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Abstract. The algorithm described in this paper takes (a) two temporally-
separated CT scans, I; and Iz, and (b) a series of locations in I, and
it produces, for each location, an affine transformation mapping the lo-
cations and their immediate neighborhood from I; to Is. It does this
without deformable registration by using a combination of feature ex-
traction, indexing, refinement and decision processes. Together these es-
sentially “recognize” the neighborhoods. We show on lung CT scans that
this works at near interactive speeds, and is at least as accurate as the
Diffeomorphic Demons algorithm [1]. The algorithm may be used both
for diagnosis and treatment monitoring.

1 Introduction

This paper is concerned with volumetric registration tools to assist in longi-
tudinal monitoring of pre-cancerous and cancerous locations in the body. Our
experimental focus is lung cancer, the deadliest of all cancers [2]. The idea is
that nodule locations, or any other locations of interest, having been selected
within one CT scan, I;, manually or using CAD, are automatically located in a
subsequent (or earlier) scan, I. The regions surrounding the nodule and its cor-
responding location in the two scans are aligned (rigid or affine) in preparation
for either display or subsequent quantitative analysis. This problem will become
important with continuing increases in the number and size of CT scans and
with increasing use of longitudinal studies that require alignment of scans [3].
Implicit in this problem statement is a decision about the neighborhood of I
that corresponds to the chosen neighborhood of I;. In essence, the problem re-
quires recognizing the neighborhood as part of the registration process. We refer
to this problem as the Location Registration and Recognition or LRR problem.
The obvious solution to the LRR problem is to apply a global deformable
registration technique, followed by local affine registration to produce the final
transformations [3]. We propose a different approach because deformable reg-
istration (a) is not completely solved, (b) it is slow, and (c) solving it is not
necessary to solve the LRR problem. Moreover, a good solution to the LRR
problem can produce correspondences for deformable registration. Finally, even
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if advances in deformable registration make it practical for the LRR problem, a
decision component is still required to ensure correct neighborhood matching.

Our approach is feature-based, involving a pre-processing step to extract
a variety of features and keypoints distributed throughout the scan volumes
even in low-contrast regions. The main algorithm is applied to each pre-selected
(e.g. nodule) location separately.! It involves steps of hypothesis generation,
hypothesis refinement, and decision. Keypoints near the location are described
using shape-contexts [4] and matched to generate initial hypotheses. Hypotheses
are rank-ordered and refined in succession using a robust generalization of ICP
[5]. Decisions about acceptability of the final alignment recognition are based on
accuracy and stability measures combined in an SVM classifier. All components
of the algorithm are designed to be robust to differences between scans caused
by changes in scanning procedures, patient positioning, and physical changes in
the lung.

Our experiments on lung CT scans are designed to guide algorithm design
decisions and to validate the overall algorithm. Comparisons are made with the
Diffeomorphic Demons [1] registration algorithm. The overall results show that
LRR is in most cases in agreement with the resulting deformation fields and
sometimes even provides better alignment. Our initial implementation runs in
10 seconds on average per initial location.

In summary this paper makes three main contributions: (1) the overall algo-
rithm, (2) evaluation of shape-context methods [4] for indexing and for gener-
ating an initial transformation estimate in CT scans, and (3) a decision criteria
for determining when a region of one scan has been correctly recognized and
aligned in a fraction of a second.

2 Background

Most previous lung CT registration algorithms have been based on B-splines,
demons, thin-plate splines, radial basis functions, and alignment of surfaces (see
[3] for a review). Some algorithms are quantitatively compared in [6]. Other
algorithms, such as in [7] work by matching and aligning nodule locations that
have been specified in both volumes. The approach in [8] finds a single point-wise
correspondence to a given point by relative configurations to pre-computed stable
features. Neither of the two algorithms [7, 8] aligns the local regions. Finally,
several applications such as aligning a volume of interest around pulmonary
nodules [9] work by template matching or by minimizing mean-squared difference
of the intensity volumes. These applications can use the proposed solution to the
LRR problem which also includes the verification of the final alignment.
Keypoint, landmark and corner extraction algorithms [10] have been widely
studied in both medical imaging and in computer vision. Recent work in com-
puter vision has emphasized the computation of descriptor vectors at keypoint
locations, followed by indexing methods to match them between images [11].
One set of these methods, shape-contexts [4], which emphasizes the distribution

! In future versions, neighborhood proximity will be exploited.



