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( 57 ) ABSTRACT 

Techniques for removing artefacts , such as RF interference 
and / or noise , from magnetic resonance data . The techniques 
include : obtaining input magnetic resonance ( MR ) data 
using at least one radio - frequency ( RF ) coil of a magnetic 
resonance imaging ( MRI ) system ; and generating an MR 
image from input MR data at least in part by using a neural 
network model to suppress at least one artefact in the input 
MR data . 
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DEEP LEARNING TECHNIQUES FOR 
SUPPRESSING ARTEFACTS IN MAGNETIC 

RESONANCE IMAGES 

CROSS - REFERENCE TO RELATED 
APPLICATIONS 

[ 0001 ] [ 1 ] This application claims priority under 35 U.S. 
C. § 119 ( e ) to U.S. Provisional Application Ser . No. 62/764 , 
742 , Attorney Docket No. 00354.70031USOO , filed Aug. 15 , 
2018 , and titled “ MAGNETIC RESONANCE IMAGE 
DENOISING USING K - SPACE DEEP LEARNING 
MODEL , ” and U.S. Provisional Application Ser . No. 
62 / 820,119 , Attorney Docket No. “ 00354.70039USOO ” , 
filed Mar. 18 , 2019 , and titled “ END - TO - END LEARN 
ABLE MR IMAGE RECONSTRUCTION ” , each of which 
is incorporated by reference in its entirety . 

MRI scanners . Additionally , conventional high - field MRI systems typically require large superconducting magnets 
and associated electronics to generate a strong uniform static 
magnetic field ( BO ) in which a subject ( e.g. , a patient ) is 
imaged . Superconducting magnets further require cryogenic 
equipment to keep the conductors in a superconducting 
state . The size of such systems is considerable with a typical 
MRI installment including multiple rooms for the magnetic 
components , electronics , thermal management system , and 
control console areas , including a specially shielded room to 
isolate the magnetic components of the MRI system . The 
size and expense of MRI systems generally limits their 
usage to facilities , such as hospitals and academic research 
centers , which have sufficient space and resources to pur 
chase and maintain them . The high cost and substantial 
space requirements of high - field MRI systems results in 
limited availability of MRI scanners . As such , there are 
frequently clinical situations in which an MRI scan would be 
beneficial , but is impractical or impossible due to the above 
described limitations . 

BACKGROUND 

SUMMARY 

[ 0002 ] Magnetic resonance imaging ( MRI ) provides an 
important imaging modality for numerous applications and 
is widely utilized in clinical and research settings to produce 
images of the inside of the human body . MRI is based on 
detecting magnetic resonance ( MR ) signals , which are elec 
tromagnetic waves emitted by atoms in response to state 
changes resulting from applied electromagnetic fields . For 
example , nuclear magnetic resonance ( NMR ) techniques 
involve detecting MR signals emitted from the nuclei of 
excited atoms upon the re - alignment or relaxation of the 
nuclear spin of atoms in an object being imaged ( e.g. , atoms 
in the tissue of the human body ) . Detected MR signals may 
be processed to produce images , which in the context of 
medical applications , allows for the investigation of internal 
structures and / or biological processes within the body for 
diagnostic , therapeutic and / or research purposes . 
[ 0003 ] MRI provides an attractive imaging modality for 
biological imaging due to its ability to produce non - invasive 
images having relatively high resolution and contrast with 
out the safety concerns of other modalities ( e.g. , without 
needing to expose the subject to ionizing radiation , such as 
X - rays , or introducing radioactive material into the body ) . 
Additionally , MRI is particularly well suited to provide soft 
tissue contrast , which can be exploited to image subject 
matter that other imaging modalities are incapable of satis 
factorily imaging . Moreover , MR techniques are capable of 
capturing information about structures and / or biological 
processes that other modalities are incapable of acquiring . 
However , there are a number of drawbacks to conventional 
MRI techniques that , for a given imaging application , may 
include the relatively high cost of the equipment , limited 
availability ( e.g. , difficulty and expense in gaining access to 
clinical MRI scanners ) , and the length of the image acqui 

[ 0005 ] Some embodiments are directed to a method com 
prising : obtaining input magnetic resonance ( MR ) data using 
at least one radio - frequency ( RF ) coil of a magnetic reso 
nance imaging ( MRI ) system , and generating an MR image 
from the input MR data at least in part by using a neural 
network model to suppress at least one artefact in the input 
MR data . 
[ 0006 ] Some embodiments are directed to a system , com 
prising : at least one computer hardware processor , and at 
least one non - transitory computer - readable storage medium 
storing processor executable instructions that , when 
executed by the at least one computer hardware processor , 
cause the at least one computer hardware processor to 
perform : obtaining input magnetic resonance ( MR ) data 
using at least one radio - frequency ( RF ) coil of a magnetic 
resonance imaging ( MRI ) system ; and generating an MR 
image from the input MR data at least in part by using a 
neural network model to suppress at least artefact in the 
input MR data . 
[ 0007 ] Some embodiments are directed to at least one 
non - transitory computer - readable storage medium storing 
processor executable instructions that , when executed by at 
least one computer hardware processor , cause the at least 
one computer hardware processor to perform : obtaining 
input magnetic resonance ( MR ) using at least one radio 
frequency ( RF ) coil of a magnetic resonance imaging ( MRI ) 
system ; and generating an MR image from the input MR 
data at least in part by using a neural network model to 
suppress at least one artefact in the input MR data . 
[ 0008 ] Some embodiments are directed to a magnetic 
resonance imaging ( MRI ) system , comprising : a magnetics 
system comprising : a B , magnet configured to provide a Bo 
field for the MRI system ; gradient coils configured to 
provide gradient fields for the MRI system ; and at least one 
RF coil configured to detect magnetic resonance ( MR ) 
signals ; a controller configured to : control the magnetics 
system to acquire input MR using the at least one RF coil ; 
and generating an MR image from the input MR data at least 
in part by using a neural network model to suppress at least 
one artefact in the input MR data . 
[ 0009 ] The foregoing is a non - limiting summary of the 
invention , which is defined by the attached claims . 

sition process . 
[ 0004 ] To increase imaging quality , the trend in clinical 
and research MRI has been to increase the field strength of 
MRI scanners to improve one or more specifications of scan 
time , image resolution , and image contrast , which in turn 
drives up costs of MRI imaging . The vast majority of 
installed MRI scanners operate using at least at 1.5 or 3 tesla 
( T ) , which refers to the field strength of the main magnetic 
field BO of the scanner . A rough cost estimate for a clinical 
MRI scanner is on the order of one million dollars per tesla , 
which does not even factor in the substantial operation , 
service , and maintenance costs involved in operating such 
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BRIEF DESCRIPTION OF THE DRAWINGS [ 0026 ] FIG . 10 is a diagram of an illustrative computer 
system on which embodiments described herein may be 
implemented . 

DETAILED DESCRIPTION 

[ 0010 ] Various aspects and embodiments of the disclosed 
technology will be described with reference to the following 
figures . should be appreciated that the figures are not 
necessarily drawn to scale . 
[ 0011 ] FIG . 1A illustrates an example processing pipeline 
for generating MR images from input MR using a neural 
network model to suppress one or more artefacts in the input 
MR data , in accordance with some embodiments of the 
technology described herein . 
[ 0012 ] FIG . 1B illustrates the architecture of an example 
convolutional neural network block having a “ U ” structure 
and an average pooling layer , which block may be part of the 
neural network model for suppressing artefacts in the input 
MR data , in accordance with some embodiments of the 
technology described herein . 
[ 0013 ] FIG . 1C illustrates a specific example of the archi 
tecture of an example convolutional neural network block 
shown in FIG . 1B , in accordance with some embodiments of 
the technology described herein . 
[ 0014 ] FIG . 1D illustrates the architecture of an example 
convolutional neural network block having a “ U ” structure 
and a spectral unpooling layer , which block may be part of 
the neural network model for suppressing artefacts in the 
input MR data , in accordance with some embodiments of the 
technology described herein . 
[ 0015 ] FIG . 1E illustrates the architecture of an example 
spectral unpooling layer , in accordance with some embodi 
ments of the technology described herein . 
[ 0016 ] FIG . 2A illustrates the architecture of an example 
neural network , having a spectral unpooling layer , for sup 
pressing RF interference in input MR data , in accordance 
with some embodiments of the technology described herein . 
[ 0017 ] FIG . 2B illustrates application the example neural 
network shown in FIG . 2A to suppressing RF interference in 
MR data , in accordance with some embodiments of the 
technology described herein . 
[ 0018 ] FIG . 3 is a flowchart of an illustrative process 300 
for suppressing one or more artefacts in MR data using a 
neural network nodel , in accordance with some embodi 
ments of the technology described herein . 
[ 0019 ] FIG . 4A illustrates techniques for generating train 
ing data for training a neural network model for suppressing 
one or more artefacts in MR data , in accordance with some 
embodiments of the technology described herein . 
[ 0020 ] FIG . 4B shows an illustrative example for gener 
ating training data for training a neural network model for 
suppressing one or more artefacts in MR data , in accordance 
with some embodiments of the technology described herein . 
[ 0021 ] FIG . 5 is a schematic illustration of a low - field 
MRI system , in accordance with some embodiments of the 
technology described herein . 
[ 0022 ] FIGS . 6 and 7 illustrate bi - planar permanent mag 
net configurations for a B , magnet , in accordance with some 
embodiments of the technology described herein . 
[ 0023 ] FIGS . 8A and 8B illustrate views of a portable MRI 
system , in accordance with some embodiments of the tech 
nology described herein . 
[ 0024 ] FIG . 9A illustrates a portable MRI system perform 
ing a scan of the head , in accordance with some embodi 
ments of the technology described herein . 
[ 0025 ] FIG.9B illustrates a portable MRI system perform 
ing a scan of the knee , in accordance with some embodi 
ments of the technology described herein . 

