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Abstract— Motivated by the goals of improving detection of low-
contrast and narrow vessels and eliminating false detections at non-
vascular structures, a new technique is presented for extracting
vessels in retinal images. The core of the technique is a new likeli-
hood ratio test that combines matched-filter responses, confidence
measures and vessel boundary measures. Matched filter responses
are derived in scale-space to extract vessels of widely varying widths.
A vessel confidence measure is defined as a projection of a vector
formed from a normalized pixel neighborhood onto a normalized
ideal vessel profile. Vessel boundary measures and associated con-
fidences are computed at potential vessel boundaries. Combined,
these responses form a 6-dimensional measurement vector at each
pixel. A training technique is used to develop a mapping of this
vector to a likelihood ratio that measures the “vesselness” at each
pixel. Results comparing this vesselness measure to matched filters
alone and to measures based on the Hessian of intensities show
substantial improvements both qualitatively and quantitatively. The  rig 1. liustration of the challenges of retinal vessel extraction. Arrows drawn
Hessian can be used in place of the matched filter to obtain on the image [in yellow / with dashed lines] indicate pathologies, the boundary
similar but less-substantial improvements or to steer the matched of the optic disc and the boundary of the retina, all of which tend to cause false
filter by preselecting kernel orientations. Finally, the new vesselness positives in vessel detection. Arrows drawn [in white / with solid lines] highlight
likelihood ratio is embedded into a vessel tracing framework, nharrow or low-contrast vessels which are difficult to detect.
resulting in an efficient and effective vessel centerline extraction

algorithm.
Index Terms—vessel extraction, vessel tracing, matched filters, [7], image registration [8]-[14], change detection [15]-[21],
likelihood ratio, retina images pathology detection and quantification [22], tracking in video se-
guences [23]-[25], and computer-aided screening systems [26]—
I. INTRODUCTION [29] depend on vessel extraction. The techniques published in

HE leading causes of retina-related vision impairment atige research literature in response to the importance of retinal
ugssel extraction may be roughly categorized into methods based

blindness in the U.S. are diabetic retinopathy, age-relat ; X
macular degeneration (AMD), and glaucoma. Current estimaf@ matched filters [24], [30], [31], adaptive thresholds [31],

indicate that they affect 4.1, 1.8, and 2.2 million adults over adgg?l: intensity edges [33], [34], region growing [35], statistical

40, respectively, with projected increases to 7.2, 2.9, and dnMerencing [36], mathematical morphology [16], [35], [37], and

million individuals by the year 2020 [1][3]. It is believed that1€SSian measures [22], [38]-{40]. This wide range of techniques
half of all blindness can be prevented [4], in part through p&lOSely corresponds to the suite of methods that have been
riodic screening and early diagnosis. Automated image analy@RPlied throughout the medical image analysis literature [41].
techniques should play a central role because the huge volufieParticular note, the recent literature has been dominated by
of images precludes strictly manual analysis. Hessian-based methods because of their utility in characterizing

Reliable vessel extraction is a prerequisite for subsequdfi elongated structure of vessels [38], [42]-{45].

retinal image analysis and processing because vessels are tfeveral challenges of vessel extraction in retinal images are
predominant and most stable structures appearing in the #fiistrated by the images shown in Figurgs 1 drd 2. These

ages. Many published algorithms for optic disc detection [sEhallenges may be outlined as follows:
_ _ _ _ o There is a wide range of vessel widths — from less than a
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tracing techniques [33], [48] where the vesselness measure is the
average of the left and right edge responses.

The main contribution of this paper is the development of an
enhanced vesselness measure that addresses the issues illustrated
in Figure[]. Motivated by the apparent effectiveness of the
matched filter in highlighting low-contrast and narrow vessels
and by recent success in using matched filters for retina vessel
segmentation [31], we introduce a multi-scale matched filter for
vessels, using an appropriate normalizing multiplier to allow
the combination of responses across scales. We then augment
the matched-filter responses with a new vessel “confidence”
measure, analogous to the edge-based measure presented in
[50]. It determines how closely an image region follows an
ideal vessel profile. Importantly, unlike the matched filter, this
measure is independent of amplitude. To these vessel response
and confidence values we add edge detection filter responses and
confidences taken from the boundary of the purported vessel.
This produces a six degree-of-freedom measurement vector at
each pixel. Then, we use a training technique to develop a
mapping from this vector to a single likelihood ratio that serves as
the final “vesselness” measure. This gives a measure at each pixel
which may be used either for segmentation of vessel pixels or for
identifying the centerline vessel pixels and vessel widths when
used in combination with non-maximum suppression. We focus
on the latter because the measures are designed to have maximum
response along the centerline of the vessel, and because this

(a) Matched filter (b) Lindeberg

(e) Edge responses (f) LRV measure

provides a more compact, geometric description of the vessels
) ) ) ) than segmentation alone.
Fig. 2. llustration of the challenges of retinal vessel extraction on the We show that the new Likelihood Ratio Vesselness (LRV)
vessel profile)(b) Lindeberg's ridge measure [49]c) Frangi's Hessian-based Mmeasure outperforms the multiscale matched-filter and existing

vesselness measure [42]; afa) Mahadevan's robust model-based measure [36Hessian-based measures using guantitative analysis and using
All measures show spurious responses to non-vascular structures such ag,

image shown in Figurﬂ 1(a) Matched filter response based on a Gaussian

fundus boundary, the optic disc boundary and pathologies. Edge response imal(ggal mSpeC_tlon of resu.lts on retinal images. We also show
(e) shows numerous edges to which the vesselness measures are sensitive[TOMg the multiscale Hessian may be used to steer the matched

proposed Likelihood Ratio Vesselness (LRV) meagfireuppresses the responsefilter by selecting its orientation at each pixel and scale. This
to the bright pathology on the right, highlights thin and low-contrast vessels (e

the vessel above the same pathology), and completely removes the boundap&%}“ the_ matc_hed filter is apphed Only once a_t each plxel_ and
the retina. (Response images(&)-(f) were stretched 140, 255] for display.)  Scale, eliminating much of the excess computation. Alternatively,

