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Abstract. Simple algorithms for segmenting healthy lung parenchyma
in CT are unable to deal with high density tissue common in pulmonary
diseases. To overcome this problem, we propose a multi-stage learning-
based approach that combines anatomical information to predict an ini-
tialization of a statistical shape model of the lungs. The initialization
first detects the carina of the trachea, and uses this to detect a set of
automatically selected stable landmarks on regions near the lung (e.g.,
ribs, spine). These landmarks are used to align the shape model, which is
then refined through boundary detection to obtain fine-grained segmen-
tation. Robustness is obtained through hierarchical use of discriminative
classifiers that are trained on a range of manually annotated data of dis-
eased and healthy lungs. We demonstrate fast detection (35s per volume
on average) and segmentation of 2 mm accuracy on challenging data.

1 Introduction

Lung segmentation in thoracic CT images is an important prerequisite for detec-
tion and study of the progression and treatment of pulmonary diseases. Due to
their high air content, healthy lung has lower attenuation than the surrounding
tissue, allowing easy detection through standard thresholding and region-growing
methods (e.g., [2]). However, pulmonary diseases (e.g., pulmonary fibrosis) lead
to higher density tissue, and cause a changed appearance (e.g., different texture),
making it hard to segment robustly (Figure 1).

Fig. 1. Pulmonary diseases lead to
higher density tissue which complicates
standard segmentation algorithms.

In this paper, we present an effec-
tive learning-based segmentation tech-
nique that addresses the changes in lung
appearance due to pulmonary diseases.
The first step of the algorithm is the ro-
bust detection of the carina of the tra-
chea with a discriminative classifier. The
carina location is used to predict approx-
imate poses (translation, orientation, and
size) of the left and right lung. The pre-
diction is based on a prior model obtained
from a large expert-annotated database of
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Fig. 2. System diagram: Carina detection allows the prediction of lung poses, which
give initial locations for stable landmarks on the lung surface. That surface is then
refined with a boundary detector.

lung scans. Placing a mean lung shape into the bounding box implied by each
pose gives initial locations of a set of stable landmarks, which are selected auto-
matically during training using the uncertainty of their locations. The locations
of the landmarks are then locally refined with robust detectors. The final refine-
ment is performed by a boundary detector which accurately estimates the lung
surface. The overall system diagram is shown in Figure 2.

By focusing on stable landmarks and progressing from a coarse set to to a fine
set, we rely on the local regions which are most consistent, even in the presence
of abnormalities. Stable landmarks are typically selected near vertebrae, ribs,
and other distinctive anatomical structures (Fig. 4). In detection, the stability
of the landmarks is further guaranteed by using a discriminative classifier (PBT
[10]) which includes a powerful feature selection operating on a feature pool
computed from all training volumes. Features susceptible to abnormal diseased
areas are therefore not selected for landmark detection.

Existing approaches to increase robustness of lung segmentation focus on
specific pathologies [11, 4], rely on interaction [3], adapt the simple threshold-
ing to regions that often complicate lung segmentation [1], or augment texture
cues for interstitial lung disease [12]. Such methods are not capable of handling
the moderate to extreme pathologies that exhibit higher density tissue. More
elaborate methods use anatomical information [6], shape priors [9], or statistical
methods to detect patterns in the diseased tissue [7]. Shape models alone with
simple image cues [9] are not enough to provide robustness to change in tissue
density, and the anatomical constraints, priors or machine learning techniques
need to be combined. To date, few methods combine either shape constraints or
anatomical information with learning [7] for lung segmentation, but do so with
simple classifiers (e.g., k-nearest neighbor) and use limited features.

In this work, we combine a statistical model of shape variation with statistical
pattern recognition that uses anatomical information for robust lung segmenta-
tion. A wide gamut of gradient and intensity features capable of discriminating
diseased lung tissue and implicitly capable of encoding anatomical relationships
is selected by a powerful discriminative classifier, the probabilistic boosting tree
(PBT) [10]. The classifiers and shape model are trained on a database of nor-
mal and diseased tissues. Through fast coarse detection and refinement based
on a hierarchical detection network (HDN) [8], a segmentation is obtained in 35
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seconds. We demonstrate our implementation on a number of challenging patho-
logical thoracic CT images. The average error on unseen data is 1.98 mm for the
right and 1.92 mm for the left lung.

2 Learning

The algorithm starts by detecting the carina of the trachea. Its location is then
used in a Hierarchical Detection Network (HDN)[8] to predict pose parameters
of left and right lung and subsequently initialize the set of stable landmarks.
The landmark locations are then refined and used to provide a rough boundary
estimate. This estimate is improved during boundary detection which results in
the final accurate lung segmentation.