[ 0027 ] As described above , conventional clinical MRI 
systems are required to be located in specially shielded 
rooms to allow for their correct operation , which is one 
( among many ) of the reasons contributing to the cost , lack 
of availability , and non - portability of currently available 
clinical MRI systems . In addition to protecting people and 
their equipment from the magnetic fields generated by an 
MRI system , shielded rooms prevent artefacts such as RF 
interference generated by various external electronic devices 
( e.g. , other medical devices ) from affecting the operation of 
the MRI system and the quality of the resulting images . The 
inventors have appreciated that to operate outside of a 
specially shielded room and , more particularly , to allow for 
generally portable , cartable , or otherwise transportable MRI , 
MRI systems must be capable of operation in relatively 
uncontrolled electromagnetic environments ( e.g. , in 
unshielded or partially shielded rooms ) and must be able to 
account and / or compensate for the presence of interference , 
noise , and / or other artefacts often present in such environ 
ments . 
[ 0028 ] The inventors have developed deep learning tech 
niques for reducing or eliminating the impact of environ 
mental artefacts such as RF interference and noise on 
operation of MRI systems and the quality of the images they 
produce . The deep learning techniques developed by the 
inventors allow for operation of MRI systems outside of 
specially shielded rooms , facilitating both portable / trans 
portable MRI as well as fixed MRI installments that do not 
require specially shielded rooms . In addition , while the 
techniques developed by the inventors and described herein 
allow for operation of MRI systems outside specially 
shielded rooms , the techniques can also be used to mitigate 
the impact of interference , noise , and / or other artefacts on 
the operation of an MRI system in shielded environments , 
for example , less expensive , loose or ad - hoc shielding 
environments , and can therefore be used in conjunction with 
an area that has been fitted with limited shielding , as aspects 
of the technology described herein are not limited this 
respect . 
[ 0029 ] For example , the deep learning techniques devel 
oped by the inventors and described herein may be used to 
facilitate deployment of MRI systems ( e.g. , generally 
mobile , transportable or cartable systems ) in a variety of 
settings such emergency rooms , operating rooms , intensive 
care units , offices , and / or clinics . These settings are particu 
larly vulnerable to the presence of artefacts such as RF 
interference and noise , to which many conventional MRI 
systems are largely immune due to being installed in spe 
cialized rooms with extensive shielding . However , due to 
their cost , lack of portability , size , and shielding require 
ments , conventional MRI systems are simply unavailable in 
these settings despite the clear need for MR imaging there . 
The techniques developed by the inventors are especially 
valuable for facilitating the deployment of MRI systems in 
these settings . 
[ 0030 ] The deep learning techniques developed by the 
inventors may be used to suppress ( e.g. , reduce and / or 
eliminate ) artefacts from MR data obtained by any suitable 
type of MR scanner . For example , the techniques developed 
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by the inventors may be used to reduce and / or eliminate 
artefacts from MR data collected by “ low - field ” MR sys 
tems , which operate at a lower field strength than the 
“ high - field ” MRI systems that dominate the MRI systems 
market , especially for medical or clinical MRI applications . 
The lower magnetic field strength of low - field MRI systems 
makes them especially vulnerable to the presence of RF 
interference , noise , and / or other artefacts , which can 
adversely impact the performance of such systems . For 
example , the deep learning techniques developed by the 
inventors may be used to reduce and / or eliminate artefacts 
from MR data obtained by any suitable type of MR scanner 
described herein and / or in U.S. Pat . No. “ 10,222,434 ” , titled 
“ Portable Magnetic Resonance Imaging Methods and Appa 
ratus , ” which is incorporated by reference herein in its 
entirety , and which matured from U.S. patent application 
Ser . No. 15 / 879,254 filed on Jan. 24 , 2018. It should be 
appreciated that the techniques described herein are not 
limited to being used with low - field MRI systems or any 
particular type of MRI systems , and may be used with 
high - field and / or any other suitable type of MRI systems . It 
should be appreciated that other machine learning tech 
niques , aside from deep learning techniques may be 
employed , in some embodiments , as aspects of the technol 
ogy described herein are not limited in this respect . 
[ 0031 ] Many MRI systems , including some of the MRI 
systems described herein make use of electromagnetic 
shielding to reduce the impact of artefacts on the operation 
of the MRI system and the quality of the resulting images . 
Such electromagnetic shielding may be costly to install and 
maintain , and any mistakes or imperfections in the electro 
magnetic shielding may reduce the quality of the MR images 
produced by the MRI system . The techniques developed by 
the inventors and described herein may reduce the amount of 
electromagnetic shielding required for an MRI system , 
thereby reducing its cost , and may compensate for any 
mistakes or imperfections in the electromagnetic shielding 
and / or its installation . 
[ 0032 ] As used herein , “ high - field ” refers generally to 
MRI systems presently in use in a clinical setting and , more 
particularly , to MRI systems operating with a main magnetic 
field ( i.e. , a B , field ) at or above 1.5 T , though clinical 
systems operating between 0.5 T and 1.5 T are often also 
characterized as “ high - field . ” Field strengths between 
approximately 0.2 T and 0.5 T have been characterized as 
“ mid - field ” and , as field strengths in the high - field regime 
have continued to increase , field strengths in the range 
between 0.5 T and 1 T have also been characterized as 
mid - field . By contrast , " low - field ” refers generally to MRI 
systems operating with a B , field of less than or equal to 
approximately 0.2 T , though systems having a B , field of 
between 0.2 T and approximately 0.3 T have sometimes 
been characterized as low - field as a consequence of 
increased field strengths at the high end of the high - field 
regime . Within the low - field regime , low - field MRI systems 
operating with a B , field of less than 0.1 T are referred to 
herein as “ very low - field ” and low - field MRI systems oper 
ating with a B , field of less than 10 mT are referred to herein 
as “ ultra - low field . ” 
[ 0033 ] In some embodiments , the deep learning tech 
niques developed by the inventors involve processing input 
MR spatial frequency data using a neural network model to 
suppress ( e.g. , reduce or remove the presence and / or impact 
of ) one or more artefacts in the input MR data . 

[ 0034 ] In some embodiments , the input MR data may be 
processed in multiple stages , one or more of which may 
involve suppressing artefacts in the input MR data . For 
example , in some embodiments , different processing stages 
may be used to suppress different types of artefacts ( e.g. , RF 
interference from one or more devices external to the MRI 
system may be suppressed in one stage and noise generated 
by the MR receiver chain may be suppressed in another 
stage ) . As another example , in some embodiments , multiple 
processing stages may be used to suppress the same type of 
artefact ( e.g. , multiple stages may be used to suppress RF 
interference generated by one or more devices external to 
the MRI system ) . 
[ 0035 ] The circuitry involved in the processing of signals 
recorded by the at least one RF coil may be termed the “ MR 
receiver chain " . The MR receiver chain may include various 
types of circuitry such as analog circuitry ( e.g. , one or more 
amplifiers , a decoupling circuit , an RF transmit / receive 
switch circuit , etc. ) , digital circuitry ( e.g. , a processor ) 
and / or any suitable combination thereof . Some examples of 
MR receiver chain circuitry are described in U.S. patent 
application Ser . No. 16 / 418,414 , titled “ Radio Frequency 
Coil Signal Chain For a Low - Field MRI System ” , filed on 
May 21 , 2019 , which is incorporated by reference herein in 
its entirety . 
[ 0036 ] In some embodiments , the neural network model 
used to suppress one or more artefacts in the input MR data 
may include multiple portions and each of these portions 
may be applied during a corresponding processing stage . For 
example , in some embodiments , the neural network model 
may include two portions a first portion configured to 
suppress RF interference generated by a device external to 
the MRI system ( also referred to herein as “ external RF 
interference ” ) and / or RF interference generated by one or 
more components of the MRI system located outside of its 
imaging region ( also referred to herein as “ internal RF 
interference ” ) , and a second portion configured to suppress 
noise generated by circuitry in the MR receiver chain and / or 
noise generated by a subject ( or object ) being imaged . In this 
example , the input MR data may be processed in multiple 
stages one of which involves applying the first portion of the 
neural network to suppress ( external and / or internal ) RF 
interference and another one of which involves applying the 
second portion of the neural network to suppress noise 
generated by a subject / object being imaged . Another 
example is described below with reference to the processing 
pipeline shown in FIG . 1A , which involves a neural network 
having three portions applied over a ( non - consecutive ) 
sequence of three processing stages . 
[ 0037 ] It should be appreciated that while the input MR 
data may be processed in multiple stages , not every one of 
these stages involves artefact suppression processing , as one 
or more processing stages may be used to perform functions 
other than artefact suppression . For example , one of the 
stages ( e.g. , stage 108 shown in FIG . 1A ) may involve 
performing a reconstruction step by generating an image 
from the input MR data using any suitable reconstruction 
technique . 
[ 0038 ] In some embodiments , the input MR data may be 
processed using one or more stages not in the image domain 
( e.g. , before image reconstruction ) and using one or more 
stages in the image domain ( e.g. , after image reconstruc 
tion ) . For example , in some embodiments , a portion of a 
neural network model may be applied in the sensor domain 
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or the spatial frequency domain to suppress RF interference 
( e.g. , during stage 106 shown in FIG . 1A ) and a different 
portion of the neural network model may be applied in the 
image domain to suppress RF interference and / or noise 
generated by the MR receiver chain or subject ( or object ) 
being imaged ( e.g. , during stage 112 shown in FIG . 1A ) . 
However , it is not a requirement that artefact suppression 
processing be applied both before and after image recon 
struction ( e.g. , in the sensor or spatial frequency domain and 
in the image domain ) . For example , in some embodiments 
artefact suppression may be performed only in before image 
reconstruction or only in the image domain . 
[ 0039 ] Moreover , in some embodiments , artefact suppres 
sion may be performed in one or more domains other than 
the sensor , the spatial frequency , and image domains . In such 
embodiments , the data may be transformed to another 
domain via a suitable invertible transformation ( e.g. , a 1D or 
2D or 3D wavelet transform , a 1D or 2D or 3D Fourier 
transform , a 1D or 2D or 3D short - time Fourier transform , 
and / or any other suitable time - frequency and / or time - scale 
transformation ) where artefact suppression processing may 
be performed prior to the suitable inverse transformation is 
applied to the post - processed data . 
[ 0040 ] Data in the " sensor domain ” may comprise raw 
sensor measurements obtained by an MRI system . Sensor 
domain data may include measurements acquired line - by 
line for a set of coordinates specified by a sampling pattern . 
A line of measurements may be termed a “ readout ” line . 
Each measurement may be a spatial frequency . As such , 
sensor domain data may include multiple readout lines . For 
example , if p readout lines were measured and each readout 
line included m samples , the sensor domain data may be 
organized in an mxp matrix . Knowing the k - space coordi 
nates associated with each of the mxp samples , the sensor 
domain data may be re - organized into the corresponding 
k - space data , and may be then considered to be spatial 
frequency domain data . Image - domain data may be obtained 
by applying an inverse Fourier transformation ( e.g. , an 
inverse fast Fourier transform if the samples fall on a grid ) 
to k - space data . 
[ 0041 ] Accordingly , some embodiments provide for a 
deep learning artefact suppression technique that involves : 
( 1 ) accessing MR data obtained using at least one radio 
frequency ( RF ) coil of an MRI system ; and ( 2 ) generating an 
MR image from input MR data at least in part by using a 
neural network model ( e.g. , a model comprising one or more 
convolutional layers ) to suppress at least one artefact in the 
input MR data . In some embodiments , the first act of the 
deep learning artefact suppression technique may involve 
obtaining the input MR data using the at least one RF coil 
( rather than merely accessing data previously obtained using 
the at least one RF coil ) . 
[ 0042 ] In some embodiments , the at least one artefact 
includes RF interference and generating the MR image 
comprises using the neural network model to suppress the 
RF interference . In some embodiments , the RF interference 
may include external RF interference generated by a device 
external to the MRI system . The device may be located in a 
same room as the MRI system and / or sufficiently close to 
( e.g. , within a threshold distance of ) the MRI system such 
that the electromagnetic waves generated by the device can 
be detected by the MRI system . The device may be a 
medical device , for example , a cardiac monitor , pulse oxi 