the Hessian may be used in place of the matched-filter in the
LRV measure, producing substantial improvements in Hessian-
because they may appear as a series of bright spots, sopsed vesselness measures. The advantage of this is a lower
times with narrow, darker gaps in between. overall computational cost than the matched-filter-based measure
o Wider vessels sometimes have a bright Stl’ip running dovip exchange for a slight decrease in effectiveness.
the center (the “central reflex”), causing a complicated inten- The new vesselness measure may be used as a low-level
sity cross-section. Locally, this may be hard to distinguisperator in many existing vessel extraction techniques for the
from two side-by-side vessels. retina [35], [38]-[40], [51] and in related applications [41], [52]—
Our focus in this paper is on techniques needed to solve {&®]. By employing a stronger preliminary indication of the
first three problems — detecting low-contrast vessels and narrtmgations of vessels, each of these techniques should produce
vessels, while avoiding false responses near pathologies and obiwter overall results. As an example of doing this, the last part
non-vascular structures. of this paper shows how to replace the parallel-edge measure
The limitations of some existing methods are illustrated with the LRV measure in an efficient, exploratory vessel tracing
Figure[2. All these “vesselness measures” produce substargigiorithm [33], [48] which extracts the vessel centerlines and
responses to non-vascular structures such as the optic disc wiihs without having to analyze each pixel of the image. We
the pathologies. All measures produce stronger responses atcitmpare this new LRV tracing algorithm side-by-side with the
boundary of the retina, near the optic disc, and along centrabult of applying the LRV measure at each pixel and with
pathological structures than for the thin and low-contrast vessegiarallel-edge tracing algorithm [33], [48]. The paper concludes
This problem occurs with measures designed to compensateviith a summary of remaining issues in retinal vessel extraction.
responses to edges [42], [43], [46], [47] without directly finding The paper is organized as follows. In Sectjon Il, we give an
edges, using only the measurement at the hypothetical vessarview of vessel extraction methods in the research literature
center. The problem also appears in the results of edge-bagétth focus on matched filters and the Hessian. We derive the
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vessel matched filter in scale space in Sedfidn I, and then defseds modeled as piecewise linear segments with Gaussian cross
the confidence and edge measures in Setin IV. We show heections. In Hoover’s algorithm [31] a piece of the blood vessel
these are combined into the single vesselness measure — retwork is hypothesized by probing an area of the matched-
LRV measure — using a training technique in Secfioh V. Ifilter response image and, while doing so, the threshold on the
Section[ V], we present a summary of our evaluation techniqueatched filter is iteratively decreased. Gang et al. [61] proposes
and extensive experimental results. We propose a tracing version amplitude-modified second-order derivative of a Gaussian
of the LRV measure in Sectioh VIl and report experimentdilter to detect vessels at scales that match their widths. Steerable
results using it in Sectign VIIl. We conclude the paper in Sectidiiters are introduced in [62] and extended in [63]. In particular,
Xl Freeman [62] et al. shows an example of applying steerable filters
to vessel enhancement.
I[l. BACKGROUND Many techniques in the literature propose to detect vessels by

. o “ tracing” along vessel centerlines starting from seed points. Ayl-
Our background discussion is focu§ed on Fhe core vesselne\ﬁl%rd and Bullitt [38] apply Hessian-based vesselness measures in
measures tha_‘t have begn proposed in the literature. . aridge-traversal method. The exploratory algorithm of Can et al.
Several articles have introduced techniques for vessel or rld[gg], extended in Fritzsche [48], uses a set of two oriented edge

extraction based on the eigen-decomposition of the Hessighyection kernels to detect parallel vessel boundaries in tracing
computed at each image pixel [38], [42], [49], [56]-[60]. Weatinal images.

choose two specific measures here for our analysis, [42] and [49]a yariety of other methods has been introduced specifically

which have been applied in a number of papers [38]-{40], [44}; retinal vessel extraction. In [36] a model-based technique is
[45], [55]. They both start from the definition of teeale-space ronosed for vessel detection in noisy retinal images. While this

representation’. : R* x R* — R works well for image regions involving only vessels, the example
L(z,y;t) = g(x, y; t) = f (2, y), (1) in Figure[2(d) shows strong response to non-vascular structures.
Threshold-based methods find pixel grey levels that separate
where g(-;t) is a Gaussian function with variande f is an yessels from non-vessels either in the source or in pre-processed
image,(z, y) is a pixel location, anet represents the convolutionjmages. This is difficult even with adaptive thresholds [31], [32]
operation [59]. The Hessian of an intensity image in scale spagge to non-uniform illumination and the presence of pathologies.

can be obtained at each point by computing In [33], [34] vessels are found by finding their intensity edges.
9°L 9L I I Methods based on mathematical morphology [16], [35], [37]

H(z,y)=| 9%, %%iyl {L” L”] (2) use linear structuring elements to enhance vessels. Tolias and

dydx  By? v vy Panas [64] use fuzzy clustering of the vessel profiles in a tracing

The partial derivatives are computed by convolving the imagealgorithm  starting from the optic disc. Tracing can provide
with a derivative-of-Gaussian kernel. Frangi et al. [42] proposé&dbstantial speed-up but we have found experimentally that the
computing the ratio of the eigenvalugs;,| < || of the technique [33], [48] performs most poorly on narrow, low-
Hessian, as a ridgeness scoRss = \;/)\,, computing the contrast vessels — exactly what we are concerned with in this
Frobenius normsS, of the Hessian to measure overall strengtfiaper.

and combining these into a vesselness measure. This measur@verall, each of the primary techniques in the literature —
Specia"zed to 2D images where vessels are darker than H’%SSian, matched-filter and para"6| edge—haS limitations when

background, is used on images containing low-contrast and narrow vessels as
well as significant pathologies. The examples shown in Fig-

0 A2 >0 ures 2(a)—2(d) illustrate this. Recent papers in the literature have

Vo= Ry s? se ) buit tation algorith top of the basic Hessian and
exp (—55r ) (1—exp (—5= otherwise uilt segmentation algorithms on top of the basic Hessian an

_ . matched-filter measures, for example using adaptive thresholding
with parameters3 = 0.5 and ¢ equal to half of the maximum [31] and grouping methods [39]. Our approach here is to enhance
Frobenius norm of the Hessian. An example vesselness image primary image-based measures of vesselness. We start with

combined across scales is shown in Figure|2(c). the matched filter because it provides the best overall response
In Lindeberg [49] a ridge point is defined as a location fap low-contrast and narrow vessels.

which the intensity assumes a local maximum (minimum) in

the direction of the main principal curvature. Ridge strength is IIl. M ULTISCALE MATCHED FILTERS
evaluated as We start by defining a multiscale matched filter for vessels
Ay normL =12 (L — Lyy)? +4L2,) (4) usinga Gaussian vessel profile. The matched filter at one scale

is implemented by maximizing the responses over a discrete set
where L., L,, and L., are from the Hessian ang = 3/4. of kernel orientations at each pixel. Lg¢{u,v) be the image
An example response image computed across scales is shiwnsity at pixel location(u,v). At each kernel orientation we
in Figure[2(D). In the context of retinal image analysis, Staal édmpute the response to a two-dimensional separable kernel
al. [39] described a retinal vessel segmentation algorithm tifedm the convolution of two one-dimensional kernels applied in
combines a grouping technique with low-level, Hessian-basedccession. The kernel in the tangential direction is simply a
classification of pixels. Gaussiang(-), with wide support in order to smooth responses
Chaudhuri [30] et al. used a matched filter to detect retinal veslong the ridge. The kernel in the normal direction is a second-
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order derivative of the Gaussiag,,(-). In a coordinate system Lindeberg [49]. Formally, a mapping may be derived between the
rotated to alignu with the tangential direction and with the convolution for a matched filter in Equation| (6) and Lindeberg’s

normal direction, the matched-filter response is measure derived for second derivative operators applied to a
Gaussian ridge profile, but we presented the direct derivation
M (u,vity,t,) = here for clarity and completeness.
o0 oo
A. Parameters and Computation
_/ /gm,(v—U’;tq,)g(u—u’;tu)f(u',v’)du’dvl, (5) . ) ] .p .
Using this normalization, the responses may now be fairly