2.1 Hierarchical detection network

The hierarchical detection network estimates unknown object states (e.g., object
poses) as a sequential decision process. The formulation is similar to Markov
chain approaches to object tracking, but instead of a temporal motion model
with temporal observations, there is a spatial dependence (or prior relationship)
between objects. The unknown parameters of each object are denoted as θt (e.g.,
the 9 parameters of a similarity transform), and the complete state for t + 1
objects is denoted θ0:t. Estimation of each object utilizes an observation region
of the input volume, Vt ⊆ V , where V : Rd 7→ R is d dimensional input. The
posterior density of the complete state, f(θ0:t|V0:t), is approximated through a
sequence of recursive prediction and update steps.

The prediction approximates the detection up to object t using the transition
probability, f(θt|θ0:t−1), and the posterior up to object t− 1:

f(θ0:t|V0:t−1) = f(θt|θ0:t−1)f(θ0:t−1|V0:t−1) (1)

The update then fuses the results with the new observation region, Vt:

f(θ0:t|V0:t) =
f(Vt|θt)f(θ0:t|V0:t−1)

f(Vt|V0:t−1)
(2)

The likelihood, f(Vt|θt), is empirically modeled by training a discriminative
model. Concretely, letting y ∈ {−1, 1} be a random variable denoting the occur-
rence of an object at pose θt, the likelihood is defined as:

f(Vt|θt) = f(y = +1|Vt,θt) (3)

Where the posterior, f(y = +1|Vt,θt), is the output of a discriminative classifier
(e.g., the probabilistic boosting tree [10]).

The transition prior approximates the sequential dependence of object t as
a Gaussian distribution from one of the previous objects (Figure 2):

f(θt|θ0:t−1) = f(θt|θj), ∃j ∈ {0, t− 1} (4)
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2.2 Pose detection

In the case of pose detection in 3D, the state of each object is compactly rep-
resented with 9 parameters including the position p ∈ R3, orientation as Euler
angles r, and scale, s, of the object: θt = {pt, rt, st}. For efficiency these three
sets of parameters are treated as a chain of dependent estimates [5]:

f(θt|Vt) = f(pt|Vt)f(rt|pt, Vt)f(st|pt, rt, Vt) (5)

Splitting up the pose estimation in this way reduces the dimensionality of each
sub-problem allowing fewer particles to be used during estimation.

2.3 Selection of Stable Landmarks

The set of stable landmarks is selected during training as follows. First, the
annotation meshes are aligned to a common coordinate frame (see the next sec-
tion). The correspondences formed during alignment identify each mesh vertex
across all meshes (and volumes). The mesh vertices are used as landmark can-
didates. Denoting their location as {gi}. One position detector per landmark
candidate is trained using all annotations. The detectors are then used to obtain
detection results for each landmark, denoted as {di}. The uncertainty of each
detector is modeled by the covariance matrix, Ci, of the final detected candidate
location: Ci =

∑
i eie

>
i , where ei = di − gi. The stable landmarks are selected

one by one according to the score criterion si = trace(Ci) (higher s indicates
higher uncertainty). During this selection, we apply spatial filtering (with radius
r = 20mm) using the score si. This way, we obtain a set of stable landmarks
with low uncertainty that are widely distributed along the lung surface.

2.4 Shape initialization

After the poses of left and right lung have been detected, the boundary of the
lung is detected to find an initial segmentation. This initial segmentation is a
deformation of a triangulated mesh model. The model,M = (P, T ) consists of a
set of points, P = {xi ∈ R3}Ni=1, and a set of triangle indices, T = {4j ∈ Z3}Mj=1.

The high dimensional search space is restricted by a prior learned linear
model of shape variation. The prior shape model, S = ({x̂}Ni=1, {Uj}Mj=1), consists
of a mean shape and a set of linear basis shapes, Uj = {uij}Ni=1, that are learned
through procrustes analysis and PCA on training data. A synthesized shape in
the span of the shape-space can be specified by a few PCA coefficients, {λj},
and a pose, (p, r, s):

g(xi; {λj},p, r, s) = p + M(s, r)
∑
j

(x̂i + uijλj) (6)

where M(s, r) is a 3× 3 scale and rotation matrix.
Estimation of the first three coefficients is done in the HDN framework, where

θt = {λ1, λ2, λ3}. Particles from the pose estimation process are augmented
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with three PCA coefficients sampled uniformly over the range of coefficients
observed in the training data. Similar to Eq. 3, the observation model, f(θt|Vt),
is empirically modeled with a discriminative classifier that uses steerable features
evaluated on surface points of the synthesized mesh [5].

2.5 Freeform refinement

The first three PCA coefficients give a coarse approximation to the boundary.
In order for the shape model to be expressive enough for all real instances, a
large number of basis functions may be needed (e.g., the order of 100s). Instead
of estimating all of the λ coefficients directly as above, the freeform refinement
takes an iterative surface deformation approach [5].

