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Abstract. Deep learning for accelerated magnetic resonance (MR) im-
age reconstruction is a fast growing field, which has so far shown promis-
ing results. However, most works are limited in the sense that they as-
sume equidistant rectilinear (Cartesian) data acquisition in 2D or 3D.
In practice, a reconstruction from nonuniform samplings such as radial
and spiral is an attractive choice for more efficient acquisitions. Never-
theless, it has less been explored as the reconstruction process is compli-
cated by the necessity to handle non-Cartesian samples. In this work, we
present a novel approach for reconstructing from nonuniform undersam-
pled MR data. The proposed approach, termed nonuniform variational
network (NVN), is a convolutional neural network architecture based on
the unrolling of a traditional iterative nonlinear reconstruction, where
the knowledge of the nonuniform forward and adjoint sampling oper-
ators are efficiently incorporated. Our extensive evaluation shows that
the proposed method outperforms existing state-of-the-art deep learning
methods, hence offering a method that is widely applicable to different
imaging protocols for both research and clinical deployments.

1 Introduction

Magnetic resonance imaging (MRI) has a fundamentally slow acquisition speed
due to underlying physical and physiological constraints. Slow acquisitions re-
sult in reduced patient comfort as well as degraded image quality, where the
latter is largely due to patient motion and a long-term accumulation of system
imperfections. As such, accelerating the data acquisition has become an impor-
tant research topic in the last decades. In MRI, an image is acquired indirectly
through its Fourier transform, referred to as the k-space. Currently, a typical MR
imaging technique employs rectilinear (Cartesian) sampling on a uniform k-space
grid. Cartesian sampling is attractive due to its simplicity; once the k-space is
acquired at Nyquist sampling rate, the image can be obtained by applying an
inverse Fourier transform. However, more efficient 2D or 3D sampling patterns

†
Co-first authors. Emails: {jschlemper,ssalehi}@hyperfine-research.com



2 J. Schlemper et al.

may be designed to speed up MR acquisition time. For example, alternative tra-
jectories include radial [8], spiral [1] and variable density [9] as well as optimized
sampling patterns [10]. Non-Cartesian sampling patterns are attractive due to
their motion robustness [14, 3]. In addition, when undersampled, non-Cartesian
sampling patterns are particularly suitable for compressed sensing (CS) [11] and
deep learning (DL) based approaches as the aliasing patterns show higher inco-
herence than Cartesian sampling, which can potentially offer faster acceleration
factors.

Recently, deep learning based approaches for accelerated MR image recon-
struction have gained popularity due to their promising performances, often
exceeding the quality of the CS approaches [5, 15, 12, 17]. However, many of the
novel approaches have so far been developed for Cartesian sampling trajecto-
ries and only a handful of work has considered nonuniform MR data [18, 6]. In
this work, we present a convolutional neural network (CNN) architecture based
on the generalization of variational network [5] for non-Cartesian cases, termed
nonuniform variational network (NVN). Similar to variational networks, the
proposed method is based on the unrolling of iterative nonlinear reconstruction
used in CS, however, we generalize the regularization functional as well as adapt-
ing the data fidelity term for nonuniform case. The extensive evaluation reveals
that the proposed algorithm is superior over existing deep learning approaches
for nonuniform data.

2 Problem Formulation

Let x ∈ CN denote a complex-valued MR image to be reconstructed, represented
as a vector with N = NxNy where Nx and Ny are width and height of the image.
Let y ∈ CM (M << N) represent the undersampled k-space measurements. Our
problem is to reconstruct x from y, formulated as an unconstrained optimization:

argmin
x

λ

2
‖Ax− y‖22 +R(x) (1)

Here A is a nonuniform Fourier sampling operator, R expresses regulariza-
tion terms on x and λ is a hyper-parameter often associated to the noise level.
In Cartesian case, A = MF where M is a sampling mask, F is discrete Fourier
transform. In non-Cartesian case, the measurements no longer fall on a uniform
k-space grid and hence generalization is required. In essence, the sampling op-
erator A is now given by the nonuniform discrete Fourier transform of type I
(NUDFT-I):

y ((kx, ky)) =

Nx∑
l=0

Ny∑
m=0

xlme
2πi( l

Nx
kx+ m

Ny
ky)

(2)

where (kx, ky) ∈ R2 (rather than (kx, ky) ∈ Z2). An efficient implementation
of the above forward model exists, which is called nonuniform Fast Fourier
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Fig. 1. The architecture of Nonuniform Variational Network.