— 00 —O0

] o compared across scales. Computing the best response, which we
where ¢, and ¢, are the variances of the Gaussian in eacfj| denote byr,, at each pixel simply requires computing the
dlrgctlon. The scale parameter of the vessel matched filter is i&ximum matched-filter response over all scales and all orien-
variancet,. . _ tations. We first describe a computationally-expensive approach

In order to detect vessels at a variety of widths, we apply they; yses a fairly small number of orientations and then show
matched filter at multiple scales (i.e. compyft¢ (5) for multiplgo,y, to increase the number of orientations while decreasing
values oft,) and then combine the responses across scalgg computational time. For the first approach, 9 matched-filter
Unfortunately, the output amplitudes of spatial operators such §$entations are used i80° increments, the range of scales,
derivatives or matched filters generatlgcreasewith increasing t,, in the direction normal to the vessel 655 < /#, < 3.0
scale. To compensate for this effect, Lindeberg [49] introduc?,q&as in 0.5 pixel increments, antd, = 9.0 for all values of
y-norm_alized derivatiyesWe use t_his notion to define a- t,. We use a fixed, for all t, because a large, is needed
normalized matched filtefThe idea is to multiply the matched-for small vessels in order to integrate more vessel pixels, while
filter response at any scale by a normalization factor that takes g?ﬁarging t, further for larget, we found to be more costly
form t1/2 for scalet. In practice, this normalization is includedinan peneficial, especially due to vessel curvature. Kerels cut-
in the matched-filter kernel. Therefore, kernel coefficients sugj are3/7, and 2,/%,. We chose these parameters based on
to 0 and they are normalized so that filter responses for differegj, experiments with STARE and DRIVE databases which have
kernel scales can be fairly compared to detect vessels of Varyfﬁ%ges with resolutiorf00 x 605 and 565 x 584 and field of
widths. . o view 35° and45°, respectively.

Following [49] we computey by proposing an idealized model  computing a matched-filter response at each pixel location,
of the desired feature and its scalg, and then finding the jentation and scale is expensive. Fortunately, a large fraction
value ofy that causes the peak response in scale space 10 0GRUfhe the cost may be eliminated by introducing two simple
att = to. Our appearance model of an idealized vessel ispgistics. First, at each pixel and scafe, the Hessian is
Gaussian cross-section with variartgeand a constant intensity oo mpyted, the eigenvector corresponding to its largest eigenvalue
in the tangential direction. Because of this, no normalization i§ chosen, and its orientation is rounded to the nearest integer
needed in the tangential direction and we may consider onf¥gree. A matched filter is then applied with the normal in this
the normal direction in deriving the normalization factor. Scalgection. In effect. the Hessian is used to steer the matched
selection must be derived from the entity defining the ridgger Because of symmetry, this results in 180 possible discrete
(vessel) strength — in our case convolution of the vessel profigections for which filter kernels are precomputed. Second, at
with the matched-filter kernel of the same orientation. Exploiting, -, pixel, scale-space peaks are found using a fine-to-coarse
the properties of the Gaussian, thenormalized matched-filter goarch, stopping at the first peak. In this way, extra computation
response to a Gaussian cross-section at locdtion) and scale 4t coarser scales is avoided. Overall, we have found that these

tis speed-ups eliminate 93% of the matched-filter computations and
M, _norm(0,0;t) even provide slightly improved results because the matched-
oo filter directions are chosen in finer increments. Unless otherwise

X2

=_ / L(U@ —t)exp (_U/Q (H'to>> dv' indicated, all results reported here use these speed-up techniques.
2m\/tot® 2 tlo Once again, as compared to the Hessian-based operators dis-
+3 cussed in Sectign]ll, the matched filter provides better responses
- . to thin vessels and to low-contrast vessels. Spurious responses
(2m)2 (to +1)2 to non-vascular structures such as the fundus boundary, the optic

(6) dgisc boundary and pathologies are still present, however. This,

To find the peak, we differentiate with respect to the scalegether with a desire to further improve the response for low-
parameter and set the derivative to zero. This implies contrast vessels, motivates the use of the “confidence” and edge

measures we define next.

— 00

(V8]

213 (tg +t) — 3t
32" (ot 0 =512 )
(to +1)?

Solving for ¢t yields a maximum at = toy/(3 — 7). Forcing While the multiscale matched filter alone provides better
this peak to occur as desired at= ¢, the scale of our response to low-contrast and narrow vessels than Hessian-based
model cross-section, we must haye= 3/2. Therefore, the measures (Figurp 2{a)), it still provides spurious responses to
normalizing multiplier on the matched-filter resporise (5) at scat@n-vascular structures. Insight for why this occurs can be
t is t3/4. This multiplier has the same value as that derived mbtained by considering what happens when a matched filter

IV. CONFIDENCEAND EDGE MEASURES
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Fig. 3. Vessel matched-filter response to an offset edge. It is highest when the

offset is equal to the standard deviatigft of the matched filter. Fig. 4. Vessel confidences for the image in Fiqgre 1. Usually, the confidences are
highest at vessel locations but they can still be high around locations offset from
edges and other non-vessel structures. Confidence image was stretched linearly
to [0, 255] for display.

is applied near a step edge. As in the previous section, the

constant intensity along the tangential direction allows us to

only consider a 1-D profile. Symmetry arguments show thabise.

the matched-filter response is 0 when centered on the edgene now introduce a vessel “confidence measure” (borrowing
On the other hand, as the matched filter is shifted along tt&minology from [50]). At each pixel, we determine the peak
normal to the edge, the responses start to increase in magnitudgiched-filter response scale and direction, as described in
reaching a peak at an offset of (see FigUrES). These responsesection[Tl]. We then leg,,, be a vector formed from a segment
are often much stronger than the responses to lower contr@ith the ideal Gaussian profile at the current orientation and
vessels, as illustrated around the retina boundary, the pathologigsle,t, — i.e. a Gaussian along the vessel normal and constant
and the optic disc in Figurg 2{a). Similar problems occur withlong the vessel tangent. (We use the same parameters as in the
Hessian-based measures. The confidence and edge measnsgshed filter.) Lef(x) be a vector of the image intensity values
defined in this section are intended to add the information needallen from pixels overlaid by this template. The values in vectors
to distinguish these spurious responses from responses to #@3€ andg,, are independently centered and normalized by first
vessels. subtracting their mean (so that the sum of the elements in each
vector is zero) and then dividing by their magnitude (so that

_ _ _ _ _the vectors have magnitude of one). We define the confidence
We consider a discrete version of the matched filter at pixgleasure at this pixel as

locationx”" = (u,v):
1o (x) = —£(x) " gun- (10)

M (x) ;;G(Z,J)F(“ 6,v = J). ®) This can be viewed as normalized cross-correlation or cosine
distance between model and sample vectors. It provides an
indication of how closely-aligned the pixels are with the ideal
Gaussian vessel profile. In particular, the value is 1 at the center
of a Gaussian profile at the exact width, 0 at the center of an
ideal step edge, and 0.79 for the peak response when offset by
V/t, normal to a step edge. Interestingly, the latter response is
still relatively high. An example result is shown in Figiirie 4.