Input: Image volumes I; and /> and a set of locations £ = {x1, ..., Xxn }, pre-selected
manually or semi-automatically from 1.

Output: Set {@1, e @)N}, where each 6, is a vector of affine parameters or the zero-
vector 0 indicating that no transformation was found.

Preprocessing: Extract features (Sec. 3.1), and extract keypoints and descriptors
(vectors) (Sec. 3.2) in both volumes. This step may be done offline. Form a k-d tree
storing all descriptors from I5.

Repeat for each pre-selected location xx:

1. Establish a local 3D neighborhood N'(x;) surrounding location xy.

2. Gather keypoints from I; within the neighborhood N (x;) into a set Uy, (Sec. 3.2).
3. Indexing: for keypoint in Uy, search the k-d tree to find the keypoint in I with
the closest descriptor. The two keypoints form a hypothesized match (Sec. 3.2).

4. Order the hypothesized matches by increasing descriptor distance. Consider the

best M = 20.

5. Repeat

(a) Pick the next match and compute an initial rigid transform by aligning local
keypoint coordinates.

(b) Estimate affine transformation parameters 85 of the mapping function T}
using robust generalization of ICP (Sec. 3.3). This is applied between features
in 3D neighborhoods M(xy) and M(x},), xj, = Tk(xk).

(c) Apply the decision classifier (Sec.3.4): If 8y is correct, save it and proceed to
the next pre-selected location. Otherwise continue to the next match (Step 5a).

Until all matches from the list have been processed.

6. No transformation has been found for xx, so set 0, =0.

Fig. 1. LRR algorithm outline.

of features and their orientations, has been generalized to range data [12] and
to landmark-based deformation field regularization [13].

Final decisions on alignment accuracy are often left to manual assessment.
Since this is not always practical, there is a need for reliable automatic meth-
ods. The technique in [14] for aligning 2D images applies statistical tests of
randomness based on the number of overall and consistent keypoint matches.
The algorithm in [15] combines measures of accuracy, consistency, and stability
checks. Similar methods have not yet been applied to 3D medical imaging.

3 Algorithm

The algorithm is outlined in Fig. 1, with important details described below.

3.1 Feature Extraction

Features summarize the structural content of the image volumes and are used in
all aspects of the LRR process. In order to ensure that features are available to
drive the LRR algorithm anywhere in the volume, the emphasis it to extract mul-
tiscale features distributed throughout the volumes (coverage) without missing
anatomical structures (completeness). We rely on robust statistical estimation
to ensure that correspondences generated when a feature in one volume has no



analog in the other are ignored. During the extraction process, features are cat-
egorized as sheet-like, tube-like or corner-like according to the local intensity
distribution.

The datasets are resampled to be isotropic. At each voxel location x, the
intensity gradient, VI(x), is computed and an outer product (auto-correlation)
matrix M(x) is computed as a gaussian-weighted average of (VI(x))(VI(x))"
over a neighborhood of x. A strength is assigned to each point: m(x) = trace(M(x)).
Pruning discards features that have strength below g, + 0, where pu,, and o,
are median and std. dev. strength values computed in overlapping neighbor-
hoods (30 x 30 x 30 mm) throughout the volume. Features are classified as 1d
(sheet-like), 2d (tube-like) or 3d (corner-like) based on an eigen-decomposition
of M(x). The associated eigenvectors form a local orthonormal basis, with sign
ambiguities resolved by the signs of the directional derivatives. Non-max sup-
pression is applied according to the dimensionality of the features (e.g. all 3
directions for corners, 2 for tubes, 1 for sheets). Surviving locations are inter-
polated to subvoxel accuracy, so that features can be located between voxels,
rather than strictly at voxel coordinates. Next, these locations are sorted by
m(x) values. Starting with the highest strength point and continuing until the
list is exhausted, points are accepted one-by-one. When a feature (at location x)
is accepted, remaining points whose strength is less than 7m(x) (7 = 0.8) and
within distance (2 of x (2 = 4 mm, currently) are eliminated. Fig. 2 shows ex-
ample features as part of a checkerboard mosaic of X-Y slices taken from aligned
volumetric neighborhoods.