meter , infusion pump , or other electrical equipment ( e.g. , 
transformer , motor ) in the same room and / or sufficiently 
close to the MRI system . 
[ 0043 ] In some embodiments , the RF interference may 
include internal RF interference generated by one or more 
components of the MRI system located outside of the 
imaging region of the MRI system . For example , internal RF 
interference may generated by one or more magnetics com 
ponents of the MRI system ( e.g. , gradient coils , magnets , 
etc. ) and / or one or more power components ( e.g. , one or 
more gradient power amplifiers , one or more power distri 
bution units , one or more power supplies , one or more 
switches , one or more thermal management components , 
etc. ) . Though it should be appreciated that internal RF 
interference may be generated by any other component of 
the MRI system outside of its imaging region , aside from the 
above - listed components , as aspects of the technology 
described herein are not limited in this respect . 
[ 0044 ] In some embodiments , the at least one artefact may 
include noise generated by the MR receiver chain and / or 
noise generated by a subject or object being imaged . In some 
embodiments , the MRI system may include at least one RF 
coil configured to detect MR signals in the imaging region 
of the MRI system . 
[ 0045 ] The inventors have appreciated that certain types of 
artefacts may be more effectively suppressed in a domain 
other than the image domain , for example , the sensor 
domain or the spatial frequency domain ( sometimes termed 
" k - space " ) . In particular , the inventors have recognized that 
external RF interference may be suppressed effectively in 
the sensor domain or the spatial frequency domain because , 
in these domains , external RF interference sometimes mani 
fests as a set of complex exponential components superim 
posed on the detected MR signal . The inventors have 
recognized that suppressing such types of external RF 
interference can be more effectively performed in the sensor 
or spatial frequency domains than in the image domain . 
[ 0046 ] Accordingly , in some embodiments , the neural 
network model used for artefact suppression comprises a 
first neural network portion configured to process data in a 
sensor or spatial frequency domain , and wherein using the 
neural network model to suppress the at least one artefact in 
the input MR spatial frequency domain data comprises 
processing , with the first neural network portion , sensor or 
spatial frequency domain data obtained from the input MR 
data . An example of the first neural network portion is 
shown in FIG . 1D , as neural network portion 150 , which is 
described in more detail herein . 
[ 0047 ] In some embodiments , the first neural network 
portion comprises a “ U ” structure in which convolutional 
layers are applied to successively lower - resolution versions 
of the data along " down - sampling path ” and , then , to 
successively higher - resolution versions of the data along an 
" up - sampling path ” . In some embodiments , the resolution of 
the data may be decreased ( e.g. , along the down - sampling 
path ) using one or more pooling layers and increased ( e.g. , 
along the up - sampling path ) using one or more correspond 
ing unpooling layers . 
[ 0048 ] As described above , the first neural network por 
tion may be configured to process data in the sensor or 
spatial frequency domain . In some embodiments , the first 
neural network portion may include and may be configured 
to process data in the sensor or spatial frequency domain 
using a spectral unpooling layer developed by the inventors . 
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In some embodiments , applying the spectral unpooling layer 
comprises applying a pointwise multiplication layer for 
combining first features having a first resolution provided 
via a skip connection with second features having a second 
resolution lower than the second resolution . In some 
embodiments , applying the spectral unpooling layer com 
prises zero padding the second features prior to combining 
the first features with the second features using the pointwise 
multiplication layer . An illustrative example of the spectral 
pooling layer is illustrated in FIG . 1E . In some embodi 
ments , when the first neural network portion includes a 
spectral unpooling layer it also includes a counterpart spec 
tral pooling layer . In addition , the first neural network 
portion may include a plurality of convolutional layers , and 
at least one skip connection . 
[ 0049 ] As described above , a neural network model may 
include multiple portions using for artefact suppression at 
different stages of processing MR data . In some embodi 
ments , the neural network model comprises : ( 1 ) a first neural 
network portion configured to suppress RF interference 
( e.g. , external and / or internal RF interference ) ; and ( 2 ) a 
second neural network portion configured to suppress noise 
( e.g. , noise generated by the MR receiver chain and / or by the 
subject or object ) being imaged ) . Each of these portions 
may comprise one or more convolutional layers , one or more 
pooling layers , and / or one or more skip connections , as 
aspects of the technology described herein are not limited in 
this respect . For example , in some embodiments , the neural 
network may include a first portion configured to suppress 
RF interference as part of stage 106 of the processing 
pipeline 100 shown in the illustrative example of FIG . 1A 
and a second portion configured to suppress RF interference 
as part of stage 108 or stage 112 of the same processing 
pipeline . 
[ 0050 ] In some embodiments , the neural network model 
further comprises a third neural network portion configured 
to suppress noise from image - domain data obtained using 
the input MR spatial frequency data . For example , the neural 
network may include a third portion as part of stage 112 of 
the processing pipeline 100 shown in the illustrative 
example of FIG . 1A . 
[ 0051 ] The inventors have also developed techniques for 
training neural network models for artefact suppression in 
MR data . The techniques include generating training data 
by : ( 1 ) synthesizing and / or measuring RF artefact measure 
ments ; ( 2 ) synthesizing and / or measuring MR measure 
ments ; and ( 3 ) combining the obtained RF artefact and MR 
measurements to obtain artefact - corrupted MR data . In turn , 
the artefact - corrupted MR data ( and the corresponding sepa 
rate artefact and MR data components ) may be used to train 
one or more neural network models for suppressing artefacts 
in MR data . 

[ 0052 ] Accordingly , in some embodiments , the techniques 
for training neural networks for suppressing artefacts in MR 
data include : obtaining , during a first time period , RF 
artefact measurements using the at least one RF coil of the 
MRI system ( e.g. , when there is no MR signal in an imaging 
region of the MRI system ) , wherein the RF artefact mea 
surements include measurements of RF interference and / or 
noise ; obtaining , during a second time period different from 
the first time period , MR measurements of a subject in the 
imaging region of the MRI system ; generating artefact 
corrupted MR data by combining the RF artefact measure 

ments with the MR measurements of the subject ; and 
training the neural network model using the artefact - cor 
rupted MR data . 
[ 0053 ] In some embodiments , the techniques for training 
neural networks for suppressing artefacts in MR data 
include : synthesizing RF artefact measurements , wherein 
the RF artefact measurements include synthesized measure 
ments of RF interference and / or noise ; obtaining MR mea 
surements of a subject in the imaging region of the MRI 
system ; generating artefact - corrupted MR data by combin 
ing the synthesized RF artefact measurements with the MR 
measurements of the subject ; and training the neural net 
work model using the artefact - corrupted MR data . 
[ 0054 ] In some embodiments , the techniques for training 
neural networks for suppressing artefacts in MR data 
include : obtaining RF artefact measurements using the at 
least one RF coil of the MRI system ( e.g. , when there is MR 
no signal in an imaging region of the MRI system ) , wherein 
the RF artefact measurements include measurements of RF 
interference and / or noise ; synthesizing MR measurements 
of a subject MRI system ; generating artefact - corrupted MR 
data by combining the obtained RF artefact measurements 
with the synthesized MR measurements of the subject ; and 
training the neural network model using the artefact - cor 
rupted MR data . 
[ 0055 ] In some embodiments , the measured RF artefact 
measurements and / or the measured MR measurements may 
be measured using an MRI system to train a neural network 
for suppressing artefacts in MR data subsequently obtained 
by the same MRI system . Moreover , the RF artefact mea 
surements and / or MR measurements may be obtained using 
the MRI system , when the MRI system is placed in the 
environment where it will be subsequently used for imaging . 
In this way , the training data will reflect precisely the type 
of interference that will likely be present during subsequent 
operation of the MRI system . 
[ 0056 ] For example , in some embodiments , an MRI sys 
tem may be calibrated for subsequent artefact suppression 
by : ( 1 ) placing the MRI system in an environment in which 
the MRI system will be used for imaging ( e.g. , an emergency 
room , an office , an operating room , a patient's room , an 
intensive care unit , etc. ) ; ( 2 ) obtaining one or more mea 
surements of the RF artefacts ( e.g. , measurements of exter 
nal RF interference generated by medical devices in the 
medical facility in which the MRI system has been placed ) 
and / or MR data in this environment ; ( 3 ) using these mea 
surements to generate training data for training a neural 
network for artefact suppression ; ( 4 ) training the neural 
network using these training data ( e.g. , by learning at least 
some parameters of the neural network either from scratch 
using only the training data obtained in the environment or 
by updating / adapting the neural network parameters to the 
training data obtained in the environment ) ; and ( 5 ) using the 
trained neural network to suppress artefacts in MR data 
subsequently collected by the MRI system in the environ 
ment . In this way , the neural network may learn to suppress 
and / or may be adapted to suppress precisely the type of 
interference present in the environment during imaging . 
[ 0057 ] Following below are more detailed descriptions of 
various concepts related to , and embodiments of , methods 
and apparatus for suppressing artefacts in MR data using 
neural networks . It should be appreciated that various 
aspects described herein may be implemented in any of 
numerous ways . Examples of specific implementations are 
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provided herein for illustrative purposes only . In addition , 
the various aspects described in the embodiments below 
may be used alone or in any combination , and are not limited 
to the combinations explicitly described herein . 
[ 0058 ] FIG . 1A illustrates an example data processing 
pipeline 100 for generating MR images from input MR data 
using a neural network model to suppress one or more 
artefacts in the input MR data , in accordance with some 
embodiments of the technology described herein . 
[ 0059 ] As shown in FIG . 1A , data processing pipeline 100 
includes multiple stages for processing input MR data 102 
including : pre - processing stage 104 , RF interference 
removal stage 106 , noise removal stage 108 , reconstruction 
stage 110 , and noise removal stage 112. Applying these 
processing stages to the input MR spatial frequency data 102 
produces an output MR image 114 . 
[ 0060 ] In the example of FIG . 1A , three stages ( i.e. , stages 
106 , 108 , and 112 ) are shaded indicating that these stages 
perform artefact suppression processing . In the example of 
FIG . 1A , the stages 106 and 108 perform processing in the 
spatial frequency domain , whereas the stage 112 performs 
artefact suppression processing in the image domain . As 
described above , in some embodiments , any one or more of 
these stages may be performed in any other suitable domain . 
For example , in some embodiments , one or both of the 
stages 106 and 108 may perform artefact suppression in the 
sensor domain rather than in the spatial frequency domain . 
In such embodiments , pre - processing stage 104 , which may 
transform the data from the sensor domain to the spatial 
frequency domain , may be placed between stages 108 and 
110 rather than prior to stage 106 as shown in FIG . 1A . 
[ 0061 ] In the example of FIG . 1A , each of stages 106 , 108 , 
and 112 suppresses artefacts in the data provided as input to 
the stage using a respective neural network portion . In this 
example , the overall neural network model comprises three 
portions : a first neural network portion configured to sup 
press RF interference in MR data as part of the processing 
performed during stage 106 , a second neural network por 
tion configured to suppress noise in MR data as part of the 
processing performed during sta 108 , and a third neural 
portion configured to suppress noise from MR data as part 
of the processing performed during stage 112. In some 
embodiments , the three portions of the neural network 
model may be trained jointly ( e.g. , the output of one neural 
network portion may impact the input to another neural 
network portion ) . 
[ 0062 ] Although this example involves using a data pro 
cessing pipeline with three artefact suppression stages , this 
is not a limitation of the technology described herein . In 
some embodiments , the data processing pipeline may be 
used with any one or two of the stages 106 , 108 , and 112 
rather than all three . Moreover , one or more artefact sup 
pression stages may be used in addition to and / or instead of 
any one or two or all of the stages illustrated in the example 
data processing pipeline 100 of FIG . 1A . 
[ 0063 ] The data processing pipeline 100 may be applied to 
any suitable type of input sensor data 102. The data 102 may 
be collected by one or multiple RF coils of an MRI system . 
The data 102 may be collected using a Cartesian sampling 
trajectory or any suitable type of non - Cartesian sampling 
trajectory ( e.g. , radial , spiral , rosette , variable density , Lis 
sajou , etc. ) . The data 102 may be fully - sampled data ( data 
collected by sampling spatial frequency space so that the 
corresponding Nyquist criterion is not violated ) . The data 