Transform (NUFFT) [2, 4]. The idea is to approximate Eq. 2 by the follow-
ing decomposition: A = GF sD, where G is a gridding interpolation kernel,
F s is fast Fourier transform (FFT) with an oversampling factor s and D is
a de-apodization weights. In contrast, the inversion of A is considerably more
involving. For the (approximately) fully-sampled case, one can consider direct
inversion (O(N3)) or a more computationally efficient gridding reconstruction,
which has the form xgridding = AHWy, where W is a diagonal matrix used
for the density compensation of non-uniformly spaced measurements. For the
undersampled case, the inversion is ill-posed, and one requires solving Eq. 1 by
iterative algorithms.

3 Proposed Approach

In this work, we propose a new deep learning algorithm to approximate the
solution to the optimization problem in Eq. 1. Firstly, we consider a gradient
descent algorithm which provides a locally optimal solution:

x0 = finit(A,y) (3)

xi = xi−1 − αi∇xf(x)|x=xi−1
(4)

where finit is an initializer, αi is a step size and ∇f is the gradient of the
objective function, which is given by:

∇xf(x) = λAH(Ax− y) +∇xR(x) (5)

Common choices of the initializer are adjoint finit(A,y) = AHy and grid-
ding reconstruction finit(A,y) = AHWy. The idea of variational network (VN)
formalism is to first unroll the sequential updates into a feed-forward model, and
approximate the gradient term ∇R by a series of trainable convolution layers
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and non-linearities. Such generalization yields an end-to-end trainable network
with Nit blocks:

x0 = finit-cnn(A,y|θ0) (6)

xi = xi−1 − λiAH(Axi−1 − y)︸ ︷︷ ︸
DC-i

− fcnn(xi−1|θi)︸ ︷︷ ︸
CNN-i

(7)

where the learnable parameters are {θ0, . . . , θNit , λ1, . . . , λNit}. Note that the
step size αi is absorbed in the learnable parameters. The key difference between
the proposed network and the original formulation [5] is the following: firstly,
in this work, a general non-convex regularization functional is used in place of
the explicit convex regularization based on Fields-of-Experts model [16], which
can be approximated by state-of-the-art CNN denoisers [13]. Secondly, the com-
plexity of the methodology is in the implementation of A ∈ CM×N . In contrast
to the Cartesian case, A is expressed as GF sD. For 2D cases, this can be a
large matrix, which consumes a large portion of GPU memory.3 To overcome
this challenge, G is implemented as a sparse GPU matrix multiplication. F s is a
FFT, where an efficient GPU implementation is available. Finally, D is a diago-
nal matrix, which can be implemented as a Hadamard product of matrices. The
adjoint can similarly be implemented as AH = DHFH

s GH , where .H is a conju-
gate transpose. The detailed steps involved in A and the proposed architecture,
termed nonuniform variational network (NVN), is shown in Fig. 1, where the
data consistency term is shown in DC -i block and CNN is shown in CNN -i block.

Generalized Nonuniform Variational Network Observe that network
forces the bottleneck at the end of each iteration. However, an alternative view
is that the network simply benefits from the image feature given by DC-i blocks.
This motivates a generalized approach, where instead we feed each CNN-i block
a concatenation of the following: the intermediate reconstruction xi, the self-
adjoint AHAxi, and the adjoint of the input AHy. Furthermore, one can also
consider applying 1D-convolution in raw sensory domain using fsensor-cnn(.|φ) to
exploit the information along the sampling trajectory and remove unnecessary
information (e.g. isolatable artifacts or noise). The resulting network is thus:

x0 = finit-cnn

(
A, fsensor-cnn(y|φ0)

∣∣θ0

)
(8)

xi = fcnn

(
xi−1,A

Hfsensor-cnn(Axi−1|φi),x0

∣∣θi) (9)

where the learnable parameters are {φ0, . . . , φNit
, θ0, . . . , θNit

}. This variant is
termed Generalized Nonuniform Variational Network (GNVN).