M(x) =—f(x)'g. (9) B. Edge Measures

In other words, the matched filter at a fixed location is expressedWVe have seen that the matched filter, even with an added con-
as a dot product of the kernel and image neighborhood bditience measure, is not enough to entirely eliminate non-vessel
rearranged into vectors. I is normalized (without loss of responses. What is needed is a more direct measure of what
generality) to unit magnitude, this may be considered asoacurs at the boundary of a purported vessel. To illustrate more
projection off(x) onto directiong. As in any projection, a great concretely why this is important, consider again the difference

deal of information is lost. In particular, the projectifx) g between the matched-filter response to an offset step edge and
says nothingabout how wellf (x) fits the profile represented bythe matched-filter response to a true vessel. In the first case,
the kernelg. This is simply becausé(x) is unnormalized. A there will be an edge on one side of the region, but not on the

vector f(x) formed from an ideal, low-contrast vessel will beother, while in the second case there will be edges on both sides.
nearly parallel tog, but may have a much smaller projectiorStated more strongly, the fact that the second edge is missing is
than a vectof (x) formed by an offset step edge (as previouslthe most significant difference between a vessel and an offset step
discussed) or even a region made up solely of large magnituetige. We capture this information by combining edge strength

A. Vessel Confidence Measures

Here, G is the matched-filter kernel ardd is the discrete image.
We can rearrang€: and the corresponding pixels Bfby putting
their columns one-by-one into vectogsand f(x), respectively.
For example, matrixG with M columns andN rows will be
rearranged into vectog with M - N elements. Doing this[]8)
may be rewritten as
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and confidence information with the matched-filter strength and % y— 0
confide_nce. _ _ o _ g — & strong edge
The first step in doing this is to compute the gradient directiong -0.2 weak edge

and magnitude at each image pixel in scale space. This is dong ~03
by applying the algorithm of [49] as implemented in ITK [65]. & 04

=

The maximum normalized response and associated direction ag
saved at each pixel. The range of scaless 0.5 < /. < 1.75

Chernoff bound (log)
& & 644
a » W N R

in 0.25 increments, and kernel cutoffs &¢t.. Note that this 0o 2 4 6 8 10 0 2z 4 8B
range is much narrower than the range of scales for the matched nUer ot s (b)

filter. If the vessels followed an ideal Gaussian profile then the

optimum sets of edge and vessel scales would CorreSpondF'lgn 6. Logarithm of the Chernoff bound as a function of the number of bins

. ; ig.
practice however the vessel scale depends on the width of {higor vessel, strong edge, and weak edge respoisefor vessel, strong edge,
vessel, whereas the edge scale depends on the diffusenessdfieak edge confidences. The discriminative power of the weak edge is higher

the vessel boundary. In particular, wider vessels in real ima ggm that of the strong edge because the existence of the weak edge is the most
) ' . |Sgni1}'cant difference between a vessel and an offset step edge.

often have edges steeper than the Gaussian-modeled vessels 0

the same width. Therefore finding edge scale independently of

the vessell ;cale yields better results; we have found the g'\f%gponses of both edges are high at vessel locations, but the
range sufficient.

weaker edge response and its confidence are low near edges and

The following shows how the edge responses are combin
other non-vessel structures.

ith the independently-computed matched-filter responses (an . . .
w Indep Y Pu I P ( verall, the combined vessel and edge computations give us

confidences). At a given pixel location, let n be the (unit) three strength measures and three confidence measures at each
normal to the vessel and = 2,/%; be the approximate vessel . gin 1 . T .
width, both determined by the peak matched-filter responsepllﬁ(el' We combine these into a six-dimensional vedgix) =
orientation and in scalé(). Given these values, the vessel edgeﬁsr” (%), 7es (%), Tew (%), 70 (%), s (%), ew (x)).
should pass (roughly) through pixel locatiors = x + (w/2)n
andx, = x — (w/2)n. Moreover, at these locations, the edge
gradient directions should point outward, away frenffor dark Our next step is to map the 6-D response/confidence mea-
vessels) in directiom. Therefore, at each of the two potentiaburement vecto® into a single “vesselness” measure at each
edge locationsx; and x,, we search in atl pixel interval pixel. The measure we choose is the optimal test statistic by the
alongn for the pixel whose gradient vector, when projected ontdeyman-Pearson Lemma [66], tlikelihood ratia
the _qutward normal for X1 and —n _fqr X3), has_ the Iargest »(©]on) P(on)
positive value. Thet1 pixel interval — giving 3 possible locations LRV(®) = ——————.
overall — accounts for the modeling error caused by asymmetric p(®|off) P(off)
vessels. This is only a slight shift in the location and is needétere P(on) is the prior probability of a pixel location being on
because of discretization effects, because of slight asymmetifes centerline of a vessePR(off) = 1 — P(on), and p(®|on),
in the appearance of the vessel, and because of diffuseness optl|off) represent the corresponding conditional probability
edges. We record these largest values along with the matchéeirsity functions (pdfs) for measurement ved®r LRV is the
filter and confidence responses sat— in other words at the desired “Likelihood Ratio Vesselness” measure. Note that when
center of the purported vessel. In doing so, we order the two edbfe likelihood ratio is 1.0, it indicates an equal chance that the
responses by their magnitude, denoting the stronger.bfx) current location represents vessel or non-vessel. With increasing
and the weaker by, (x). This ordering makes the measur¢alues of likelihood, we are more sure that a vessel is present.
more discriminating and easier to train. To illustrate, this offset To train these pdfs we use manual-segmented retinal images,
step edge is distinguished by a low value of the weaker resposseh as in the STARE [31] and DRIVE [51] data sets, as ground
rather than by which side this response occurs on. truth. Only pixel locations for which the matched-filter response
Finally, we compute confidences for the strong and wedk positive are considered because negative responses will never
edge responses. Similar to the matched-filter confidence, thea vessel. Non-maximum suppression is applied to the matched
edge confidences measure how well the edge profile fits fileer responses so that pixels near the vessel boundaries are not
expected shape, independent of the magnitude of the edge.u$ed in training. The manual segmentations were not thinned for
compute confidence, the ideal vessel edge profile is modeledttaining because even small (1-2) pixel errors in the localization
the cumulative distribution of the Gaussian, with varianeet to would change decision about whether a response is a vessel or
the peak scale of the edge. Following the same procedure asrfot. Training P(on) is accomplished simply through counting
the vessel confidence, each edge confidence measure is comptiiteechumber of matched filter responses marked as vessels in the
by projecting the local intensity window onto a segment witmanual segments and dividing by the total number of responses.
the ideal profile oriented along directioin and centered at Since we only consider positive matched filter responses, our
the detected edge locations (from thel pixel interval). The prior P(on) is the probability of a pixel location with a positive
resulting confidences are denotgd(x) andr.,,(x) and together matched filter response being a vessel centerline p@ff) =
with the responses recorded at the center pixelthe vessel 1— P(on). Training the conditional pdfs uses a histogram-based
pixel). Figure[$ shows an example result. Confidences amthod adapted from [67]. We chose histograms to estimate the