3.2 Keypoints and Indexing

Corner-like features and their associated neighborhoods are used to form key-
points for indexing. These are found by repeating the foregoing process with
2 = 6 mm. A descriptor is computed at each keypoint. This is done using a
shape contexts approach [4, 12]. A spherical coordinate system is formed in the
keypoint’s local coordinate system. Four angular bins and four radial bins are
formed, (up to r = 30 mm), together with an additional central bin. In each bin,
the 3d gradient directions of all features that fall into the bin are averaged with-
out gradient magnitude weighting. The resulting directions are concatenated into
a 195-component descriptor vector. This is nearly the size of 2d image descrip-
tors and much smaller than descriptors used for range data [12]. This smaller
descriptor is sufficient for 3D volumes due to more distinctive spatial distribution
of points than in range data, and it results in much faster matching.

Since our whole approach hinges on effective keypoint matching, it is im-
portant to briefly examine some empirical tests that motivate the approach and
guide design decisions. These experiments are based on a small set of CT volume
pairs (see Section 4). For each pair, Deformable Demons algorithm [1], currently
the best algorithm for global lung CT registration [6], is applied to produce a
transformation Tg. For any keypoint match, if, after application of T¢ to the
keypoint from Iy, the keypoints are within 9 mm of each other and their axes
are within 20° then this is considered a “good” match. We use this to examine



the results of keypoint match at a random sampling of 1000 locations in and
around the lung in each scan. Here is a summary of the results:

— If we look only at the closest keypoint for each location, it forms a “good”
match 40% of the time. This shows the promise of the approach, but clearly
indicates that more than just the closest keypoint must be considered.

— Within 30 mm of the keypoint, a good match exists 96% of the time. This
shows much greater promise.

— Since we can not test all keypoints in N'(x;) (on average 160 within 30 mm),
we must consider the effects of rank-ordering of the matches. In this case 95%
of the x; have at least one good match within the top 20. If we replace our
ordering by descriptor distance with Lowe’s widely-used distance ratio [11],
this percentage drops slightly to 93%. These encouraging results justify the
design path taken here.?

3.3 Transformation Estimation

The estimation procedure finds the transformation T with parameters @; that
best aligns the neighborhoods M (xj) and M(x},) (size 50 mm), x}, = Tk (xx)
by applying a robust form of ICP:

FOr)= Y pldpia;0i)/o), (1)

(pi,aj)€eC

where p is the M-estimator robust function and C is a set of correspondences,
each established between a point p; from M(x) and a point q; from M(x},).
Distance function d is feature-type specific and is normalized by scale o or it
is computed using covariance of estimated parameters and feature locations [5].
The estimation alternates in two steps: 1) finding parameters 6}, by minimizing
the squared errors after applying robust function and weights, and 2) establishing
correspondences C and recomputing the weights. Estimation is symmetric and
C is randomly sampled to have size under 4000 for speedup.

3.4 Alignment Verification

Verification is used to reject incorrect hypothesized transformations so that fur-
ther initializations can be processed. This step is based on an eight dimen-
sional vector ®; obtained using forward (T) and backward (T, ') transform.
For each direction, the vector consists of the average error between fixed and
mapped moving points and of the maximum trace of the transfer error covari-
ance of the parameters, JCJ T, computed for regularly sampled point locations
pi.- J(pi) = 0T /aék. It also contains average difference between tangent an-
gles of tubular features in moving and fixed neighborhoods as well as difference

2 This 95% number does not represent an upper bound on the overall success rate of
the algorithm since the alignment process can often overcome initial misalignments
from keypoint matches that are not quite “good”.



between normal angles of sheet features. The vector ®j is computed for all ini-
tializations, even those that did not provide a correct final alignment. Alignments
with changes are left out. Therefore the output of the classifier is binary: aligned
or misaligned.