4 Results

Experimental Settings In order to test the efficacy of our proposed architec-
ture, we performed the following simulation based studies. We used 640 randomly

3For N = 1922 and M = 10, 000 (i.e. ≈ 3× acceleration), storing the complex-
valued matrix alone already takes 3GB of memory.
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selected T1-weighted and T2-weighted brain images from Human Connectome
Project 4. We used 600 for training and 40 for testing. To perform a realistic
simulation, we performed the following pre-processing steps: firstly, we created
complex-valued images by adding phase information to the magnitude data us-
ing two-dimensional Fourier bases with randomly sampled low order coefficients.
Secondly, in order to simulate realistic measurements from receiver coils, we mul-
tiplied the images by spatially localized complex coil sensitivity profiles, which
was derived from our in-house analytical coil model. Finally, we added a realistic
amount of noise observable for parallel image acquisition. For the experiments,
we resampled the images to a field of view (FOV) of 180 × 180 × 180mm3,
with the isotrophic resolution of 3.4 × 3.4 × 3.4mm3, 1.7 × 1.7 × 1.7mm3 and
1.15×1.15×1.15mm3, resulting in the matrix size 643, 1283 and 1923 respectively.

For this work, we restrict our evaluation to single coil reconstruction in order
to study the behaviour of non-uniform MR data reconstruction and leave the
implementation as well as evaluation of parallel reconstruction as a future work.
We undersampled the data using 2D nonuniform variable density, where the sam-
pling density decay from the k-space centre at quadratic speed. For each matrix
size, we generated the sampling trajectory with the target acceleration factor
R ∈ {2, 4}. For evaluation, we measured mean squared error (MSE), structural
similarity index measurement (SSIM) and peak signal-to-noise ratio (PSNR).

Implementation Details We re-implemented the following state-of-the-art
methods which have been demonstrated on nonuniform MR data: AUTOMAP
[18], image domain U-net and k-space domain U-net [7]. The input to AU-
TOMAP is a vector of k-space measurements, whereas the input to the U-net
models were the gridding reconstruction in their respective domains. Note that
we did not compare with models based on generative adversarial networks (GAN)
because, if the capacity allows, one can always add GAN component to all mod-
els to observe similar effect. Due to our GPU memory limitation, we could only
train AUTOMAP for the matrix size 64×64. For the proposed approach, termed
NVN, we used U-net with 3 levels of downsampling (see Fig. 1) for each sub-
network. We used Nit = 5 for the number of blocks. We used adjoint for finit.
We also trained GNVN, where for fsensor-cnn, we used a 5-layer CNN with a
residual connection. We initialized the forward and adjoint operator based on
[2], with oversampling factor 2. All deep learning methods were trained using
MSE. Each network was trained for 8,000 epochs using Adam optimizer with
α = 10−4, β1 = 0.9, β2 = 0.999. All methods were implemented in Tensorflow.

Results The quantitative result is summarized in Table 1. The proposed ap-
proaches consistently outperformed the baseline approaches for both acceleration
factors. AUTOMAP and k-space U-net both underperformed compared to other
methods. We speculate that the benefit of k-space convolution can only be ap-
preciated for multicoil case or when combined with image-domain convolution.

4Available: https://www.humanconnectome.org/study/hcp-young-adult/

document/1200-subjects-data-release

https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release
https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release
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Table 1. Quantitative result for acceleration factor (R) 2 and 4. For each metric, mean
and standard deviation is computed. MSE’s are scaled by 103.