102 may be under - sampled data ( data containing fewer 
points than what is required by spatial Nyquist criteria ) . In 
some embodiments , the data 102 may exhibit artefacts due 
to the presence of external RF interference , internal RF 
interference , and / or noise generated by the MR receiver 
chain and / or a subject ( or object ) being imaged . 
[ 0064 ] Initially , as part of pre - processing stage 104 , one or 
more pre - processing steps may be applied to the input MR 
data 102. For example , in some embodiments , the input MR 
data 102 may be sensor domain data and the pre - processing 
stage may transform the sensor domain data ( e.g. , by per 
forming a 1D Fourier transformation along the readout 
lines ) . As another example , in some embodiments , the 
pre - processing stage 104 may involve removing some of the 
input data 102. For example , some of the data 102 may be 
removed upon determining that the data was corrupt ( e.g. , 
due to a sensor reading indicating that the data is not 
reliable ) . 
[ 0065 ] Next , as part of data processing pipeline 100 in 
stage 106 , a first portion of the neural network model is 
applied to suppress ( external and / or internal ) RF interfer 
ence in the data provided as input to stage 106 . 
[ 0066 ] In some embodiments , the neural network applied 
during stage 106 may have a “ U ” structure with convolu 
tional layers being first applied to a sequence of successively 
lower - resolution versions of the data ( along the down 
sampling path ) and , second , to a sequence of successively 
higher - resolution versions of the data ( along the up - sam 
pling path ) . 
[ 0067 ] For example , the first portion of the neural network 
model may have the architecture 130 shown in FIG . 1B . As 
shown in FIG . 1B , in the down - sampling path , convolutional 
layers 132a and 132b are applied to input 131. An average 
pooling layer 133 is then applied to the output of convolu 
tional layer 132b , and convolutional layers 134a and 134b 
are applied to the lower - resolution data produced by the 
average pooling layer 133. Next , another average pooling 
layer 135 is applied to the output of convolutional layer 
134b , and convolutional layers 136a , 136b , and 136c are 
applied to the output of the average pooling layer 135 . 
[ 0068 ] Next , in the up - sampling path , the output of con 
volutional layer 136c is processed by the average unpooling 
layer 137. The output of the average unpooling layer 137 is 
processed by convolutional layers 138a and 1386. The 
output of convolutional layer 138b is processed by average 
unpooling layer 139 , and the output of average unpooling 
layer 139 is processed by convolutional layers 140a - c to 
generate output 145 . 
[ 0069 ] The architecture 130 also includes skip connec 
tions 141 and 142 , which indicates that the input to the 
average unpooling layers consists from output by the imme 
diately preceding convolutional layer and output having a 
higher resolution generated by another ( not immediately ) 
preceding convolutional layer . For example , the input to the 
average unpooling layer 137 is the output of convolutional 
layers 134b ( as indicated by the skip connection 142 ) and 
136c . The output of convolutional layer 134b has a higher 
resolution than that of layer 136c . As another example , the 
input to the average unpooling layer 139 is the output of 
convolutional layers 132b ( as indicated by the skip connec 
tion 142 ) and 1386. The output of convolutional layer 132b 
has a higher resolution than that of layer 138b . In this way , 
high frequency information that is lost through the applica 
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tion of pooling layers along the down - sampling path is 
re - introduced and not lost ) as input to the unpooling layers 
along the up - sampling path . 
[ 0070 ] Although not expressly shown in FIG . 1B , a non 
linearity layer ( e.g. , a rectified linear unit or ReLU , sigmoid , 
etc. ) may be applied after one or more layers shown in the 
architecture 130. For example , a non - linearity layer may be 
applied after one or more ( or each ) of the convolutional 
layers shown in FIG . 1B . In addition , batch normalization 
may be applied at one or more points along the architecture 
130 ( e.g. , at the input layer ) . 
[ 0071 ] FIG . 1C illustrates a specific example of the archi 
tecture of an example convolutional neural network block 
shown in FIG . 1B , in accordance with some embodiments of 
the technology described herein . As shown in FIG . 1C , all of 
the convolutional layers apply a 3x3 kernel . In the down 
sampling path , the input at each level is processed by 
repeated application of two ( or three at the bottom level ) 
convolutions with 3x3 kernels , each followed by an appli 
cation of a non - linearity , an average 2x2 pooling operation 
with stride 2 for down - sampling . At each down - sampling 
step the number of feature channels is doubled from 64 to 
128 to 256. The number of feature channels is also doubled 
from 256 to 512 at the bottom layer . In the up - sampling path , 
the data is processed by repeated up - sampling of the feature 
maps using an average unpooling step that halves the 
number of feature channels ( e.g. , from 256 to 128 to 64 ) , 
concatenating with the corresponding feature map from the 
down - sampling path and one or more convolutional layers 
( using 3x3 kernels ) , each followed by application of a 
non - linearity . The last convolutional layer 140c reduces the 
number of feature maps to 2 . 
[ 0072 ] As described above , the inventors have developed 
a new type of unpooling layer , termed a “ spectral unpooling 
layer " herein to use for neural network models that may be 
applied in the sensor or spatial - frequency domain , for 
example , to suppress artefacts in the input MR data . For 
example , FIG . ID illustrates the architecture 150 of a 
convolutional neural network block having a “ U ” structure 
and a spectral unpooling layer . The architecture 150 is the 
same as the architecture 130 shown in FIG . 1B , however , the 
average unpooling layers are replaced with spectral unpool 
ing layers . 
[ 0073 ] As shown in FIG . ID , in the down - sampling path , 
convolutional layers 152a and 152b are applied to input 151 . 
A spectral pooling layer 153 is then applied to the output of 
convolutional layer 152b , and convolutional layers 154a and 
154b are applied to the lower - resolution data produced by 
the spectral pooling layer 153. Another spectral pooling step 
155 is applied to the output of convolutional layer 154b , and 
convolutional layers 136a , 136b , and 136c are applied to the 
output of spectral pooling layer 155. In the up - sampling 
path , the output of convolutional layer 156c is processed by 
the spectral unpooling layer 157 whose output is in turn 
processed by convolutional layers 158a and 1586. The 
output of convolutional layer 158b is processed by spectral 
unpooling layer 159 , whose output is processed by convo 
lutional layers 160a - c to generate output 165 . 
[ 0074 ] In some embodiments , the spectral pooling layer 
may be implemented by cropping the data . This is akin to 
simply dropping higher spatial frequency content from the 
data and is very efficient to implement since the data is 
already in the spatial frequency domain so that it is not 
necessary to apply a Discrete Fourier Transform to imple 

ment the spectral pooling layer . Aspects of spectral pooling 
are described in Rippel , O. , Snoek , J. , and Adams , R. P. 
“ Spectral representations for convolutional neural net 
works . ” In Advances in Neural Information Processing 
Systems , pp . 2449-2457 , 2015 , which is incorporated by 
reference herein in its entirety . 
[ 0075 ] As shown in FIG . 1D , the architecture 150 also 
includes skip connections 161 and 162. Thus , the input to 
spectral unpooling layer 157 is the output of convolutional 
layers 154b and 1560 ( with the output of layer 154b includ 
ing higher frequency content than the output of layer 156C ) . 
The input to spectral unpooling layer 159 is the output of 
convolutional layers 152b and 158b ( with the output of layer 
152b including higher frequency content than the output of 
layer 158b ) . 
[ 0076 ] In some embodiments , the architecture 150 may be 
implemented in a manner analogous to the implementation 
of architecture 130 as shown in FIG . 1C . For example , 3x3 
kernels may be used and the number of feature channels may 
increase from 64 to 128 to 256 to 512 along the down 
sampling path and decrease from 512 to 256 to 128 to 64 and 
to 2 along the up - sampling path . However , it should be 
appreciated that any other suitable implementation ( e.g. , 
number of feature channels , kernel size , etc. ) may be used , 
as aspects of the technology described herein are not limited 
in this respect . 
[ 0077 ] FIG . 1E illustrates the architecture of an example 
spectral unpooling layer , in accordance with some embodi 
ments of the technology described herein . In particular , FIG . 
1E illustrates the architecture of spectral unpooling layer 
157 part of architecture 150 shown in FIG . 1D . As shown in 
FIG . 1E , the output 180 of spectral unpooling layer 157 is 
generated from two inputs : ( 1 ) high resolution features 170 
provided via skip connection 162 ( from output of convolu 
tional layer 152b as shown in FIG . ID ) ; and ( 2 ) low 
resolution features 174 provided as output from convolu 
tional layer 158b as shown in FIG . 1D . The high resolution 
features 170 are so termed because they include higher 
( spatial ) frequency content than the low resolution features 
174 . 
[ 0078 ] In the illustrated embodiment , the spectral unpool 
ing layer 157 combines the high resolution features and low 
resolution features 174 by : ( 1 ) zero padding the low reso 
lution features 174 using zero padding block 176 ; and ( 2 ) 
computing a weighted combination of the zero - padded low 
resolution features ( weighted using weights 178 ) with the 
high resolution features ( weighted by weights 172 ) . In some 
embodiments , the weights 172 and 178 are learned from data 
rather than set in advance . However , in other embodiments , 
at least some of the weights may be set manually rather than 
learned from data . 
[ 0079 ] As one specific example of using the spectral 
pooling layer , the low - resolution features 174 may include 
one or more ( e.g. , 128 ) feature channels each comprising 
64x64 complex values and the high - resolution features may 
include one or more ( e.g. , 64 ) feature channels each com 
prising 128x128 complex values . A high - resolution 128x 
128 feature channel and a corresponding low - resolution 
64x64 feature channel may be combined by : ( 1 ) zero pad 
ding the 64x64 feature channel to obtain a 128x128 zero 
padded set of values ; and ( 2 ) adding the high resolution 
128x128 feature channel ( weighted by weights 172 ) to the 
128x128 zero - padded set of values ( weighted by weights 
178 ) . 
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[ 0080 ] As described above , some neural network archi 
tectures for artefact suppression may use average pooling 
( and unpooling ) or spectral pooling ( and unpooling ) layers . 
In other embodiments , maximum pooling ( and unpooling ) 
layers may be used . Still in other embodiments , pooling 
layers may be omitted altogether and longer kernel strides 
may be used to effectively down - sample the data , with 
transpose convolutional layers used to up - sample the data . 
[ 0081 ] Returning to data processing pipeline 100 , as 
shown in FIG . 1A , noise removal stage 108 follows RF 
interference removal stage 106. As part of stage 108 , a 
second portion of the neural network model is applied to 
suppress noise in the data provided as input to stage 108. For 
example , the second portion of the neural network model 
may be used to suppress noise generated by the MR receiver 
chain during collection of the input MR data . As another 
example , the second portion of the neural network model 
may be used to suppress noise generated by the subject ( or 
object ) being imaged . 
[ 0082 ] In some embodiments , the second portion of the 
neural network model may have the same or similar archi 
tecture to that of the first portion ( used as part of stage 106 ) . 
For example , the second portion may have a “ U ” structured 
architecture like the architectures 130 and 150 described 
with reference to FIGS . 1B - 1E . Though it should be appre 
ciated that one or more other architectures could be used 
such as , for example , a ResNet architecture comprising 
convolutional blocks with residual connections , as described 
in He K , Zhang X , Ren S , Sun J. “ Deep residual learning for 
image recognition . ” In Proceedings of the IEEE conference 
on computer vision and pattern recognition 2016 ( pp . 770 
778 ) . 
[ 0083 ] As shown in the example of FIG . 1A , the noise 
removal stage 108 is applied in the spatial frequency 
domain . However , in other embodiments , the noise removal 
stage may be applied in another domain after suitable 
transformation ( e.g. , sensor domain , log spectral domain , 
time domain , spectral domain , etc. ) , as aspects of the tech 
nology described herein are not limited in this respect . 
[ 0084 ] In some embodiments , the second portion of the 
neural network model may be trained jointly with the first 
portion of the neural network model . For example , training 
data may be generated such that the input to the second 
portion of the neural network model may be the output of the 
first portion of the neural network model . As a specific 
example , training data corrupted with both RF interference 
and MR receiver chain noise may be provided as input to the 
first portion of the neural network model and the output 
( with at least some of the RF interference having been 
suppressed by the first portion ) is provided as input to the 
second portion of the neural network model . In other 
embodiments , the first and second portions may be trained 
independently of one another . As a specific example , train 
ing data corrupted by noise ( e.g. , MR receiver chain noise ) 
but not RF interference may be used to train the second 
portion of the neural network model . Aspects of training the 
first and second neural network model portions are further 
described below . 
[ 0085 ] As shown in FIG . 1A , the image reconstruction 
stage 110 follows the noise suppression stage 108. During 
the image reconstruction stage 110 spatial domain frequency 
data output by stage 108 is transformed to the image domain 
to generate image - domain data . The image reconstruction 
may be performed in any suitable way . For example , when 