V. TRAINING AND DECISION CRITERIA

(11)
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Fig. 5.  Confidencdleft column) and responséright column) images of the stronggtop) and weaker(middle) vessel edge for the source image shown at
the bottom. These are displayed as 3D plots. Confidences and responses of both edges are high (and positive) at vessel locations. Around pathologies and ¢

non-vascular structures the weaker edge responses and confidences are close to zero (if no weaker edge is detected) or negative (if it is located on the same di
edge as the stronger edge).

distributions because of their simplicity, although clearly othavhere0 < ¢ < 1. To obtain the bound, the right hand side
options such as Parzen windovksnearest neighbor classifiers,of the inequality is minimized ovef. Computationally, the pdf
and decision trees could be considered [68]. Two six-dimensiomglreplaced by a normalized histogram with a discrete set of
histograms are formed, one to represg(®|on) for the “on” bins, and the integral irf (12) is therefore replaced by a discrete
pixels and one to represept®|off) for the “off” pixels. The summation.

histograms are normalized to unit magnitude. Because of th@ye now describe how to determine the bin boundaries. Each
high dimensionality, the choice of bin size is crucial: making thgimension is handled separately, which means we look for bound-
bins too small leads to explosion in the number of bins; makingjes partitioning 6 1-D histograms. The resulting sequences of
them too large leads to a loss in precision. To solve this problegy ndaries for every dimension are combined by taking their
bin boundaries are chosen adaptively, with the same boundagiggtesian product to form the corner points of the axis-aligned
used in both histograms. bins in 6 dimensions. (Note that the same boundaries are used for
The choice of boundaries is based on the Chernoff bound #thp(® |on) andp(®|off).) In order to determine the boundaries
the error for the likelihood ratio [67], [68]: in one dimension, we start by assigning all measurements from
¢ 1 ¢ ¢ the training images to bins in a fine-grained 1D histogram. The
P(erron < P*(on)P " (off) /P (®lon)p" % (O |off)d®, Chernoff bound[(T2) is then minimized ovgfor each boundary
(12) point, treating the boundary point as a partition that assigns all
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measurements below it to one bin and all measurements aboveegults we present here are taken from the STARE database with
another bin. The point for which the overall minimum pf|(12) ishe segmentation produced by the observer who marked more
achieved is selected as the first partitioning boundary. The secenahll-scale vessels.

partitioning boundary is determined in a similar manner with the During training we use a leave-one-out strategy for the STARE
first boundary fixed. Every additional boundary decreases tgta set and the dedicated training set for the DRIVE data set. Of
minimum Chernoff bound, which reaches an asymptotic valyge two image databases, DRIVE contains mask images for filter-
when enough boundaries have been added. F[gure 6 shows fi@background and STARE does not. Automatic masking is easy
this happens quickly and only 6 bins per dimension are sufficigRt carefully controlled imaging environments. In practice many
to model the distributions accurately. This gives a totabb® jmages have illumination artifacts, double boundaries caused by
4.7 x 10* bins, which is a manageable size. Typically, only 15%cquisition, numbers and tags and different fields of view, which
of the histogram bins are filled. Although this suggests thatzf make masking hard. Moreover, one of the advantages of our
more compact representation could be used, the total numbefe&hnique is that masking is not necessary. Therefore, in this
bins is too small for this to be a substantial concern. paper, masks were used in experiments only on the DRIVE image
The training also gives insight to the discriminating powefet which has the mask images included.

of each measure we have developed. In particular, the |eft pIOtOur analysis is based on vessel centerlines, even though other

of Figure[§ shows the Chernoff bound as a function of thEeublished results are based on vessel segmentations [31], [32],

number of bins for vessel, weak edge, and strong edge respon ' [51]. There are a number of reasons for this. First. all

while the right shows corresponding plots -for.th.e cgnﬁdenc ﬁ%jmponents of the LRV measure — the matched filter, the two
Overall, the strength measures are more discriminating than

! : : : e responses and all of the confidences — strongly emphasize
confidence measures, but not dramatically so. This substantiajes .
. . etecting the center of the vessel. The measures are much weaker
the motivation for using both types of measures. Below we

. . . . pear the boundaries of vessel. Second, these centerline points,
show experimentally the improvement in the detection rates Ymeti . . : .
sng1et|mes together with approximate widths, are what is most

augmenting the vessel matched filter with vessel confidences @

further imorovement when the edae measures are added needed in algorithms such as registration [12] and optic disc
P 9 " detection [6] that depend on vessel extraction. Third, since

VI. EXPERIMENTAL EVALUATION the boundaries of the vessels are diffuse and fade subtly into

the background, boundary localization is non-exact and highly-

The likelihood ratio [(I]l) is our final “vesselness” measurgniective, making the labelling of pixels near boundaries less
LRV, intended to be used similarly as the vessel measure plofy| in quantitative analysis. Finally, quantitative measures of
Frangi et al. [42][(B) and the ridge measure of Lindeberg [4QLgmentation are dominated by the performance on wide vessels,
@). Non-maximum suppression is applied to the LRV values Bmply because wide vessels have more pixels.
the direction normal to the vessel orientation at detected points . - .-

Following training we gather performance statistics on test

A threshold is then applied to the surviving LRV values to make . :
bp 9 ages. For any test image we can determine the number of true

the final vessel / non-vessel decisions. A faster but less eﬁect‘%

version of the LRV measure is obtained by substituting Fran ?smve, fglse positive, and false negative yessel _centerhnes ex-
W&}cted using our LRV measure for any choice of final threshold.

vesselnesg [3) for the matched filter in the measurement vector. define th ts b : inst a thinned ;
All the other steps of the algorithm, including scale selectio ,e. €fine Inese counts by comparing against a thinhed version
remain unchanged. (using the t_hlnnl_ng code in Matlab)_of th_e r_nanua_l segmentations.
In our evaluation, we first quantify the improvement gaineﬁ true positive is any detected point within 2 pixels of a point
' \%We thinned manual segmentation. False negatives are counted

by using vessel confidences and edge measures together the number of points in the thinned manual segmentation not
the matched filter. We then compare detection results using L . . P . . 9
W|ﬁh|n 2 pixels of a detected centerline point. The tolerance of 2

and Frangi's measure on all retinal vessels in an image. We thex Is was chosen to account for localization errors in both the
present detection experiments focused on thin vessels and on E%Vr?ned manual segmentation and in the centerline peak location
contrast vessels. Finally, we show qualitative comparison of t 9 P