R = 2 R = 4

Methods MSE SSIM PSNR MSE SSIM PSNR

6
4
×

6
4

AUTOMAP 2.40 (42.14) 0.87 (0.14) 29.87 (3.73) 2.59 (8.09) 0.84 (0.14) 28.36 (3.51)
U-net 1.53 (18.13) 0.92 (0.11) 31.44 (3.86) 2.25 (21.87) 0.90 (0.10) 29.81 (3.74)
U-net (k) 1.91 (7.40) 0.86 (0.13) 30.07 (3.57) 2.51 (6.58) 0.81 (0.13) 28.48 (3.34)
NVN 1.22 (12.51) 0.93 (0.11) 32.33 (3.92) 1.38 (4.04) 0.92 (0.09) 30.95 (3.62)
GNVN 1.22 (16.88) 0.93 (0.09) 32.54 (4.00) 1.37 (4.58) 0.92 (0.08) 31.08 (3.66)

1
2
8
×

1
2
8 U-net 0.75 (3.73) 0.94 (0.09) 34.06 (3.68) 0.91 (4.10) 0.94 (0.07) 32.76 (3.50)

U-net (k) 1.02 (1.26) 0.89 (0.10) 32.51 (3.58) 1.54 (13.77) 0.87 (0.11) 31.32 (3.48)
NVN 0.57 (0.86) 0.95 (0.06) 34.68 (3.57) 0.82 (1.07) 0.93 (0.07) 32.95 (3.54)
GNVN 0.58 (1.99) 0.95 (0.07) 34.83 (3.64) 0.67 (0.79) 0.95 (0.03) 33.65 (3.47)

1
9
2
×

1
9
2 U-net 0.47 (1.55) 0.96 (0.05) 35.68 (3.67) 0.67 (1.13) 0.94 (0.07) 33.71 (3.23)

U-net (k) 0.77 (0.81) 0.89 (0.10) 33.83 (3.62) 1.31 (7.53) 0.87 (0.11) 31.84 (3.35)
NVN 0.40 (0.60) 0.96 (0.06) 36.11 (3.60) 0.66 (1.40) 0.91 (0.12) 34.01 (3.43)
GNVN 0.40 (0.77) 0.96 (0.05) 36.15 (3.57) 0.52 (0.44) 0.96 (0.03) 34.36 (3.07)

Comparing the two of the proposed methods, while NVN showed higher data
fidelity (lower MSE), GNVN offered better values for PSNR and SSIM. The
sample reconstructions of T1-weighted image for R = 2 and T2-weighted image
for R = 4 is shown in Fig. 2 and Fig. 3 respectively. While the overall differences
between U-net, NVN and GNVN were small, the reconstructions from NVN
and GNVN resulted in lower error, owing to the data consistency block. GNVN
resulted in the lowest overall errors and preserved more of the fine details. Nev-
ertheless, a certain level of blurriness can be observed in all images, due to the
added noise. Again, U-net (k-space) for single coil resulted in a suboptimal re-
construction qualitatively. In Fig 4, we visualize the output of NVN and GNVN
at each block. Interestingly, unlike CS-methods, the intermediate image can di-
verge from the final image. This is unsurprising as there was no constraint to
enforce such behaviour. For NVN, most output of each block seems closer to the
ground truth, presumably because the output of DC-i and CNN-i are explicitly
combined. In comparison, GNVN showed more interesting features for all the
intermediate stages, mainly highlighting the high frequency information. This
observation was consistent across all images.

The number of parameters were 128.1M, 22.0M, 6.6M and 7.3M for AU-
TOMAP (64 × 64), U-net, NVN and GNVN respectively. The reconstruction
speed were 5.928 ± 0.020 ms, 19.145 ± 0.072 ms, 19.459 ± 0.077 ms, 44.934 ±
0.088 ms, and 65.520 ± 0.100 ms for AUTOMAP (for the image size 642), U-net,
U-net (k-space), NVN and GNVN respectively for the image size 1922.
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Fig. 2. The reconstructions for 192×192 T1 weighted image, R = 2. (top) Reconstruc-
tions (bottom) error maps.

Fig. 3. The reconstructions for 192×192 T2 weighted image, R = 4. (top) Reconstruc-
tions (bottom) error maps.

5 Discussion and Conclusion

In this work, we proposed nonuniform variational network (NVN), a nonuni-
form extension of variational network, which performed the state-of-the-art deep
learning models for single-coil scenario. The method is closely related to tradi-
tional optimization algorithms, however, we have shown that the generalized
formulation (GNVN) also worked well in practice. In future, the extension to
multi-coil data is considered. Another interesting direction is nonuniform sam-
pling optimization for the deep learning models. Finally, we believe that the
model is widely applicable to different image protocol and hence readily applied
in a clinical scenario.
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