the MR data is sampled along a Cartesian grid , the data may 
be transformed to the image domain using an inverse 2D ( or 
3D ) Fourier transformation ( e.g. , using the inverse 2D or 3D 
fast Fourier transform ) . As another example , when the MR 
data is under - sampled , the data may be transformed using a 
gridding operation followed by an inverse Fourier transfor 
mation , an inverse non - uniform Fourier transformation , 
using a neural network model for reconstructing image data 
from non - Cartesian k - space data , using compressive sensing 
and / or any other suitable methods , as aspects of the tech 
nology described herein are not limited in this respect . 
[ 0086 ] As one specific example , in some embodiments , 
where a non - Cartesian sampling trajectory is used , the MR 
data may be mapped to a regular grid in the spatial frequency 
domain ( this is sometimes termed “ gridding ” the data ) and 
the gridded data may be transformed to the image domain 
using an inverse 2D fast Fourier transform to obtain a 
corresponding image . A regular grid in k - space refers to a 
regularly - spaced grid of points in k - space such that there is 
a fixed distance A between each k - space coordinate that may 
be indexed . In some embodiments , the gridding may be 
performed by applying an interpolation matrix transforma 
tion to the data . In some embodiments , the entries of the 
interpolation weight matrix may be computed using an 
optimization approach such as , for example , the approach 
described in Fessler , J. A. , Sutton B. P .: Non - uniform fast 
Fourier transforms using min - max interpolation . IEEE 
Transactions on Signal Processing 51 ( 2 ) , 560-574 ( 2003 ) , 
which is incorporated by reference herein in its entirety . 
Aspects of image reconstruction in the non - Cartesian setting 
are described in U.S. patent application Ser . No .: “ 16/524 , 
598 ” , filed on Jul . 30 , 2019 , titled “ Deep Learning Tech 
niques for Magnetic Resonance Image Reconstruction " , 
which is incorporated by reference herein in its entirety . 
[ 0087 ] As shown in FIG . 1A , the noise removal stage 112 
follows the reconstruction stage 110. As part of the noise 
removal stage 112 , a third portion of the neural network 
model is applied to suppress noise in image - domain MR 
data . In this example , however , unlike the first and second 
neural network model portions , which are applied in the 
spatial frequency domain , the third portion of the neural 
network model is applied in the image domain . The third 
neural network portion may have an architecture that is the 
same as or similar to that of the first or second portions and , 
for example , may have an architecture like that described in 
FIG . 1B - 1E ( with appropriate Fourier transformations 
employed to perform the spectral pooling and unpooling 
layers when such layers are employed ) . The third portion of 
the neural network model may be trained jointly with or 
independently from the first and second neural network 
model portions , as aspects of the technology described 
herein are not limited in this respect . Aspects of training the 
third portion are further described below . 
[ 0088 ] As shown in FIG . 1A , the output of the noise 
removal stage is an MR image 114. It should be appreciated 
that the data processing pipeline 100 shown in FIG . 1A is 
illustrative and there are variations . As described , one or 
more of the artefact suppression stages ( 106 , 108 , and 112 ) 
may be omitted in some embodiments . As another example , 
one or more additional processing stages may be added to 
the pipeline for artefact suppression or to perform any other 
functionality . As another example , already described above , 
stages 106 and 108 may be applied in the sensor domain 
rather than the spatial frequency domain . 
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Se of all Navy averages together to incorporate even more 
information . In this case the output will be all denoise coil 
data for all averages together . This may be helpful when 
multiple observations by each coil is made . 
[ 0093 ] Any of numerous types of loss functions may be 
used for training a neural network for suppressing RF 
interference , and various examples of loss functions are 
provided herein . As one example , for training a neural 
network for suppressing RF interference in data acquired 
using a single coil , the following loss function may be 
employed : 

+ L ( O ) = || F ( S ) - fonn ( F ( sc ) | 0112 
Il fenn ( V F ( $ c ) | 0 ||| + || W ( SMW - forn ( sc | 0 ) ) || 

where W is the weighting matrix , F is ID Fourier transform , 
V is an image gradient , o represents parameters of the 
convolutional neural network fCNN . 
[ 0094 ] In the multi - channel setting , the following loss 
function may be employed : 

Ncoil 
L ( O ) = 2 ( IF ( SM ) – fewn ( F ( s ) [ 0 ) | l3 + 

c = 1 

Il fenn ( V F ( s ) [ 0 ) ||| + || W ( SM - fon ( s [ 0 ) . ) ) ) 

coil 

[ 0089 ] A discussion of further aspects and details of neural 
network models for artefact suppression , such as then neural 
network models illustrated in FIGS . 1A - 1E follows next . It 
should be noted that although we described three neural 
network portions of a single network model above in con 
nection with the neural network processing as part of stages 
106 , 108 , and 112 , below we may refer to the neural network 
portions as simply neural networks . 
[ 0090 ) First , some notation is introduced . An MRI system 
may have one or multiple RF coils configured to detect MR 
signals in the imaging region of the MR system . Let the 
number of such RF coils be denoted by Nc . For each RF coil 
c configured to detect MR signals in the imaging region , let 
se denote the detected signal . This detected signals contains 
three different components as follows : ( 1 ) the target MR 
signal data , x , for coil c ; ( 2 ) the noise n . corrupting the signal 
( e.g. , noise generated by the MR receiver chain for coil c , 
noise generated by the subject or object ) being imaged ) ; 
and ( 3 ) external and / or internal RF interference i .. Accord 
ingly , se = + n + ic . Moreover , by locating Np receiver coils 
outside of the system we can acquire noise observed outside 
of the system ( which is correlated with Sc’s ) called Sp " . The 
observed signal may therefore be written as : 

5. = x + n + ic = sN + ic 

[ 0091 ] As described above , in some embodiments , a neu 
ral network model may be used to suppress the RF inter 
ference ic . For example , the first portion of a neural network 
model used as part of stage 106 may be used to suppress the 
RF interference is so as to generate sem for each coil c . The 
neural network model for suppressing RF interference may 
be trained jointly with or independently from any other 
neural networks part of the data processing pipeline . In some 
embodiments , to train a model to suppress ic , training data 
is created that includes all of the components of se separately 
so that ground truth is available . This may be done in any 
suitable as described herein . For example , each of x n and 
ic , may be generated synthetically using a computer - based 
simulation and / or observed using an MRI system . For 
example , to generate i , one can synthetically add structured 
noise lines to scor acquire s while no object is located inside 
of the system . As another example , an MRI system may have 
one or more RF coils outside of the imaging region that may 
be used to observe artefacts outside of the imaging region 
( without also detecting MR signals ) and this coil or coils 
may be used to measure RF interference . 
[ 0092 ] In some embodiments , the architecture of the neu 
ral network for removing RF interference may be a “ U ” 
architecture like the architectures 130 and 150 described 
with reference to FIGS . 1B - 1E . Alternatively , a ResNet type 
architecture may be used where convolutional blocks have 
residual connections . The input to the network may be : ( 1 ) 
the signal se for each coil , so that the neural network 
suppresses RF interference for each coil separately ; ( 2 ) the 
signals se for all the coils as separate channels , so that the 
neural network suppresses RF interference for all coils at the 
same time ; or ( 3 ) the signals se for each coil , as separate 
channels , as well as the signals s . ' s as extra information in 
other channels ( not to be suppressed , but rather to suppress 
RF interference in the signals sc . The output produced by the 
neural network , corresponding to the input , may be : ( 1 ) se 
for each coil c separately ; or ( 2 ) all sMs as separate 
channels ( when the input is of the latter two cases ) . Addi 
tionally , in some embodiments , the input to this block can be 

where N is the number of coils and fcnn ( S ) is denoised 
sensor data for coil c . 
[ 0095 ] As described above , in some embodiments , a neu 
ral network may be used to suppress the RF interference is 
( e.g. , as part of stage 106 of pipeline 100 ) and another neural 
network may be used to suppress noise n . ( e.g. , as part of 
stage 108 of pipeline 100 ) . As described herein , the archi 
tecture of the neural network for suppressing n may be the 
same as or similar to that used for suppressing RF interfer 
ence ic ( e.g. , a “ U ” structured network , a ResNet structured 
network , and / or any of the architectures described with 
reference to FIGS . 1B - 1E ) . 
[ 0096 ] In some embodiments , the input to the noise 
removal neural network may be : ( 1 ) s for suppressing noise 
from each coil c separately ; ( 2 ) all so's as separate channels , 
for suppressing noise in all coils at the same time ; ( 3 ) all se's 
as separate channels as well as the data detected by coils 
outside of the imaging region ( sp " ) as an additional infor 
mation to use for denoising . In some embodiments , the 
output of the trained neural network may be : ( 1 ) x , or ( 2 ) all 
xc's for the multiple coils . 
[ 0097 ] Any of numerous types of loss functions may be 
used for training a neural network for suppressing noise , and 
various examples of loss functions are provided herein . As 
one example , for training a neural network for suppressing 
noise in data acquired using a single coil , the following loss 
function may be employed : 

nz ? 

