 1−precision rate is as high as 25%. With low-contrast and
narrow vessels, these numbers are much worse, with 81%/30%
for low-contrast vessels and 85%/16% for narrow vessels. For
STARE, recall varies between 99% and 56% and 1−precision
between 46% and 1% in overall experiments. Clearly, with such
high inter-observer variability, using the manual segmentations
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Fig. 10. Results on 5 difficult image chips showing a variety of challenges, including pathologies, other non-vascular structures, and low-contrast, narrow vessels.
The figure shows the source images in the1st column, the vessel matched-filter response images after non-maximum suppression in the2nd column, the Likelihood
Ratio Vesselness (LRV) after non-maximum suppression in the3rd column and the pixels that remain after thresholding the LRV measure atτ = 2.0 in the 4th
column. The images in the last three columns were stretched to the range[0, 255] for display here, so direct comparison of intensities within and across columns
is easier. In generating the images in the fourth column, segments forming connected components with fewer than 4 pixels were removed. See the text for detailed
discussion of the results.

to establish a 90% recall rate is not possible.
The second explanation for the low overall performance num-

bers comes from the fact that the LRV measure is computed in
just a small image region. When we look in small image regions
surrounding locations of false negatives in the LRV measure (for
a given threshold) we often do not see vessels. Only stepping
back to larger regions do these vessels start to “appear”. This
suggests that higher-level information must be used. The simplest
of these could be adaptive thresholding [32], [70], but more
sophisticated grouping techniques are likely to be necessary and
several steps in this direction have been taken in the literature
[39], [40]. Still, our quantitative and qualitative results show that
the low-level LRV measure substantially outperforms existing
measures in a relative comparison and therefore should be
inserted into existing algorithms in place of other measures such
as the Hessian.

We computed pairedt-tests on the areas enclosed by the
(1−Precision)-Recall curves. Area is computed for each curve
by analyzing every test image separately. Statistics on the areas
(mean and variance) are calculated for each measure and the final
critical value t is compared against the tabulated distribution.
Doing so, we found out that LRV measure is significantly better

(p < 10−14 for STARE andp < 0.0005 for DRIVE) than the
matched-filter and Frangi measures alone for overall, thin vessel
and low-contrast vessel experiments. In addition, matched-filter-
based LRV is significantly better (p < 0.0001 for STARE and
p < 0.005 for DRIVE) than the Frangi-based LRV.

The final question in using our LRV measure is computational
efficiency. We showed in Section III-A how applying the Hessian
can be used to steer the matched filter, avoiding the cost of
applying it at all orientations. This reduces the overall cost of our
implementation to under 4 minutes on the images in the STARE
database. A number of further optimizations is likely possible, for
example avoiding the application of the matched filter altogether
when the Hessian response is too low. Rather than investigating
these possibilities here, we turn now to the question of embedding
the LRV measure in a tracing framework.

VII. V ESSELTRACING

We now show how to substitute the LRV measure for our
earlier parallel-edge vesselness measure [33], [48]. This has the
dual-purpose of improving the efficiency of the LRV measure
and improving the effectiveness of tracing.

All exploratory tracing algorithms follow the same overall
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Fig. 11. Vessel traces of a source image(left) extracted using the matched filter to extract candidate traces(middle) and after applying full 6-dimensional LRV
measure(right) . Most of non-vessel structures are successfully removed while traces of even thin and barely visible vessels are kept.

strategy. Starting from a set of oriented seed locations, they
recursively trace the vascular (or neuronal [71]) structure by
stepping along the vessel tangent direction and locally detecting
the next point on the vessel. Usually, the “centerline” location,
vessel width, and tangent direction are estimated simultaneously.
Tracing stops for a given seed point when it intersects a vessel
already traced or when the vessel is not reliably detected. Tracing
stops overall when all seeds have been explored. Usually, vessel
branching and cross-over points are detected and localized in a
post-processing step [33], [72].

Our approach follows this strategy as well, with a small but
important variation. The natural approach would be to use the
6-D measurement vector of matched-filter, confidence and edge
responses, computed over a small neighborhood in location,
orientation and scale to compute the likelihood ratio and then
apply a threshold to decide the presence of a vessel. We have
found, however, that this can lead to missed traces for the most
subtle vessels, prematurely halting tracing. Instead we apply only
the vessel matched filter during tracing. This is very sensitive and
detects both subtle vessels as well as results in many traces at
non-vessel locations (Figure 11(middle)). We then compute the
6-D measurement and apply the likelihood ratio subsequently
to these “over-traced” results. In effect we are using the vessel
matched filter in tracing to generate candidate locations at which
to evaluate the LRV measure. This is less expensive than starting
from large number of seed points and applying LRV measure
during tracing. Earlier in the paper (Section VI) we evaluated
the LRV measure at each pixel.