estimation|| success | failure |un-
4 Experiments 1n1’Flallz. good|bad|good|bad |def.
Pair 1 63| 10 2| 16(9
f . Pair 2 81| 5 21 913
The data. or our experiments are screen- p.. g 86l 3 ol 1110
ing and diagnostic lung CT scans taken ap- pgir 4 sl 6l 2| 11l3
proximately one year apart. The original vol- pajr 5 92| 6 ol 2o
umes were cropped and their sizes range from  Pair 6 43| 17 7| 22|11

280 x 180 x 30 to 310 x 250 x 90. Their spac-

ing ranges from 0.70 x 0.70 x 2.5 mm to Table 1. Estimation results using
0.89 x 0.89 x 5 mm. 600 initializations. Numbers indi-

cate successful/unsuccessful align-
ments given a good (2nd/4th col.)
and a bad (3rd/5th col.) match.

Our first experiment tests the estimation
component. The results are grouped based
on initialization being good (using a good i oo ds in many cases
match) or bad (Section 3.2). Manually mark- 1 o6 the initialization is poor (3rd
ing final result as aligned /misaligned we have col.) and the number of estimation
learnt that for two pairs all good (and several failures is small (4th col.).
bad) initializations produced successful align-
ment (Table 1). Corresponding neighborhoods with partial alignment but visible
changes (see Figure 2) were marked as undefined. The estimation did not pro-
duce a successful alignment for 2 cases each in three volumes and in 7 cases for
one volume. Such cases are automatically identified and a different initialization
tried. The overall algorithm succeeds on 97.3% of all initial locations.

Verification algorithm is tested for each pair using the leave-one-out pro-
cedure producing a false positive (FP) and false negative (FN) counts. False
positives are alignments deemed aligned by the algorithm but manually graded
as misaligned. False negatives are those deemed misaligned but in fact produced
a successful alignment. The total number of false positives was 2 out of 574
neighborhood pairs, while the number of false negatives was 29. Therefore the
algorithm is not likely to accept an incorrect alignment and rejection simply
means that another initialization is tried. The most ambiguous for the algo-
rithm (and manual grading) are pairs of local regions with changes between
them (marked as undefined): out of 26 classified as aligned, the FN count was 7.

Our overall evaluation compares the location registration to the diffeomorphic
demons algorithm [1]. As before (Section 3), we initialize our technique at M =
100 random locations. We obtain a set of point locations by regularly sampling
in M(xy) and compute RMS error between the points mapped with LRR final
transform and with the deformation field. On average the error is below 2.0
mm except for one pair for which it was 2.36 mm. Several examples of these are
shown in Figure 2. They represent examples where the LRR is in agreement with
the deformable registration but also examples where the location registration
alignment appears to be more accurate. The algorithm correctly ignored the
changes which tend to cause misalignments in the deformable registration.




Fig. 2. Examples of LRR (1st and 3rd col.) vs. deformable registration (2nd and 4th
col.). Agreement of both results (a), and examples where LRR alignment is better
(b). Features detected in fixed (blue) and moving (red) images drive the registration
and robust estimation handles outliers (e.g. the case with changes on the bottom right
which is partially aligned in the lower half).

All steps take on average 10 seconds per location on a laptop PC with Pen-
tium 4, 2GHz processor, 2GB of RAM, which includes speedup by discarding
initializations with high rotations (10% initializations in the first 20 have rota-
tion more than 45°). Note that further speedups are possible through improved
data structures, code profiling and resulting optimizations, running the algo-
rithm on a multi-core or multi-processor machine parallelizing each component,
or trying multiple initializations concurrently.

5 Discussion

We have presented a novel algorithm for Location Registration and Recognition
(LRR) without solving the deformable registration first or simultaneously. We
have shown the applicability of shape contexts for indexing and and how they can
be used to obtain an initial transform. Overall experiments on the longitudinal
CT scans of the lung show that the algorithm is able to handle changes between



the local regions, is at least as accurate as the deformable registration result,
and runs at interactive speeds. Novel verification algorithm decides whether a
region of one scan has been correctly recognized and aligned.

One potential difficulty of the algorithm could be regions that do not have

much structure to drive the registration. To correct this, the neighborhood might
need to be chosen adaptively. This together with more in depth experimental
validation and exploring other applications are the main directions in our future
work.
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