( 0 ) = NI 

|| F ( x ) – fern ( F ( sc ) | 0 || + | IfCNN ( F ( $ c ) | 0 |||| + || W ( xc – forn ( sc | 0 ) || + 
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[ 0098 ] In some embodiments , when training a neural 
network for suppressing noise in data acquired using mul 
tiple coils , the following loss function may be employed : 

Ncoil 

L ( O ) = 2 ( IF ( x ) – fcun ( F ( s ) [ 0 ) cllß + 
c = 1 

Il fenn ( V F ( s ) [ 0 ) ||| + || W ( xc – fern ( s | 0 ) .ID 

[ 0099 ] As described above , in some embodiments , a neu 
ral network may be used to suppress artefacts in the image 
domain ( e.g. , as part of stage 112 of pipeline 100 ) . As 
described herein , the architecture of this neural network may 
be the same as or similar to that of other neural networks 
described herein ( e.g. , a “ U ” structured network , a ResNet 
structured network , and / or any of the architectures described 
with reference to FIGS . 1B - 1E ) . 
[ 0100 ] Suppressing artefacts in the image domain may 
facilitate reducing or removing noise generated by the 
acquisition system ( e.g. , MR receiver chain ) . The effects of 
such noise are more pronounced in low - field MRI system 
leading to a lower signal to noise ratio . Conventional tech 
niques for suppressing noise in MR images involve using 
parametric filtering techniques such as anisotropic diffusion 
or non - local means filtering . The goal of these parametric 
filtering techniques is to remove noise in uniform image 
regions while preserving sharpness of the edges around 
anatomical structures . When the level of noise is high ( as in 
low - field systems ) , applying the parametric filters typically 
results in smooth - looking images with loss of detail in 
low - contrast image regions . By contrast , using deep learning 
to suppress artefacts ( e.g. , noise ) in the image domain using 
the techniques developed by the inventors results in sharp 
looking images while preserving structure even in low 
contrast regions . 
[ 0101 ] The neural network architecture used to suppress 
artefacts in the image domain may be any of the architec 
tures described herein and , for example , may be a convo 
lutional neural network having convolutional blocks with 
residual connections ( like in the ResNet architecture ) , a “ U ” 
structure like described with reference to FIGS . 1B - 1E or 
any other suitable structure . 
[ 0102 ] In some embodiments , training data may be created 
to reflect the effect of noise on MR images . The noise may 
be measured ( e.g. , using an MRI system ) or synthesized . For 
example , a synthetic noise signal e , may be added to the 
image x , as follows : x " = x_tec , where the noise may be 
drawing from a Gaussian e - N ( 0,0 . ) or Ricean distribution , 
( assuming there is no correlation among coils for simplic 
ity ) . 
[ 0103 ] In some embodiments , the neural network for 
suppressing artefacts in the image domain may be trained , 
given a dataset D , using content loss ( structural similarity 
index ( SSIM ) loss or mean squared error loss ) and an 
adversarial loss given by : 

[ 0104 ] In the above expression for loss , the generator G is 
the filtering network and the discriminator D is trained to 
best differentiate between images filtered with the network 
G and original noise - free images ( ground truth ) . In some 
embodiments , the parameters of the generator ( 06 ) and 
discriminator ( ) neural networks may be optimized by 
establishing a minimax game between the generator and 
discriminator neural networks . The generator network may 
be trained to produce filtered images as close as possible to 
the ground truth and thus fool the discriminator neural 
network . On the other hand , the discriminator network may 
be trained to classify the input images as filtered or ground 
truth . Using an adversarial loss , like the one described 
above , helps to achieve sharp - looking filtered images while 
preserving structures even in low - contrast regions . 
[ 0105 ] In some embodiments , the neural network for 
suppressing artefacts in the image domain may be trained 
jointly with or independently from any other artefact sup 
pression networks . In the former case , input into the neural 
network may be the final reconstructed image ( e.g. , gener 
ated by reconstruction stage 110 ) and the network may be 
trained using the target image x . In some embodiments , the 
network may be trained using target Xo , before resizing . This 
way , the filtering will learn to upsample the image in an 
optimal way . 
[ 0106 ] Next , we discuss an illustrative example of apply 
ing a neural network to suppress RF interference in the 
spatial frequency domain , according to some embodiments 
of the technology described herein . 
[ 0107 ] The inventors have appreciated that , in some 
instances , RF interference may manifest itself as one or 
more bright , zipper - like scratches in the image along the 
phase encoding direction because the interference captured 
in the spatial frequency domain the frequency components 
of interference are usually consistent through scanning . 
Image recovery of regions corrupted by zipper - like artifacts 
is challenging since their appearance has complicated struc 
ture which oftentimes may significantly degrade the under 
lying image in the image domain . In k - space domain , 
however , although the noise is not localized as in the image 
domain and thus more regions are affected , the corruption is 
not as destructive because the noise frequency components 
with small amplitude are superimposed onto the signal data 
with much larger amplitude . 
[ 0108 ] FIG . 2A illustrates the architecture of an example 
neural network , having a spectral unpooling layer , for sup 
pressing RF interference in MR data , in accordance with 
some embodiments of the technology described herein . The 
neural network of FIG . 2A implements a version of the 
architecture described with reference to FIGS . 1D and 1E . 
[ 0109 ] In particular , the neural network of FIG . 2A 
includes multiple convolutional residual blocks ( e.g. , n = 8 ) 
that serve as learned interpolation filters . In the down 
sampling path , after every two convolutional blocks , a 
spectral pooling operation is applied to project the data onto 
a lower - dimensional frequency basis . In the up - sampling 
path , a spectral unpooling layer is used to up - sample the 
lower - level k - space features and combine them with higher 
level features ( from skip connections ) . In this example , the 
spectral unpooling layer applies convolution , batch normal 
ization , ReLU and pointwise multiplication layer ( with 
learned coefficients ) on both lower - level and higher - level 
features ( skips ) . The lower - level features are then zero 
padded and added to the processed skips . 

Ll @ g , Op ) = -Dep ( Gog ( xc ) , x ) + A ( 1 – SSIM ( * c * % ) ) . 
i = 1 
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[ 0110 ] In the particular implementation of FIG . 2A , the 
input image is resized into 128x128 blocks . In down 
sampling path , spectral pooling reduces the height and width 
of each activation by two ; the convolutional layers utilize 
3 - by - 3 kernels with output dimension 16 ( before first spec 
tral pooling ) , 32 ( between the first and second spectral 
pooling ) , 48 ( between the second and last spectral pooling ) 
and 64 ( after the last spectral pooling ) respectively . In the 
up - sampling path part , the size of convolutional kernel is 
1 - by - 1 and the output dimension is the same as input 
dimension . 
[ 0111 ] In this example , the neural network of FIG . 2A is 
trained ( in some instances using the Adam optimizer with 
learning rate 0.001 ) using a loss function composed of 
k - space loss ( k - space MSE and conjugate symmetry loss ) 
and image domain loss ( structured similarity index ) . Spe 
cifically , we define the loss as Lly , ) || F ( y ) -F ( + Icon 
( F? ) ) + ( 1 - SSIM ( y , ? ) ) , where y is the target image , ? is 
the denoised image , F is the Fourier transform , Lconj is the 
conjugate symmetry loss and SSIM is defined in the same 
way as in Wang , Z. , Bovik , A. C. , Sheikh , H. R. , Simoncelli , 
E. P .: “ Image quality assessment : from error visibility to 
structural similarity . ” IEEE Transactions on Image Process 
ing 13 ( 4 ) , 600-612 ( 2004 ) . Using this type of k - space loss 
helps to suppress the zipper artifacts while the structural 
similarity index ensures that the images are sharp . 
[ 0112 ] In the example of FIGS . 2A and 2B , the neural 
network of FIG . 2A was trained using a database of inter 
ference - corrupted images for input paired with interference 
free data as target ground truth . The interference - free images 
were corrupted with RF interference synthesized using a 
generative statistical model . In this example , the inventors 
have appreciated that the RF interference has a specific 
structure , which may be modeled by equation f ( kx , 
k , ) = Em = Mame = Hißorky + E ( kx , k . ) , where am is the intensity of 
interference , Bm determines the position of interference 
noise in image space and E is an additional Gaussian noise . 
The corrupted and the original interference - free images were 
then used to train the neural network . 
[ 0113 ] FIG . 2B illustrates application the example neural 
network shown in FIG . 2A to suppressing RF interference in 
MR images , in accordance with some embodiments of the 
technology described herein . The network of FIG . 2A was 
trained with à = le - 5 , às = le - 2 in loss function and M - Uni 
form ( 0,60 ) , am - Uniform ( 0,1 ) and Bm - Uniform ( 0,1 ) in 
degrading function . The neural network was trained for 1000 
epochs with 8192 volumes per epoch and with batch size 64 . 
[ 0114 ] FIG . 2B shows , for each of two different MR 
images , the following three images : ( 1 ) the ground truth 
( original image without interference ) ; ( 2 ) the interference 
corrupted MR image ; and ( 3 ) a cleaned - up image obtained 
by using the model of FIG . 2A to suppress the RF interfer 
ence . The results show that the model suppresses the zipper 
lines in the corrupted image and at the same time preserves 
the other brain features . For the two slices shown in FIG . 2B , 
the overall SSIM is enhanced from 0.862 to 0.919 and from 
0.884 to 0.918 respectively ; for the region affected by 
interference noise ( 20 nearest pixels to interference line in 
vertical direction ) , SSIM is dramatically improved from 
0.377 to 0.744 and from 0.472 to 0.743 . 
[ 0115 ] FIG . 3 is a flowchart of an illustrative process 300 
for suppressing one or more artefacts present in input MR 
data using a neural network model , in accordance with some 
embodiments of the technology described herein . Process 

300 may be executed using any suitable computing device . 
For example , in some embodiments , the process 300 may be 
performed by a computing device co - located ( e.g. , in the 
same room ) with an MRI system that obtained the MR data 
by imaging a subject or object ) . As another example , in 
some embodiments , the process 300 may be performed by 
one or more processors located remotely from the MRI 
system ( e.g. , as part of a cloud computing environment ) that 
obtained the input MR data . 
[ 0116 ] Process 300 begins at act 302 , where input MR data 
is obtained . In some embodiments , the input MR data had 
been previously obtained by an MRI system and stored for 
subsequent analysis , so that it is accessed at act 302. In other 
embodiments , the input MR data may be obtained by an 
MRI system ( including any of the MRI systems described 
herein ) as part of process 300. In some embodiments , the 
data may have been obtained using a Cartesian sampling 
trajectory . In other embodiments , the data may have been 
obtained using a non - Cartesian sampling trajectory , 
examples of which are provided herein . 
[ 0117 ] After one or more pre - processing steps , which may 
be optional and may involve transforming the input MR data 
from the sensor domain to the spatial frequency domain , as 
described above , process 300 moves to act 304 where at 
least one artefact is suppressed , in the spatial frequency 
domain , using a neural network model . 
[ 0118 ] In some embodiments , spatial frequency domain 
processing is performed in two stages . For example , during 
the one stage , a first portion of the neural network model 
may be used to suppress RF interference in the spatial 
frequency domain , as described herein including with ref 
erence to stage 106 of processing pipeline 100 , and FIGS . 
1A - 1E and 2A - 2B . Then , during another ( immediately fol 
lowing , in some embodiments ) stage , noise may be sup 
pressed in the MR data in the spatial frequency domain , as 
described herein including with reference to stage 108 of 
processing pipeline 100 , and FIGS . 1A - 1E . In other embodi 
ments , however , a different number of artefact suppression 
stages may be used ( e.g. , one , three , four , five , etc. ) , as 
aspects of the technology described herein are not limited in 
this respect . For example , in some embodiments , a single 
artefact suppression stage may be used at act 304 to simul 
taneously suppress RF interference and noise in the spatial 
frequency domain . 
[ 0119 ] Next , process 300 moves to act 306 , where image 
reconstruction is performed to transform spatial domain MR 
data to image domain data . The reconstruction may be 
performed in any suitable way . For example , when the 
spatial frequency domain data is spaced on a Cartesian grid , 
the data may be transformed using an inverse 2D Fourier 
transformation ( e.g. , using the inverse 2D fast Fourier trans 
form ) . As another example , when the spatial frequency 
domain data is under - sampled , the data may be transformed 
using an inverse non - uniform Fourier transformation , using 
a neural network model for reconstructing image data from 
non - Cartesian k - space data , using compressive sensing and / 
or any other suitable methods , as aspects of the technology 
described herein are not limited in this respect . 
[ 0120 ] Next , process 300 moves to act 308 , where a neural 
network model is applied to suppress artefacts present in the 
image obtained at act 306. The neural network model may 
be applied in the image domain and may have any suitable 
architecture including any of the architectures described 
herein . In some embodiments , the processing at act 308 may 
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be performed , as described herein including with reference 
to stage 112 of processing pipeline 100 , and FIGS . 1A - 1E . 
After act 308 completes , process 300 moves to act 310 
where the resultant MR image is output ( e.g. , saved for 
subsequent access , transmitted to a recipient over a network , 
etc. ) . 
[ 0121 ] In some embodiments , as part of process 300 , a 
neural network model having three portions may be 
employed . The first portion may be configured to suppress 
RF interference in the spatial frequency domain . The second 
portion may be configured to suppress noise in the spatial 
frequency domain . The third portion may be configured to 
suppress noise in the image domain . These portions may be 
trained jointly or independently of one another . In some 
embodiments , all three portions are used , but in other 
embodiments one or two of these portions may be omitted . 
[ 0122 ] In the illustrative example of FIG . 3 , act 304 
involves suppressing artefacts in MR data in the spatial 
frequency domain . However , in other embodiments , arte 
facts may be suppressed in the sensor domain or any other 
suitable domain , as aspects of the technology described 
herein are not limited in this respect . 
[ 0123 ] Additional aspects of training the neural network 
models described above are discussed next . 
[ 0124 ] In some embodiments , a residual training strategy 
may be employed to train neural networks to suppress 
artefacts from training data corrupted with them . As part of 
such a residual training strategy the input data may include 
the superposition of a signal of interest ( e.g. , an MR signal ) 
with undesired artefacts ( e.g. , RF interference , noise , etc. ) 
that corrupt the signal of interest . The target data may be the 
undesired artefact data ( e.g. , the RF interference signal that 
was added to an MR signal of interest to generate the input 
data ) . The output data is then the undesired artefact ( e.g. , the 
RF interference signal ) —the aim is therefore to estimate the 
undesired artefact data rather than the clean MR signal . This 
approach is sometimes termed “ residual training ” . A neural 
network model trained in this way is focused on learning 
differences among data with and without artefacts rather 
than on learning to generate artefact - free data , which helps 
in convergence during training . 
[ 0125 ] In some embodiments , one or a linear combination 
of multiple loss functions may be employed to train the 
neural network models described herein : 

