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Abstract

Our goal is a highly-reliable, fully-automated image regis-
tration technique that takes two images and correctly aligns
them or decides that they can not be aligned. The technique
should handle image pairs having low overlap, variations
in scale, large illumination differences (e.g. day and night),
substantial scene changes, and different modalities. Our
approach is a combination of algorithms for initialization,
estimation and refinement, and decision-making. It starts by
extracting and matching keypoints. Rank-ordered matches
are tested individually in succession. Each is used to gen-
erate a similarity transformation estimate in a small region
of each image surrounding the matched keypoints. A gen-
eralization of the recently developed Dual-Bootstrap algo-
rithm is then applied to generate an image-wide transfor-
mation estimate through a combination of matching and re-
estimation, model selection, and region growing, all driven
by a new multiscale feature extraction technique. After con-
vergence of the Dual-Bootstrap, the transformation is ac-
cepted if it passes a correctness test that combines mea-
sures of accuracy, stability and non-randomness; otherwise
the process starts over with the next keypoint match. Exper-
imental results on a suite of challenging image pairs shows
the effectivenss of the complete system.

1 Introduction

This paper addresses the problem of developing an image
registration algorithm that can work on many different types
of images, scenes, and illumination conditions. Many of
these are illustrated in Figure 1. The algorithm should suc-
cessfully align pairs of images taken of indoor or outdoor
scenes, and in natural or man-made environments. It should
be able to align images taken at different times of day, dur-
ing different seasons of the year, or using different imaging
modalities. It should handle low image overlap and sub-
stantial differences in orientation and scale between images.
It should be able to align images with high accuracy. Fi-

nally, the algorithm should be able to indicate when two
images can not be aligned either because the images truly
do not overlap or because there is insufficient information to
determine an accurate, reliable transformation between im-
ages. Such a registration algorithm will have numerous ap-
plications, but perhaps more importantly will also provide
an important milestone toward the development of fully-
automatic computer vision systems.

Three primary technical challenges must be addressed to
solve this problem: initialization, estimation, and decision.

• While initialization is not a significant problem for
aligning images in a video sequence or for multimodal
registration of images taken from roughly pre-aligned
sensors, it is a major concern for more general-purpose
registration. Tolerating a wide range of position, scale
and orientation changes implies that simple initializa-
tion methods such as just using the identity transfor-
mation or using a coarse sampling of parameter space
are unrealistic.

• The estimation process must tolerate position, scale
and orientation differences, while producing an accu-
rate image alignment. Moreover, estimation must ac-
commodate the possibility that there is no relationship
between the intensities for a large fraction of the im-
age pixels. For example, for the winter & summer
pair in Figure 1, the leaves are gone and snow has ap-
peared in the winter image, changing both image tex-
ture and color. Because of this, an effective estimation
technique should automatically and adaptively focus
on what is consistent between the images.

• A decision criteria is required that not only chooses be-
tween different estimates obtained from different start-
ing conditions, but also decides when the images may
not be aligned at all. All of the conditions outlined in
the previous two items must be addressed in the design
of the decision criteria as well.

Many registration algorithms have been published in the
computer vision and related literature. Most of these are fo-
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(a) Winter & Summer (b) Day & Night

(c) Grand Canyon (d) Melanoma

Figure 1: Image pairs illustrating some of the challenges of general-purpose registration.

cused on the estimation process given an initial estimate.
This includes mutual information techniques [10], which
have been used widely in multimodal medical image reg-
istration problems, and direct methods [1, 2] that align im-
ages based on minimizing differences in intensity or some
other pixel-by-pixel measure [7]. Neither includes an ini-
tialization technique and neither includes a decision crite-
ria. Moreover, significant challenges must be overcome in
adapting these measures to the more general-purpose sce-
nario. For example, mutual information is susceptible to lo-
cal minima and sometimes produces an objective function
minimum at an incorrect alignment [10]. Direct methods
can not handle substantial scale and orientation differences
between images. Both of these can be handled by a suffi-
ciently reliable and accurate initialization method, but such
methods do not exist. The closest algorithm is the keypoint
matching and random sampling algorithm of [3] but, as we
will soon see, this relies too heavily on having a sufficient
number of correctly matched keypoints.