LRV measure and the vessel matched filter. (essentially allowing 1 pixel of error in each).
Finally, we have the question of how to evaluate the quanti-

tative results. ROC curves, which are widely-used, are not very
We evaluate our technique both quantitatively and qualitativeilyformative when the total number of negatives (in the ground
using two publicly-available data sets with images of diseast&rdth) is much larger than the total number of positives; in our
retinas, the STARE database [31] and the DRIVE database [5ddse fewer than 3% of the pixels are vessel centerlines. This
There are advantages and disadvantages to each database. STA&dASs a large number of false positives — e.g. equal to the total
includes images with a wider range of appearances and matanber of true positives — will be small in terms of percentages
large-scale pathological structures, but there are fewer imagéstrue negatives (see discussion in [69]). This produces an
(only 20) and there are substantial interobserver variabilities ertremely steep, almost step-like, ROC curve. A better measure
the manual segmentations: one observer consistently highlighted evaluating vessel detection is a—{Rrecision)-Recall curve.
more small-scale vessels. More images are available in DRINRecall equals the true-positive detection rate just as defined for
and the interobserver agreement is better, but the pathologiesR@C curves. (X Precision) is defined as the number of false
less prominent. Because of our interest in narrow vessels gusitives divided by the total number of detections. In another
avoiding false response to pathological structures, most of therds, it defines the fraction of detections that are wrong.

A. Evaluation Technique
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Fig. 7. ROC curves (left) and (Precision)-Recall curves (middle) showing the effectiveness of the LRV measure. Comparisons are made between the full
measure (LRV), the measure with only vessel confidences, and the multiscale matched filter alétrecigion)-Recall curves are more suitable for comparison
because of large number of negatives (non-vessel pixels) in the ground truth. Notice in the middle plot that the matched filter with vessel confidences is as power
as the full LRV measure until about 50% of all traces are detected. Plot on the right compares the LRV measure (with the matched filter) to the LRV using Frangi
Hessian-based measure and to the matched filter and Frangi's measure alone.

B. Overall Results average foreground intensity and the average nearby background
‘;:gtensity is more than 3 noise standard deviations.Rfecision)-
sults combined across all 20 images in the STARE data (icall curves for these two computed using the STARE data set

(Figure[T). As shown in Figurg] 7(a), the ROC curves are n ] are shown in Figurg]8. .
very informative, with only very minor differences separating We also evaluated the performance using the DRIVE database

the measures. The {Precision)-Recall plots in the rest of thedf images [51] tested for both observers with training using the
figure are much more informative. Plot (b) shows that use of tRgParate dedicated training set (Figure 9). The improvements are
matched filter and its associated confidence — a two-compongiffilar but less substantial because the images are of higher
measurement vector at each pixel — in forming the likelihod@t@lity: their contrast is higher, a brightness does not vary
ratio dramatically improves the performance of the match&ignificantly, imaging artifacts such as blur are minimal, the
filter, while adding the edge responses and confidences neelfé@9€ background is masked out, and the images contain fewer
to form the complete 6-component vector provides Signiﬁcaﬁltlbstantlal_patholog|es. The overall higher detection performance
further improvements. Plot (c) shows that both the Hessian-baQid!! @lgorithms can be seen from larger area under the curves.
(Frangi) and the matched-filter-based LRV measures substantially o .
outperform the original measures, but the matched-filter LRV’ Qualitative Results - Pathologies
is clearly superior. (Lindeberg’s ridge measure performs slightly |n order to give a qualitative feel for the results, several “chips”
worse than Frangi's vesselness measure, so it was left outfrein the most challenging images are shown in Figuré 10.
the the plots.) Finally, the seemingly-strange non-monotoritese include a variety of pathologies and thin vessels that are
shape of the matched-filter and Frangi measures alone is easdysubtle they sometimes completely fade into the noise. (To
explained. The highest responses for these measures occusb@in the operating point for the qualitative results we set a
the retina boundary, the optic disc boundary, and the bounda@fyeshold ofr = 2.0 on the LRV measure, which corresponds
of pathologies (though perhaps slightly offset from the trug a pixel being twice as likely to be on-vessel as off.) The
boundary, as discussed above), because they are of much higfief-thing to observe about the results is that the matched filter
contrast than even the more distinct vessels. Hence, for very highd column of Figur¢ J0) highlights many of the vessels, but
thresholds, these are the only responses that survive thresholdigduces even stronger responses at non-vascular structures, such
as the optic disc (4th row) and the pathologies (2nd, 3rd and 5th
rows). When the matched filter is combined with the confidence
In the second part of our analysis we consider the specifind edge measures in producing the LRV measure, these false
problems that motivated our work: detecting thin and lowesponses are dramatically reduced (3rd column). Moreover, the
contrast vessels while avoiding false detection of vessels neabtle vessels start to stand out (all rows). Occasionally, some
pathologies and other non-vascular structures. of the pathologies still produce strong responses. These cases
We filter the overall quantitative results to develop a fairljrow 5, bottom right of the image) usually involve two bright
rough but indicative analysis of the performance on both thpathologies separated by a narrow strip in which the darker
vessels and low-contrast vessels. For thin vessels, we proaesimal background appears. The LRV measure correctly detects
the ground truth vessels, eliminating those from the image thmaany vessels with central reflex (3rd row, yellow arrow). When
are wider than 2 pixels. We do something similar for low-contratite central reflex is severe, more complicated vessel models
vessels, eliminating those where the difference between tmuld be used (both for computing responses and confidences).

The first part of our quantitative analysis uses overall r

C. Thin Vessels and Low-Contrast Vessels
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Fig. 8.  Using the ground truth segmentation, we generated théidcision)-Recall plots by focusing only on vessels 1-2 pixels wieft). The plots are
computed for the STARE data set [31]. The performance is worse than when evaluating all vessels, but still impressive. Similarly, we used ground truth segmentati
to generate the plots studying vessels that have contrast less than 3 noise standard dévggtipns
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Fig. 9.  (1—Precision)-Recall plots by focusing only on vessels 1-2 pixels wieft) and on vessels that have contrast less than 3 noise standard deviations
(right) . The plots are computed for the DRIVE database [51]. LRV measure consistently outperforms the original matched-filter and Frangi measures. The differen
between observers is larger for the low-contrast analysis so we plotted LRV and original matched-filter results separately for the two observers. Plot for the Frang
measure combines results for both of the observers. See the text for discussion.