[ 0126 ] L2 loss between output and target data 
[ 0127 ] L1 loss between output and target data 
[ 0128 ] L2 weighted loss between output and target data . 

The weights may be calculated based on the k - space 
coordinates . The higher the spatial frequency ( the far 
ther from the center of k - space ) , the higher the weight . 
Using such weights causes the resulting model to keep 
the high spatial frequencies which are noisier than the 
low frequencies 

[ 0129 ] L1 weighted regularization on the output . A 
sparse prior may be enforce on the output of the neural 
network by using the 1 , norm , optionally after weight 
ing . The weights may be calculated based on the 
k - space coordinates . The higher the spatial frequency 
( far from the center of k - space ) , the smaller the weight . 
This encourages sparsity . 

[ 0130 ] Generative Adversarial Nets loss 
[ 0131 ] Structured similarity index loss 
[ 0132 ] Any of the other loss functions described herein 

including in connection with FIGS . 1A - 1E and 2A - 2B . 

[ 0133 ] It should be appreciated that the loss functions 
described herein may be computed in any suitable domain 
( e.g. , sensor domain , k - space domain , image domain ) or any 
representation ( e.g. , after weighting ) regardless of the 
domain in which the neural network operates . For example , 
a neural network designed to operate on spatial frequency 
data may take spatial frequency data as input and produce 
spatial frequency data as output , but during training its loss 
function may be calculated in the image domain ( e.g. , after 
a suitable transformation of the data with a Fourier trans 
formation ) . This is helpful since some loss functions may 
not be straightforward or possible to compute in one domain , 
but may be easier to compute in another domain ( e.g. , it is 
natural to calculate the SSIM lost in the image domain ) . As 
a consequence , the input data may be transformed using any 
suitable transform ( e.g. , by gridding into k - space and / or 
performing Fourier transformation ) prior to application of a 
neural network . 

[ 0134 ] Any suitable optimization technique may be used 
for estimating neural network parameters from data . For 
example , one or more of the following optimization tech 
niques may be used : stochastic gradient descent ( SGD ) , 
mini - batch gradient descent , momentum SGD , Nesterov 
accelerated gradient , Adagrad , Adadelta , RMSprop , Adap 
tive Moment Estimation ( Adam ) , AdaMax , Nesterov - accel 
erated Adaptive Moment Estimation ( Nadam ) , AMSGrad . 
[ 0135 ] In some embodiments , the training data used for 
training the neural network models described herein may be 
obtained by : ( 1 ) synthesizing and / or measuring RF artefact 
measurements ; ( 2 ) synthesizing and / or measuring MR mea 
surements ; and ( 3 ) combining the obtained RF artefact and 
MR measurements to obtain artefact - corrupted MR data . In 
turn , the artefact - corrupted MR data ( and the corresponding 
separate artefact and MR data components ) may be used to 
train one or more neural network models for suppressing 
artefacts in MR data . 

[ 0136 ] In some embodiments , the synthesized and / or mea 
sured RF artefact measurements may represent various 
sources of interference and / or noise . For example , the syn 
thesized and / or measured RF artefact measurements may 
represent external RF interference generated by one or more 
electronic devices including , but not limited to , computers , 
monitors , cell phones , Bluetooth devices , medical devices 
( e.g. , EEG , ECG , pulse oximeters , cardiac monitors , blood 
pressure cuff , etc. ) , transformers , motors , pumps , fans , and 
ventilators . As another example , the synthesized and / or 
measured RF artefact measurements may represent internal 
RF interference generated by power components and / or 
magnetic components of an MRI system ( e.g. , gradient coils , 
power amplifiers , etc. ) . Such interference may manifest 
itself in a predictable manner as a function of the pulse 
sequence employed for imaging . Such interference may be 
measured effectively during operation of the MRI system 
using one or more pulse sequences . As another example , the 
synthesized and / or measured RF artefact measurements may 
represent noise generated by the MR receiver chain or the 
subject ( or object ) being imaged . 
[ 0137 ] In some embodiments , RF artefact measurements 
may be obtained using any sensor configured to capture 
directly or indirectly any RF artefacts present in the envi 
ronment of an MRI system . Such sensor may include MRI 
system sensors themselves ( e.g. , one or more RF coils ) 
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and / or any auxiliary sensors , which may be near the MRI 
system or even in other locations ( e.g. , other rooms of a 
hospital ) . 
[ 0138 ] In some embodiments , RF artefact measurements 
may be obtained by one or more sensors while the MRI 
system executes one or more pulse sequences during an MR 
acquisition with a subject ( or object ) present in the imaging 
region , or without a subject ( or object ) present in the 
imaging region of the MRI system . For example , in some 
embodiments , RF artefacts may be measured by one or more 
sensors without sending out any RF excitation pulses ( which 
avoids the generation of an MR signal ) . 
[ 0139 ] In some embodiments , the manner of obtaining RF 
artefact measurements may be based on one or more char 
acteristics of a pulse sequence ( e.g. , sampling rate , readout 
duration , repetition time , etc. ) . For example , in some 
embodiments , the RF artefact measurements may be 
acquired by one or more sensors at a sampling rate and 
readout duration that is consistent with a pulse sequence of 
interest . In some embodiments , the repetition time between 
successive artefact measures may be consistent with the 
pulse sequence and may match its repetition time ( TR ) . 
[ 0140 ] FIG . 4A illustrates techniques for generating train 
ing data for training a neural network model for suppressing 
artefacts in MR data , in accordance with some embodiments 
of the technology described herein . 
[ 0141 ] As shown in FIG . 4A , generating the training data 
420 may include : generating RF artefact measurements , 
generating MR measurements , and combining them using 
combination block 416 to obtain training data 420 . 
[ 0142 ] In some embodiments , generating the RF artefact 
measurements may include synthesizing RF artefact mea 
surements 412 ( e.g. , using one or more generative statistical 
models , one or more physics - based models , etc. ) . In some 
embodiments , generating the RF artefact measurements may 
include using one or more sensors 402 to obtain RF artefact 
measurements 408 . 
[ 0143 ] In some embodiments , generating the MR mea 
surements may include synthesizing the MR measurements 
410 ( e.g. , using one or more generative statistical models , 
one or more physics - based models , etc. ) . In some embodi 
ments , generating the MR measurements may include using 
one or more sensors 402 to obtain clean RF MR measure 
ments 406 and / or artefact corrupted measurements 404. The 
measurements may be of a real subject ( e.g. , a patient ) 
and / or of an object ( e.g. , a phantom ) . 
[ 0144 ] In some embodiments , any measurements obtained 
using sensors 402 may be pre - processed . For example , the 
measurements may be resampled , compressed , pre - de 
noised , pre - whitened , filtered , amplified and / or pre - pro 
cessed in any other suitable way . 
[ 0145 ] In some embodiments , the MR and RF artefact 
measurements may be transformed to any suitable domain 
via domain transformation 418. For example , the measure 
ments may be transformed into any other domain using 
analytical or learned transformations ( e.g. , Fourier trans 
form , wavelet transform , etc. ) 
[ 0146 ] In some embodiments , after the training data is 
collected , the artefact - corrupted data ( input ) is paired with 
its clean version ( target ) and used to estimate parameters of 
a neural network model using any of the above - described 
optimization algorithms . 
[ 0147 ] FIG . 4B shows an illustrative example for gener 
ating training data for training a neural network model for 