Here are a few important details:

• The seed points we use are the same as the seeds in
[48] — local intensity minima along smoothed vertical and
horizontal lines through the images. Next, the multiscale
Hessian is computed around each seed location and the
vessel tangent direction is determined as the eigenvector
corresponding to the smallest eigenvalue. Vessel width is
found from the maximum matched-filter response in scale
space applied in this direction. The seed points are then
sorted based on strength so that when tracing starts, the
most reliable points are used first. Only points that have
positive matched-filter response are retained.

• The iterative tracing procedure is started from each seed
point in the sorted list. At stepi ≥ 0 of tracing from a
seed point, letxi be the current vessel location,θi be the
current tangent orientation, andσi be the current vessel
scale. The position, orientation and scale are refined by
searching for the maximum scale-space response over a±20

degree change in orientation (in increments of 10 degrees),
±1 steps in scale space, and±2 pixel steps in the normal
direction. If the largest response is non-positive, tracing is
terminated. Otherwise, the best parameters are recorded, a
step of two pixels is taken along directionθi, and the process
is repeated.

• The verification step computes the confidences and edge
responses at each trace point using the location, orientation,
and scale parameters to determine where to compute these
values. The likelihood ratio is computed for the resulting
measurement vector. The trace point is discarded if the
likelihood ratio is below thresholdτ = 2.0. An example
in Figure 11 shows retina vessel traces before and after
applying the LRV measure andτ threshold. It may be
possible to do even better using adaptive thresholding [32],
[70].

VIII. T RACING RESULTS

We evaluate the effectiveness of this likelihood ratio tracing
algorithm in side-by-side comparison with two other techniques.1

One is our likelihood ratio (LRV) applied image-wide with non-
maximum suppression. This allows us to compare the perfor-
mance when embedding the LRV measure in a tracing frame-
work. The second is the parallel-edge tracing algorithm [33] as
refined in [48]. The goal of this comparison is to evaluate the
improvement over an existing tracing algorithm. Training the
conditional pdfs is done as in Section V. EstimatingP (on) is
accomplished by counting the number of traced pixels using the
matched filter (in the “over-traced” image) manually marked as
vessels in the manual segments and dividing by the total number
of pixels. As before, we use a leave-one-out strategy in training
from the STARE data set and the dedicated training set when
training for the DRIVE data set.

Qualitative results can be seen in Figure 12. The figure shows
cropped image regions with parallel-edge and LRV tracing as
well as with the LRV measure evaluated at each pixel of the
image. The same seed points were used for both algorithms. The
thinned manual segmentation was used to mark true positives
(blue), false negatives (red), and false positives (green). The new
tracing algorithm successfully handles difficult vessel branching
and crossover points (two overlapping vessels in the 3rd and
4th example), more accurately determines when to stop tracing
in unclear regions (thin vessels near pathologies in the 1st and

1The tracing executable can be found athttp://www.vision.cs.rpi.
edu/vessels/ .

http://www.vision.cs.rpi.edu/vessels/
http://www.vision.cs.rpi.edu/vessels/
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Fig. 12. Source image(1st column), tracing results using parallel edge algorithm [33](2nd column), Likelihood Ratio Vesselness (LRV) based tracing(3rd
column) and the LRV after non-maximum suppression and thresholding below2.0 (4th column). True positives are in blue, false negatives in red, and false positives
in green. The new tracing algorithm successfully handles difficult vessel branching and crossover points (two overlapping vessels in the 3rd and 4th example), more
accurately determines when to stop tracing in unclear regions (thin vessels near pathologies in the 1st and 3rd example), correctly ignores pathologies (1st and
4th example) and finds many of the thinnest vessels which usually have very low contrast (5th example). Notice in a number of cases false positives are marked
alongside false negatives (green line along red line) because of localization differences with the ground truth. The tracing results are comparable to the LRV measure
evaluated at every point. Vessels with fewer than 4 connected pixels were removed.

3rd example), correctly ignores pathologies (1st and 4th example)
and even finds many of the thinnest vessels (5th example). Notice
in a number of cases that false positives are marked alongside
false negatives (green line along red line) because of localization
differences with the manual segmentations. The tracing results
are comparable to the LRV measure evaluated at every point.
Occasionally, a vessel is missed by both tracing algorithms (often
around the optic disc) due to the lack of a seed point. Another
reason for a vessel to remain undetected (3rd example on the
left, marked as red in all results) is when the local structure
is very poor and it does not follow the vessel model well. In
this particular case, the LRV responses are between 1.0 and 2.0
and are therefore removed by thresholding. It is possible that
also this vessel would get detected with better thresholding or
a grouping technique. False detections that are inside manually-
segmented vessels but not within the error tolerance of a vessel
centerline are exhibited by a red trace (false negative) very close
to a green trace (false positive) as in the 4th column of the 2nd
example. Because it is a richer description, the LRV measure
more effectively detects two side-by-side vessels while parallel-

edge tracing tends to detect them as one vessel (2nd and 3rd
example in Figure 12). Tracing introduces a hysteresis that leads
to less fragmentation than the raw LRV measure.