1.1 Approach

Our proposed registration algorithm is a combination of
existing algorithms (and implementations) and novel tech-
niques. Initialization is based on keypoint extraction and

matching, but keypoint matches are considered individu-
ally to generate an initial transformation estimate accurate
in only a small image region. Estimation uses the Dual-
Bootstrap ICP algorithm introduced in our earlier work on
retinal image registration [13], but now driven by multiscale
features extracted using a novel algorithm which is adap-
tive to local image content. Keypoint matches are tested by
the Dual-Bootstrap one-by-one until one resulting estimate
passes the decision criteria or all of the top matches are ex-
hausted. Our novel decision criteria is based on a test com-
bining measures of accuracy and non-randomness. Here is
a procedure outline of our method:

1. Extract corners and faces

2. Extract keypoints and match through indexing

3. Get next highest ranked keypoint match

4. DBICP refinement

i. Generate matches

ii. Parameter estimation for each candidate model

iii. Model selection

iv. Region growing
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Figure 2: Initial keypoint match and side-by-side alignment
for one of our winter-summer pairs. The image region on
the right has been scaled by a factor of 2.25, and there are
substantial illumination, blurring, and changes (snow) be-
tween the regions.

v. If early termination criteria is met, go to 3

vi. Go to 4i until region covers the overlap

5. Check decision criteria. If not met, go to 3

2 Initialization

Similar to several recent techniques (e.g. [3], we start by
extracting keypoints from each image and matching them.
We use Lowe’s implementation of his keypoint extraction
algorithm and SIFT descriptor [8] and reimplemented his
matching algorithm. (Similar results are obtained with [9].)
At this point, many techniques for registration and fun-
damental matrix estimation apply random sampling tech-
niques to search for combinations of matches that generate
an estimate optimizing a robust error term. We have found,
however, that on challenging image pairs there are too few
correct matches, both in terms of percentage and absolute
number, for this to succeed (Section 5). This reflects the
overall difficulty of initialization. We handle this by ex-
pecting less of initialization and designing the estimation
algorithm to “bootstrap” the alignment from a weak initial-
ization.

In particular, each keypoint match is used separately,
starting with the highest ranking match, to generate an ini-
tial similarity transformation. This transformation is es-
tablished from the positions of the two keypoints, the ori-
entations of their dominant intensity gradients, and their
relative scales (Figure 2). A small initial region is estab-
lished around the matching points in each image. The Dual-
Bootstrap procedure starts from this initial estimate and re-
gion.

3 DB-ICP

As outlined above, the Dual-Bootstrap ICP (DB-ICP) algo-
rithm iterates steps of (1) refining the current transformation

in the current “bootstrap” region R, (2) applying model se-
lection to determine if a more sophisticated model may be
used, and (3) expanding region R, growing inversely pro-
portional to the uncertainty of the mapping on the region
boundary. Since this algorithm is described in full else-
where for registering retinal images, we concentrate here on
what is needed to generalize this algorithm for a wider class
of images. This includes a new technique for multiscale fea-
ture extraction, new matching and estimation techniques,
and a simplified model selection algorithm. For more de-
tails, especially on region growing, see [13].

3.1 Feature Extraction

The most important innovation is our feature extraction
method. The original Dual-Bootstrap is driven by points
extracted along blood vessel centerlines. In a more gen-
eral setting, we need features that will be applicable to
wider range of images. The advantage of advocating im-
age features are (a) matching features provides direct mea-
surement of the geometric alignment error needed for the
region growth and model selection processes and (b) in our
setting even though much of the image texture may change
between images being aligned, structural outlines usually
remain unchanged. These should be captured by properly
extracted features. Moreover, the Dual-Bootstrap matching
and robust estimation techniques (implicitly) determine the
features that are consistent between images, using these to
drive registration, while ignoring what is inconsistent.

Two different feature types are located — corners and
face points — and these are detected to subpixel accuracy
at multiple scales in half-octave steps. No attempt is made
to combine features across scales, and all scales are used si-
multaneously during registration. This is important for sev-
eral reasons, including aligning images having significant
scale differences. The remainder of this section considers
feature extraction at a single scale.

At each pixel x, the intensity gradient, ∇I(x), is com-
puted. A weighted neighborhood outer product matrix is
then computed,

M(x) =
∑

y∈N (x)

w(x − y) (∇I(y))(∇I(y))�.

The eigen-decomposition is computed, M(x) =∑
i=1,2 λi(x)Γi(x)Γi(x)�, with λ1(x) ≤ λ2(x). Poten-

tial corners are located at pixels where λ1(x)/λ2(x) > ta.
This criterion is similar to the Harris corner detector [5].
Potential face points are located at pixels for which
λ1(x)/λ2(x) ≤ ta. Decision value ta has been ex-
perimentally set to 0.1, although the choice of values
is not crucial. Strength is assigned to each feature as
s(x) = trace(M(x)).
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Figure 3: Example intermediate resolution driving features,
which are more sparse than matchable features. Circles are
corners and line segments are face points, oriented along the
direction of greatest eigenvalue.