Starting with the initialized shape from above, the freeform refinement seeks
to find the most probable mesh, M, in the space of the linear shape model:

max f(M|Vt) s.t. M∈ span(S) (7)

Where f(M|Vt) is approximated by integrating over the surface:

f(M|Vt) =
1
N

∑
xi

f(xi|Vt). (8)

Here the per-point posterior is directly approximated by a discriminative model.
Letting yi = {−1,+1} be a random variable denoting the presence of a surface
at point xi along normal ni:

f(xi|Vt) = f(yi = 1|xi,ni, Vt) (9)

Instead of performing a coupled high dimensional optimization for all points
simultaneously, local search within a predefined range {−τ, τ} is performed for
each vertex to find the best displacement along the normal, xi ← xi + dini:

di = arg max−τ≤d≤τf(xi + dni|Vt) (10)

The resulting shape is projected onto the shape-space and surface normals are
updated. This interleaved displace and regularization process is iterated several
times. In latter iterations, τ is reduced, and the shape is allowed to vary from
the span(S). In these iterations, instead of regularizing by projecting into the
shape space, a simple mesh smoothing is used to regularize the displaced mesh.

3 Experiments

Our experiments start by analyzing the error of detectors during training. We
then show the set of top automatically selected landmarks. Finally, we provide
qualitative and quantitative evaluation of lung segmentation.

Our dataset consists of 260 expert-annotated diagnostic CT scans of varying
contrast. The slice thickness varies from 0.5 to 5.0. The dataset is randomly
separated into two disjoint sets, one for training (192 volumes) and one for
testing (68 volumes).
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Lung Landmark Mean (std.) Med. Min Max 80%

right no 2.35 ± 0.86 2.16 1.40 6.43 2.57
right yes 1.98 ± 0.62 1.82 1.37 4.87 2.18

left no 2.31 ± 2.42 1.96 1.28 21.11 2.22
left yes 1.92 ± 0.73 1.80 1.19 6.54 2.15

Table 1. Results of symmetrical point-to-mesh comparisons of detected results and
annotations for both lungs, with and without stable landmark detection.
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Fig. 3. Sorted mean errors of the 614
landmarks computed from all training
volumes

The first result in Figure 3 shows
the sorted errors of all candidate land-
marks (Section 2.3). These are the detec-
tion results obtained from landmark de-
tectors trained using candidates formed
from mesh vertices. The seemingly larger
errors are caused by incorrect correspon-
dences after mesh alignment. However,
these landmarks are stable to provide ac-
curate initialization for the mesh bound-
ary refinement. We used 20 mm radius in
landmark spatial filtering which resulted
in 143 landmarks for the right lung and 133 landmarks for the left lung. To
illustrate the effectiveness of the filtering, we set the radius to 70 mm to produce
a set of 12 stable landmarks (Fig. 4). Notice that they are distributed across
distinct locations inside the lung. Typically, landmarks near ribs and vertebrae
are stable but not always. For example, landmark neighborhoods along some
parts of the ribs or even across different ribs might not be distinctive enough.

Our final set of results analyzes performance of the lung segmentation. The
algorithm was run as described in Section 2 and Figure 2. In the first experiment,
the set of stable landmarks was used to initialize the boundary refinement. In
the second experiment, the initialization was done by a mean mesh transformed
according to the estimated pose. The errors summarized in Table 1 show that
the initialization provided by stable landmarks helps to achieve significantly
better accuracy (p < 0.05) of the final segmentations. The maximum error also
decreased considerably and in the case of left lung one large failure was cor-
rected. Several qualitative segmentation results involving pathologies are shown
in Figure 5.

4 Conclusion

We proposed a robust learning-based technique for accurate lung segmentation
in challenging CT volumes involving abnormalities. The technique first reliably
detects the carina of the trachea as an anchor point for pose estimation of left and
right lung. The poses are used to initialize a set of stable anatomical landmarks
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Fig. 4. Twelve strongest landmarks selected out of 614 with focus on spatial coverage.
Notice that they are selected near distinctive anatomical structures such as ribs (3, 4,
5, 12), vertebrae (1, 2) and top (5) and bottom of the lung (9, 10, 11).

distributed on the lung surface. The stable landmarks are selected automatically
from a candidate set formed from vertices of mesh annotations by employing
measures of uncertainty and spatial distribution. The initial landmark positions
are refined and subsequently used to provide a rough estimate for the shape
model and final lung boundary refinement.

We have shown the automatic landmark selection procedure determines a
set of stable landmarks. These landmarks lead to improved initialization of the
boundary refinement and ultimately higher accuracy of the final segmentations.
Our future work focuses on further improvements especially near the lung sharp
boundaries which are difficult to capture with a mesh representation.
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