Quantitative performance is summarized in Figure 13. The
new algorithm outperforms parallel edge tracing and brings
improvement by more than 10 percentage points in the number of
detected traces overall (measured for same false positive fractions
and same likelihood thresholdτ = 2.0). For a small number
of false detections, LRV tracing outperforms use of the image-
wide LRV because vessels are traced starting from the strongest
seed points. The situation changes when there are not enough
seed points to detect as many vessels as with the exhaustively-
computed LRV. The tracing curves do not reach point(1, 1) in
the plots because tracing starts from seed points, meaning that
vessels having no seeds are never traced. Similarly, point(0, 0) is
not reached because whole vessel segments are traced at a time
in the order of decreasing seed strength and for small number
of false detections there will already be several correct vessel
segments detected. It takes less than 30 seconds to extract traces
from a 700× 605 retina image (unoptimized code on Pentium IV,
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Fig. 13. (1−Precision)-Recall curves for LRV-based tracing results compared to parallel edge tracing algorithm [33] and LRV measure evaluated at each pixel
followed by non-maximum suppression. Computed for the STARE data set [31](left) and DRIVE database [51](right) . The new algorithm outperforms parallel
edge tracing and brings improvement by more than 10 percentage points of the number of detected traces overall. For small number of false detections, tracing
outperforms image wide LRV because vessels are traced starting from the strongest seed points. The situation changes when there are not enough seed points to
detect as many vessels as with exhaustively computed LRV.

Fig. 14. Example of a slit lamp image(top left), LRV measure computed image wide(top right) , parallel-edge based tracing(bottom left), and LRV-based
tracing (bottom right) . The LRV measure is powerful enough to highlight vessels but ignore the background noise which is the main reason for spurious traces of
the parallel-edge based algorithm. The new tracing algorithm correctly finds vessels that are missed by the parallel-edge based tracing.

3.2 GHz). The processing time decreases to less than 10 seconds
if we compute the vessel tangent directions using the eigenvectors
of the Hessian as in pixel-by-pixel processing. The results can
be slightly worse at locations where the tracing cannot continue
due to poor local structure and inaccuracies in the eigenvector
direction.

One final example that reinforces the effectiveness of LRV

tracing is shown in Figure 14 where both tracing algorithms
are applied to an image from a slit-lamp biomicroscope. The
likelihoods are powerful enough to highlight vessels but ignore
most of the background noise. This noise causes detection of
spurious traces by the parallel-edge based algorithm. The new
tracing algorithm correctly finds vessels that are missed by the
parallel-edge based tracing.
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IX. D ISCUSSION ANDCONCLUSION

We have introduced the Likelihood Ratio Vesselness (LRV)
measure designed to improve the performance of vessel extrac-
tion and we have shown how it can be embedded in an efficient
tracing framework. The LRV is formed from a 6-component
vector of matched-filter and edge responses and their associated
confidences. Each component is designed to help address the
problem of detecting narrow and low-contrast vessels, while
avoiding responses to other retinal image structures. In particular,
the elongated template of the multiscale matched filter tends to
preserve vessels that are only a pixel wide (and typically low-
contrast), whereas isotropic measures such as the Hessian tend to
substantially blur these structures. The edge responses are useful
in distinguishing between offset edges near pathologies and true
vessels. The confidence measures emphasize the shape of the
intensity surface rather than the magnitude of the responses,
enhancing the ability of the LRV to detect low-contrast vessels.
The 6-component measurement vectors are mapped to the final
LRV measure using pdfs learned from training data. Significantly,
after designing multiscale filtering and training procedures there
are no run time tuning parameters in the computation of this
measure. The computation is made more efficient by using the
Hessian to select matched-filter orientations and by embedding
the LRV measure in a tracing framework. The latter substantially
outperforms our existing retinal vessel tracing algorithm. Both
quantitative and qualitative analysis on challenging retinal images
have shown the effectiveness of the LRV measure. The new
measure may be used in place of the Hessian and the matched
filter in existing vessel detection and segmentation algorithms
[31], [39]. Based on the experimental evaluations reported here,
this should lead to substantially-improved results. The fact that
the Hessian may be used to steer the application of the matched-
filter and confidence measures makes the computation tractable.

Problems still remain on the way towards complete retinal
vessel extraction algorithm. Most important is extracting the
high-level organization of the characteristic venous and arterial
trees of the retina. Doing so will help to distinguish veins and
arteries, to avoid incorrect placement of vessels between two
pathological structures, to separate parallel vessels from a single
vessel with a central reflex, and will further improve the ability
to detect low-contrast vessels that are not apparent from the
local intensity structure alone. Together with the generalization
of our confidence-based tracing algorithm to three dimensions,
this forms the most important future direction for our research.
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