The next steps are designed to make the selection fea-
ture adaptive to image content. (1) A very low threshold,
ts = 1, is applied to the strength to eliminate plainly noise
points. (2) The median and robust standard deviation of the
strength values are computed in overlapping neighborhoods
throughout the image. At each pixel, if the strength is be-
low the local median plus a half standard deviation, it is
eliminated. (3) Non-maximum suppression is then applied
at each pixel for corners and faces separately. (4) Each re-
maining pixel is tested (faces and corners separately) in or-
der of decreasing strength to ensure that it has locally largest
strength and it is not close to other features. Pixels passing
this test become features. This procedure stops when a max-
imum number of features is found. A minimum distance be-
tween features is set to ensure that these are spread through
the image. The resulting features are called matchable fea-
tures. (5) The final step is to extract a reduced subset by in-
creasing the spacing and strength parameters to obtain a set
of driving features (similar to those in [12]). An example is
shown in Figure 3. In the matching process, driving features
are transformed and matched against matchable features.

3.2 Refinement Within the Bootstrap Region

The first step of DB-ICP is refinement of the transformation
estimate within the current bootstrap region R, ignoring ev-
erything else in the two images. The current transformation
is used to generate a new set of correspondences, and these
correspondences are used to generate a new transformation.
Unlike standard ICP, the Dual-Bootstrap proceeds to model
selection and region growing before selecting a new set of
matches.

Matching is applied from image Ip to image Iq and sym-

metrically from Iq to Ip. A driving feature p from Ip

is mapped into Iq to produce p′ = T(p; θ̂), where θ̂ is
the current estimate of the transformation parameters. The
m = 3 closest matchable features (of the same type) to p′

are found. One of these is selected as the best match based
on similarity in scales and (in the case of faces) orientations
following application of T. The corner and face point cor-
respondence sets, computed by matching in both directions,
are Cc = {(pc,i,qc,i)} and Cf = {(pf,j ,qf,j)}, respec-
tively. Symmetric matching provides more constraints and
more numerically stable estimate.

For a potential match (p′,q) of corners, the similarity
weight ws is the ratio of the scales, sq and sp′ at which they
are detected. In addition, p′ is multiplied by the scale of the
transformation: ws = min(sp′/sq, sq/sp′), which biases
the selection toward corners at similar scales. If the match
is between face points, ws is the ratio of scales multiplied
by |np′ · nq|, where np′ is the transformed normal of p and
nq is the normal of q.

Before constructing the transformation estimation objec-
tive function, we define the error distances

dc(p′,q) = ‖p′−q‖ and df (p′,q) = |(p′−q)T nq|
for corners and face points, respectively. Using this, for a
fixed set of matches and weights, the transformation can be
re-estimated by minimizing

E(θ; Cc, Cf ) =
∑

(pi,qi)∈Cc

ws;iwd;idc(T (pi; θ),qi))2

+
∑

(pj ,qj)∈Cf

ws;jwd;jdf (T (pj ; θ),qj))2

(1)

where ws;i is similarity weight and wd;i is robust alignment
error weight. This is wd,i = w(d(p′

i,qi)/σ)/σ2, where
w is the Beaton-Tukey robust weight function, d(·) is the
distance function, and σ2 is the variance. In particular, σc

and σf are the robustly computed error variances for corner
points and face points respectively. Weight ws;i measures
the similarity in scale and (for faces) orientation between
matched features (following application of the transforma-
tion).

Estimating θ̂ is carried out by iterating step of minimiz-
ing (1) and re-estimating the robust weights wd. Minimiz-
ing (1) is straightforward for affine and similarity transfor-
mation. When estimating the parameters of a homography
or a homography plus radial lens distortion model, we use
Levenberg-Marquardt minimization. The Jacobian of the
minimization is the basis for approximating the covariance
matrix [11, Ch. 15] needed for region growing and for the
stability component of the decision criteria.

This minimization process is applied to estimate the
mapping from Iq to Ip by reversing the roles of the feature
sets but keeping the same correspondences.
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3.3 Model Selection Criterion

As the region grows and more constraints are incorporated,
higher-order models can be used. The decision to switch to
a higher-order model is made using a model selection tech-
nique. Model selection transitions from similarity to affine
to homography, and in some cases to a homography plus
radial-lens distortion. For retinal images, the final model is
a quadratic transformation. Since the region grows mono-
tonically, we only consider switching from lower-order to
higher-order models. In the generalized Dual-Bootstrap we
now use the relatively simple Akaike Information Crite-
ria with a small-sample bias adjustment as recommended
in [4]:

− | Cc | log(σc)− | Cf | log(σf )−E(θ̂; Cc, Cf )+
nk

n − k − 1
,

(2)
where k is the degrees of freedom in current model and n =
2 | Cc | + | Cf | is the effective number of constraints.
Expression (2) is evaluated for the current and higher order
models using fixed match sets after IRLS is applied for each
model (as described above). The model that minimizes (2)
is then selected for the next iteration of the Dual-Bootstrap.