After applying the threshold most of the narrow vessels stb5% (STARE) for narrow vessels and to 43% (DRIVE) and 80%

appear, although on occasion these are broken up into sH&TARE) for low-contrast vessels.

segments. Overall, the results on these challenging images appear

qualitatively to be better than other results in the literature. ~ There are several explanations for these low overall perfor-
mance numbers. The first can be seen by evaluating the reliability

of the manual segmentations used as ground truth. With the
One question that arises in studying these results is howD&IVE database, we can use the thinned binary labelling of one
use the performance curves to establish an operating threstaldderver as the ground truth to test the other. This yields a recall
on the LRV measure and any other measure. This is particularite of 91% and Zprecision of 9% across all images, but with
difficult for low-contrast and narrow vessels. For example, whesome images the recall rate drops as low as 76% and with others
the LRV measure is set to 50% recall of narrow vessels, thee 1-precision rate is as high as 25%. With low-contrast and
1—precision rate for the narrow vessels (percentage of detectior@srow vessels, these numbers are much worse, with 81%/30%
that are false) is 10% for DRIVE and 35% for STARE. For 50%or low-contrast vessels and 85%/16% for narrow vessels. For
recall of low-contrast vessels, the-firecision rates are 31% for STARE, recall varies between 99% and 56% anédpfecision
DRIVE and 57% for STARE. For the matched filter alone, dietween 46% and 1% in overall experiments. Clearly, with such
50% recall, the Lprecision rates jump to 17% (DRIVE) andhigh inter-observer variability, using the manual segmentations

E. Discussion
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Fig. 10. Results on 5 difficult image chips showing a variety of challenges, including pathologies, other non-vascular structures, and low-contrast, narrow vesse
The figure shows the source images in i column, the vessel matched-filter response images after non-maximum suppressioia tb@umn, the Likelihood

Ratio Vesselness (LRV) after non-maximum suppression in3tdecolumn and the pixels that remain after thresholding the LRV measure-at2.0 in the 4th

column. The images in the last three columns were stretched to the fane5] for display here, so direct comparison of intensities within and across columns

is easier. In generating the images in the fourth column, segments forming connected components with fewer than 4 pixels were removed. See the text for detal
discussion of the results.

to establish a 90% recall rate is not possible. (p < 10~ for STARE andp < 0.0005 for DRIVE) than the

The second explanation for the low overall performance numratched-filter and Frangi measures alone for overall, thin vessel
bers comes from the fact that the LRV measure is computedaind low-contrast vessel experiments. In addition, matched-filter-
just a small image region. When we look in small image regiotssed LRV is significantly bettep (< 0.0001 for STARE and
surrounding locations of false negatives in the LRV measure (foer< 0.005 for DRIVE) than the Frangi-based LRV.

a given threshold) we often do not see vessels. Only steppinglhe final question in using our LRV measure is computational
back to larger regions do these vessels start to “appear”. Thfficiency. We showed in Secti¢n T}A how applying the Hessian
suggests that higher-level information must be used. The simplean be used to steer the matched filter, avoiding the cost of
of these could be adaptive thresholding [32], [70], but mowrpplying it at all orientations. This reduces the overall cost of our
sophisticated grouping techniques are likely to be necessary émglementation to under 4 minutes on the images in the STARE
several steps in this direction have been taken in the literatui@abase. A number of further optimizations is likely possible, for
[39], [40]. Still, our quantitative and qualitative results show thaxample avoiding the application of the matched filter altogether
the low-level LRV measure substantially outperforms existinghen the Hessian response is too low. Rather than investigating
measures in a relative comparison and therefore should these possibilities here, we turn now to the question of embedding
inserted into existing algorithms in place of other measures sutie LRV measure in a tracing framework.

as the Hessian.

We computed paired-tests on the areas enclosed by the
(1—Precision)-Recall curves. Area is computed for each curveWe now show how to substitute the LRV measure for our
by analyzing every test image separately. Statistics on the areasdier parallel-edge vesselness measure [33], [48]. This has the
(mean and variance) are calculated for each measure and the fito@l-purpose of improving the efficiency of the LRV measure
critical valuet is compared against the tabulated distributioand improving the effectiveness of tracing.

Doing so, we found out that LRV measure is significantly better All exploratory tracing algorithms follow the same overall

VIl. VESSELTRACING



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 25, NO. 12, DECEMBER 2006 1542

~

Fig. 11. Vessel traces of a source im&tgdt) extracted using the matched filter to extract candidate tréoéddle) and after applying full 6-dimensional LRV
measurgright) . Most of non-vessel structures are successfully removed while traces of even thin and barely visible vessels are kept.

_:/’(7{\\\ /T;'r “’*\\&_) _
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strategy. Starting from a set of oriented seed locations, they degree change in orientation (in increments of 10 degrees),
recursively trace the vascular (or neuronal [71]) structure by =1 steps in scale space, ant pixel steps in the normal
stepping along the vessel tangent direction and locally detecting direction. If the largest response is non-positive, tracing is
the next point on the vessel. Usually, the “centerline” location, terminated. Otherwise, the best parameters are recorded, a
vessel width, and tangent direction are estimated simultaneously. step of two pixels is taken along directiép and the process
Tracing stops for a given seed point when it intersects a vessel is repeated.
already traced or when the vessel is not reliably detected. Tracing The verification step computes the confidences and edge
stops overall when all seeds have been explored. Usually, vessel responses at each trace point using the location, orientation,
branching and cross-over points are detected and localized in a and scale parameters to determine where to compute these
post-processing step [33], [72]. values. The likelihood ratio is computed for the resulting
Our approach follows this strategy as well, with a small but measurement vector. The trace point is discarded if the
important variation. The natural approach would be to use the likelihood ratio is below threshold = 2.0. An example
6-D measurement vector of matched-filter, confidence and edge in Figure[I] shows retina vessel traces before and after
responses, computed over a small neighborhood in location, applying the LRV measure and threshold. It may be
orientation and scale to compute the likelihood ratio and then possible to do even better using adaptive thresholding [32],
apply a threshold to decide the presence of a vessel. We have [70].
found, however, that this can lead to missed traces for the most
subtle vessels, prematurely halting tracing. Instead we apply only VIIl. T RACING RESULTS

the vessel matched filter during tracing. This is very sensitive and, ., cvaluate the effectiveness of this likelihood ratio tracing
detects both subtle vessels as well as results in many traceg af i in side-by-side comparison with two other technidfjies.
non-vessel locations (Figufe]11(middle)). We then compute t e is our likelihood ratio (LRV) applied image-wide with non-
6-D measurement and apply the likelihood ratio subsequen ximum suppression. This allows us to compare the perfor-

to thisz ff?verjtraceq results. In effect (\;vg arel using the vers]_ che when embedding the LRV measure in a tracing frame-
matched filter in tracing to generate candidate locations at w rk. The second is the parallel-edge tracing algorithm [33] as