4 Decision Criteria

Once the Dual-Bootstrap procedure expands to cover the
apparent overlap between images (based on the estimated
transformation), and the refinement process has converged,
the procedure ends and the final alignment is tested. As
discussed above, if this confirms that the transformation is
acceptable, the images are considered to be aligned, and
the overall registration procedure terminates. Otherwise,
the next keypoint match is tested using the Dual-Bootstrap.
This ends in failure when a maximum number of matches is
unsuccessfully tested.

The decision criteria is composed of three parts — accu-
racy, stability and consistency — each of which must pass.
Accuracy is measured as the weighted average alignment
error for the final match set, using the weights and distance
measures defined above, and only face points because these
are more accurately positioned. Stability is measured as
the transfer error covariance [6, Ch 4] [13] for the mapping
of points on the boundary of the final bootstrap region. If
there is high variance in this mapping, the mapping is un-
stable. Both accuracy and stability are measured against
user-defined thresholds which have simple, intuitive mean-
ing. Finally, the consistency measure we use is a histogram
of the absolute difference in normal directions (measured
as an angle) between face point correspondences follow-
ing alignment. If this histogram is substantially closer to
an exponential distribution — i.e. very low orientation dif-
ferences — than to a uniform distribution, as determined by

the Bhattacharyya measure, then the consistency test passes.
As a final note, we use this three-part decision criteria as an
earlier termination criteria as well, allowing the algorithm
to quickly reject incorrect alignments early in the process.

5 Experiments

We have applied the overall registration algorithm just de-
scribed to the 18 images pairs in our test suite.1. The images
in the suite range in size from 676 × 280 to 1504 × 1000.
The algorithm tried up to 100 initial rank-ordered key-
point matches before declaring that the images could not be
aligned. It successfully aligned 15 of the 18 pairs, most to
subpixel accuracy. To achieve accurate alignment, a trans-
formation model with a homography plus second-order ra-
dial distortion is required for 3 pairs, a homography for 10
pairs, and for the final 2 — both retinal image pairs — a
quadratic model. Even when there were significant physical
changes in the scene, manual inspection showed no visible
misalignments for any of the 15 pairs. Example checker-
board mosaics showing the alignment results are shown in
Figures 4. In 2 of the 3 cases of failure, no accurate initial
keypoint matches were generated. Moreover, when all pos-
sible pairs were formed from non-overlapping images from
the test suitet, the new technique generated no false align-
ments. Finally, looking at the behavior of the algorithm sys-
tem in more detail, experiments showed that about 80% of
the time the initial match was roughly correct, the Dual-
Bootstrap procedure grew it into an image-wide alignment
that the decision criteria accepted as correct.

To reinforce the significance of these results, the
publically-available code for the Autostitch keypoint
matching algorithm of [3] produced 1 accurately aligned
pair and 4 pairs with visible misalignments; on 13 pairs it
failed altogether. Autostich was run with the original pa-
rameters.

As a last comment, our algorithm is not as expensive
as one would imagine. On the melanoma pair the cost is
about 0.25s per initial match, whereas on the larger winter-
summer pair the cost is 3.1s per initial match. Aside from
image size, the difference in the costs is primarily due to
the earlier termination criteria, which is much more effec-
tive on melanoma images. All the performance results are
measured on a Pentium IV 3.2GHz PC.

6 Summary and Conclusion

We have presented a complete system for registering pairs
of images and analyzed it on a challenging suite of test

1The images and the executable are available through
http://www.cs.rpi.edu/research/groups/vision/gdbicp/
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image pairs. This system is built on three main algorith-
mic components: keypoint matching to generate initial esti-
mates in small image regions, the Dual-Bootstrap procedure
for growing and refining initial estimates, and a three-part
decision criteria measuring accuracy, stability and random-
ness. The Dual-Bootstrap procedure, originally designed
for retinal image registration, was generalized here by using
new, generic, multiscale feature extraction, new matching
and estimation techniques, and a simplified model-selection
criteria. The technique successfully aligned 15 of the 18
pairs in the challenge suite, and does not falsely align non-
overlapping images. Overall, it works effectively when at
least one keypoint match is correct and when there is suf-
ficient consistent structure between the images to drive the
Dual-Bootstrap procedure — even when much of the struc-
ture is inconsistent due to physical and illumination changes
or differences in modality. The algorithm fails primarily
when there is no keypoint match to gain an initial toe-hold
on the correct alignment. Thus, although we have reduced
the importance of initialization to producing a single correct
keypoint match, initialization still remains the most chal-
lenging problem for general-purpose registration.
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(a) Melanoma (b) Day & Night

(c) Winter & Summer (d) Grand Canyon

Figure 4: Checkerboard mosaics showing the alignment accuracy for the pairs from Figure 1.
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