to evaluate the LRV measure. T.his is less expgnsive than starting o4 in [48]. The goal of this comparison is to evaluate the
from large .number .Of ;eed points and applymg LRV measu provement over an existing tracing algorithm. Training the
during tracing. Earlier in the paper (Sectipn|VI) we evaluate nditional pdfs is done as in Sectipr] V. Estimatifgon) is

the LRV measure _at each pixel. . accomplished by counting the number of traced pixels using the
Here are a few |.mportant details: matched filter (in the “over-traced” image) manually marked as
 The seed points we use are the same as the seeds,dfsels in the manual segments and dividing by the total number
[48] — local intensity minima along smoothed vertical ang¢ pixels. As before, we use a leave-one-out strategy in training
horizontal lines through the images. Next, the multiscalgom the STARE data set and the dedicated training set when
Hessian is computed around each seed location and fhﬁning for the DRIVE data set.
vessel tangent direction is determined as the eigenvectogyjitative results can be seen in Fig[iré 12. The figure shows
corresponding to th(_a smallest e|geqvalue. Vessel _W|dth dfopped image regions with parallel-edge and LRV tracing as
found from the maximum matched-filter response in scalge|| as with the LRV measure evaluated at each pixel of the
space applied in this direction. The seed points are thgpage. The same seed points were used for both algorithms. The
sorted based on strength so that when tracing starts, fig\ned manual segmentation was used to mark true positives
most reliable points are used first. Only points that hayg,e), false negatives (red), and false positives (green). The new
positive matched-filter response are retained. tracing algorithm successfully handles difficult vessel branching
« The iterative tracing procedure is started from each segdy crossover points (two overlapping vessels in the 3rd and
point in the sorted list. At step > 0 of tracing from & 4t example), more accurately determines when to stop tracing

seed point, letx; be_: the current vessel locatiof, be the i, ynclear regions (thin vessels near pathologies in the 1st and
current tangent orientation, angl be the current vessel

scale. The position, orientation and scale are refined by[The tracing executable can be foundhtp://www.vision.cs.rpi.
searching for the maximum scale-space response o¥@fa [eduivessels/


http://www.vision.cs.rpi.edu/vessels/
http://www.vision.cs.rpi.edu/vessels/

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 25, NO. 12, DECEMBER 2006 1543

‘ /
¢

. v 1 /.
Fig. 12.  Source imagélst column), tracing results using parallel edge algorithm [33hd column), Likelihood Ratio Vesselness (LRV) based traci{8yd
column) and the LRV after non-maximum suppression and thresholding b2loW4th column). True positives are in blue, false negatives in red, and false positives
in green. The new tracing algorithm successfully handles difficult vessel branching and crossover points (two overlapping vessels in the 3rd and 4th example), mc
accurately determines when to stop tracing in unclear regions (thin vessels near pathologies in the 1st and 3rd example), correctly ignores pathologies (1st
4th example) and finds many of the thinnest vessels which usually have very low contrast (5th example). Notice in a number of cases false positives are mark

alongside false negatives (green line along red line) because of localization differences with the ground truth. The tracing results are comparable to the LRV meas
evaluated at every point. Vessels with fewer than 4 connected pixels were removed.

3rd example), correctly ignores pathologies (1st and 4th exampéelge tracing tends to detect them as one vessel (2nd and 3rd
and even finds many of the thinnest vessels (5th example). Noteample in Figuré 72). Tracing introduces a hysteresis that leads
in a number of cases that false positives are marked alongsiddess fragmentation than the raw LRV measure.

false negatives (green line along red line) because of localizatio o . . A
differences with the manual segmentations. The tracing resuItrsbuam't"’lt've performance is summarized in Fighr§ 13. The

are comparable to the LRV measure evaluated at every pof?ﬁ.w algorithm outperforms parallel edge tracing and brings

Occasionally, a vessel is missed by both tracing algorithms (oft'mnp rovement by more than 10 percentage points in the number of

around the optic disc) due to the lack of a seed point. Anothe?teCted traces overall (measured for same false positive fractions

. nd same likelihood threshold = 2.0). For a small number
reason for a vessel to remain undetected (3rd example on : : :
. ) of false detections, LRV tracing outperforms use of the image-
left, marked as red in all results) is when the local structure. .
. i wide LRV because vessels are traced starting from the strongest
is very poor and it does not follow the vessel model well. In

this particular case, the LRV responses are between 1.0 and 5280' points. The situation changes when there are not enough

and are therefore removed by thresholding. It is possible thsgted points to detect as many vessels as with the exhaustively-

also this vessel would get detected with better thresholding cgmputed LRV. The tracing curves do not reach pgintl) in

r . . .
a grouping technique. False detections that are inside manuali?'e— plots be_cause tracing starts from seed_pc_nnts, mgn!ng that
L vessels having no seeds are never traced. Similarly, paifi} is
segmented vessels but not within the error tolerance of a vessg .
: o : not reached because whole vessel segments are traced at a time
centerline are exhibited by a red trace (false negative) very clase :
In,the order of decreasing seed strength and for small number

to a green trace (false positive) as in the 4th column of the 211 false detections there will already be several correct vessel

. . L. (o)
example. B_ecause Itis a I’ICheI’ desc_rlpt|on, the LR.V measusrfggments detected. It takes less than 30 seconds to extract traces
more effectively detects two side-by-side vessels while parall?rbm a 700 605 retina image (unoptimized code on Pentium IV,
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Fig. 13.  (3-Precision)-Recall curves for LRV-based tracing results compared to parallel edge tracing algorithm [33] and LRV measure evaluated at each pixe
followed by non-maximum suppression. Computed for the STARE data sef(lfgf)] and DRIVE database [51}ight). The new algorithm outperforms parallel
edge tracing and brings improvement by more than 10 percentage points of the number of detected traces overall. For small number of false detections, trac

outperforms image wide LRV because vessels are traced starting from the strongest seed points. The situation changes when there are not enough seed poir
detect as many vessels as with exhaustively computed LRV.

Fig. 14. Example of a slit lamp imaggop left), LRV measure computed image wid®p right), parallel-edge based tracir{gottom left), and LRV-based
tracing (bottom right) . The LRV measure is powerful enough to highlight vessels but ignore the background noise which is the main reason for spurious traces o
the parallel-edge based algorithm. The new tracing algorithm correctly finds vessels that are missed by the parallel-edge based tracing.

3.2 GHz). The processing time decreases to less than 10 secdratsng is shown in Figuré 14 where both tracing algorithms
if we compute the vessel tangent directions using the eigenvectars applied to an image from a slit-lamp biomicroscope. The
of the Hessian as in pixel-by-pixel processing. The results chkelihoods are powerful enough to highlight vessels but ignore
be slightly worse at locations where the tracing cannot continoest of the background noise. This noise causes detection of
due to poor local structure and inaccuracies in the eigenvecspurious traces by the parallel-edge based algorithm. The new

direction. tracing algorithm correctly finds vessels that are missed by the
One final example that reinforces the effectiveness of LRRarallel-edge based tracing.
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