suppressing artefacts in MR data , in accordance with some 
embodiments of the technology described herein . 
[ 0148 ] FIG . 5 is a block diagram of exemplary compo 
nents of a MRI system 500. In the illustrative example of 
FIG . 5 , MRI system 500 comprises workstation 504 , con 
troller 506 , pulse sequences store 508 , power management 
system 510 , and magnetic components 520. It should be 
appreciated that system 500 is illustrative and that an MRI 
system may have one or more other components of any 
suitable type in addition to or instead of the components 
illustrated in FIG . 5 . 
[ 0149 ] As illustrated in FIG . 5 , magnetic components 520 
comprises B , magnet 522 , shim coils 524 , RF transmit and 
receive coils 526 , and gradient coils 528. B , magnet 522 
may be used to generate , at least in part , the main magnetic 
field B. B , magnet 522 may be any suitable type of magnet 
that can generate a main magnetic field ( e.g. , a low - field 
strength of approximately 0.2 T or less ) , and may include 
one or more B , coils , correction coils , etc. Shim coils 524 
may be used to contribute magnetic field ( s ) to improve the 
homogeneity of the B , field generated by magnet 522 . 
Gradient coils 528 may be arranged to provide gradient 
fields and , for example , may be arranged to generate gradi 
ents in the magnetic field in three substantially orthogonal 
directions ( X , Y , Z ) to localize where MR signals are 
induced . 
[ 0150 ] RF transmit and receive coils 526 may comprise 
one or more transmit coils that may be used to generate RF 
pulses to induce a magnetic field B1 . The transmit / receive 
coil ( s ) may be configured to generate any suitable type of RF 
pulses configured to excite an MR response in a subject and 
detect the resulting MR signals emitted . RF transmit and 
receive coils 526 may include one or multiple transmit coils 
and one or multiple receive coils . The configuration of the 
transmit / receive coils varies with implementation and may 
include a single coil for both transmitting and receiving , 
separate coils for transmitting and receiving , multiple coils 
for transmitting and / or receiving , or any combination to 
achieve single channel or parallel MRI systems . Thus , the 
transmit / receive magnetic component is often referred to as 
Tx / Rx or Tx / Rx coils to generically refer to the various 
configurations for the transmit and receive component of an 
MRI system . 
[ 0151 ] Each of magnetics components 520 may be of any 
suitable type and may be constructed in any suitable way . 
For example , in some embodiments , the B , magnet 522 may 
be an electromagnet or a permanent magnet ( e.g. , as 
described below with reference to FIGS . 6 , 7 , and 8A - B ) . As 
another example , in some embodiments , one or more mag 
netics components 520 ( e.g. , shim coils 524 and / or gradient 
coils 528 ) may be fabricated using the laminate techniques . 
[ 0152 ] Power management system 510 includes electron 
ics to provide operating power to one or more components 
of the low - field MRI system 500. For example , power 
management system 510 may include one or more power 
supplies , gradient power amplifiers , transmit coil amplifiers , 
and / or any other suitable power electronics needed to pro 
vide suitable operating power to energize and operate com 
ponents of the low - field MRI system 500 . 
[ 0153 ] As illustrated in FIG . 5 , power management system 
510 comprises power supply 512 , amplifier ( s ) 514 , transmit / 
receive switch 516 , and thermal management components 
518. Power supply 512 includes electronics to provide 
operating power to magnetic components 520 of the low 
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field MRI system 500. For example , in some embodiments , 
power supply 512 may include electronics to provide oper 
ating power to one or more B , coils ( e.g. , B , magnet 522 ) to 
produce the main magnetic field for the low - field MRI 
system , one or more shim coils 524 , and / or one or more 
gradient coils 528. In some embodiments , power supply 512 
may be a unipolar , continuous wave ( CW ) power supply , 
however , any suitable power supply may be used . Transmit / 
receive switch 516 may be used to select whether RF 
transmit coils or RF receive coils are being operated . 
[ 0154 ] In some embodiments , amplifier ( s ) 514 may 
include one or more RF receive ( Rx ) pre - amplifiers that 
amplify MR signals detected by one or more RF receive 
coils ( e.g. , coils 524 ) , one or more RF transmit ( Tx ) ampli 
fiers configured to provide power to one or more RF transmit 
coils ( e.g. , coils 526 ) , one or more gradient power amplifiers 
configured to provide power to one or more gradient coils 
( e.g. , gradient coils 528 ) , and / or one or more shim amplifiers 
configured to provide power to one or more shim coils ( e.g. , 
shim coils 524 ) . 
[ 0155 ] In some embodiments , thermal management com 
ponents 518 provide cooling for components of low - field 
MRI system 500 and may be configured to do so by 
facilitating the transfer of thermal energy generated by one 
or more components of the low - field MRI system 500 away 
from those components . Thermal management components 
518 may include , without limitation , components to perform 
water - based or air - based cooling , which may be integrated 
with or arranged in close proximity to MRI components that 
generate heat including , but not limited to , B , coils , gradient 
coils , shim coils , and / or transmit / receive coils . Thermal 
management components 518 may include any suitable heat 
transfer medium including , but not limited to , air and water , 
to transfer heat away from components of the low - field MRI 
system 500 . 
[ 0156 ] As illustrated in FIG . 5 , low - field MRI system 500 
includes controller 506 ( also referred to as a console ) having 
control electronics to send instructions to and receive infor 
mation from power management system 510. Controller 506 
may be configured to implement one or more pulse 
sequences , which are used to determine the instructions sent 
to power management system 510 to operate the magnetic 
components 520 in a desired sequence . For example , con 
troller 506 may be configured to control the power manage 
ment system 510 to operate the magnetic components 520 in 
accordance with a balanced steady - state free precession 
( DSSFP ) pulse sequence , a low - field gradient echo pulse 
sequence , a low - field spin echo pulse sequence , a low - field 
inversion recovery pulse sequence , arterial spin labeling , 
diffusion weighted imaging ( DWI ) , and / or any other suitable 
pulse sequence . Controller 506 may be implemented as 
hardware , software , or any suitable combination of hardware 
and software , as aspects of the disclosure provided herein 
are not limited in this respect . 
[ 0157 ] In some embodiments , controller 506 may be con 
figured to implement a pulse sequence by obtaining infor 
mation about the pulse sequence from pulse sequences 
repository 508 , which stores information for each of one or 
more pulse sequences . Information stored by pulse 
sequences repository 508 for a particular pulse sequence 
may be any suitable information that allows controller 506 
to implement the particular pulse sequence . For example , 
information stored in pulse sequences repository 508 for a 
pulse sequence may include one or more parameters for 

operating magnetics components 520 in accordance with the 
pulse sequence ( e.g. , parameters for operating the RF trans 
mit and receive coils 526 , parameters for operating gradient 
coils 528 , etc. ) , one or more parameters for operating power 
management system 510 in accordance with the pulse 
sequence , one or more programs comprising instructions 
that , when executed by controller 506 , cause controller 506 
to control system 500 to operate in accordance with the pulse 
sequence , and / or any other suitable information . Informa 
tion stored in pulse sequences repository 508 may be stored 
on one or more non - transitory storage media . 
[ 0158 ] As illustrated in FIG . 5 , in some embodiments , 
controller 506 may interact with computing device 504 
programmed to process received MR data ( which , in some 
embodiments , may be sensor or spatial frequency domain 
MR data ) . For example , computing device 504 may process 
received MR data to generate one or more MR images using 
any suitable image reconstruction process ( es ) including 
using any of the techniques described herein that make use 
of neural network models to generate MR images from input 
MR data . For example , computing device 504 may perform 
any of the processes described herein with reference to FIG . 
3. Controller 506 may provide information about one or 
more pulse sequences to computing device 504 for the 
processing of data by the computing device . For example , 
controller 506 may provide information about one or more 
pulse sequences to computing device 504 and the computing 
device may perform an image reconstruction process based , 
at least in part , on the provided information . 
[ 0159 ] In some embodiments , computing device 504 may 
be any electronic device or devices configured to process 
acquired MR data and generate one or more images of the 
subject being imaged . In some embodiments , computing 
device 504 may include a fixed electronic device such as a 
desktop computer , a server , a rack - mounted computer , or 
any other suitable fixed electronic device that may be 
configured to process MR data and generate one or more 
images of the subject being imaged . Alternatively , comput 
ing device 504 may be a portable device such as a smart 
phone , a personal digital assistant , a laptop computer , a 
tablet computer , or any other portable device that may be 
configured to process MR data and generate one or images 
of the subject being imaged . In some embodiments , com 
puting device 504 may comprise multiple computing 
devices of any suitable type , as the aspects of the technology 
described herein are not limited in this respect . 
[ 0160 ] In some embodiments , a user 502 may interact with 
computing device 504 to control aspects of the low - field MR 
system 500 ( e.g. , program the system 500 to operate in 
accordance with a particular pulse sequence , adjust one or 
more parameters of the system 500 , etc. ) and / or view images 
obtained by the low - field MR system 500. According to 
some embodiments , computing device 504 and controller 
506 form a single controller , while in other embodiments , 
computing device 504 and controller 506 each comprise one 
or more controllers . It should be appreciated that the func 
tionality performed by computing device 504 and controller 
506 may be distributed in any way over any combination of 
one or more controllers , as the aspects of the technology 
described herein are not limited for use with any particular 
implementation or architecture . 
[ 0161 ] FIGS . 6 and 7 illustrate bi - planar permanent mag 
net configurations for a B , magnet , in accordance with some 
embodiments of the technology described herein . FIG . 6 
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illustrates a permanent B , magnet 600 , in accordance with 
some embodiments . In the illustrated embodiment , B , mag 
net 600 is formed by permanent magnets 610a and 610b 
arranged in a bi - planar geometry and a yoke 620 that 
captures electromagnetic flux produced by the permanent 
magnets and transfers the flux to the opposing permanent 
magnet to increase the flux density between permanent 
magnets 610a and 610b . Each of permanent magnets 610a 
and 610b is formed from a plurality of concentric permanent 
magnet rings . In particular , as visible in FIG . 6 , permanent 
magnet 610b comprises an outer ring of permanent magnets 
614a , a middle ring of permanent magnets 614b , an inner 
ring of permanent magnets 614c , and a permanent magnet 
disk 614d at the center . Though shown with four concentric 
permanent magnet rings , permanent magnet 6105 ( and per 
manent magnet 610a ) may have any suitable number of 
permanent magnet rings , as aspects of the technology 
described herein are not limited in this respect . Permanent 
magnet 610a may be formed substantially identically to 
permanent magnet 610b and , for example , comprise the 
same set of permanent magnet rings as permanent magnet 
610b . 

[ 0162 ] The permanent magnet material used may be 
selected depending on the design requirements of the sys 
tem . For example , according to some embodiments , the 
permanent magnets ( or some portion thereof ) may be made 
of NdFeB , which produces a magnetic field with a relatively 
high magnetic field per unit volume of material once mag 
netized . In some embodiments , SmCo material is used to 
form the permanent magnets , or some portion thereof . While 
NdFeB produces higher field strengths ( and in general is less 
expensive than SmCo ) , SmCo exhibits less thermal drift and 
thus provides a more stable magnetic field in the face of 
temperature fluctuations . Other types of permanent magnet 
material ( s ) may be used as well , as the aspects of the 
technology described herein are not limited in this respect . 
In general , the type or types of permanent magnet material 
utilized will depend , at least in part , on the field strength , 
temperature stability , weight , cost and / or ease of use require 
ments of a given B , magnet implementation . 
[ 0163 ] In some embodiments , the permanent magnet rings 
are sized and arranged to produce a homogenous field of a 
desired strength in the imaging region ( field of view ) 
between permanent magnets 610a and 610b . In the exem 
plary embodiment illustrated in FIG . 6A , each permanent 
magnet ring comprises a plurality segments , each segment 
formed using a plurality of permanent magnet blocks 
stacked in the radial direction and positioned adjacent to one 
another about the periphery to form the respective ring . The 
inventors have appreciated that by varying the width ( in the 
direction tangent to the ring ) of each permanent magnet , less 
waste of useful space may be achieved while using less 
material . For example , the space between stacks that does 
not produce useful magnetic fields can be reduced by 
varying the width of the blocks , for example , as function of 
the radial position of the block , allowing for a closer fit to 
reduce wasted space and maximize the amount of magnetic 
field that can be generated in a given space . The dimensions 
of the blocks may also be varied in any desired way to 
facilitate the production of a magnetic field of desired 
strength and homogeneity . For example , in some embodi 
ments , the heights of the blocks different rings may be 
different from one another and / or the heights of one or more 

blocks within a particular ring may be different from one 
another in order to achieve a magnetic field of desired 
strength and homogeneity . 
[ 0164 ] As shown in FIG . 6 , B , magnet 600 further com 
prises yoke 620 configured and arranged to capture magnetic 
flux generated by permanent magnets 610a and 610b and 
direct it to the opposing side of the B , magnet to increase the 
flux density in between permanent magnets 610a and 610b , 
increasing the field strength within the field of view of the 
B , magnet . By capturing magnetic flux and directing it to the 
region between permanent magnets 610a and 610b , less 
permanent magnet material can be used to achieve a desired 
field strength , thus reducing the size , weight and cost of the 
B , magnet 600. Alternatively , for given permanent magnets , 
the field strength can be increased , thus improving the SNR 
of the system without having to use increased amounts of 
permanent magnet material . For exemplary B , magnet 600 , 
yoke 620 comprises a frame 622 and plates 624a and 624b . 
Plates 624a and 624b may capture magnetic flux generated 
by permanent magnets 610a and 610b and direct it to frame 
622 to be circulated via the magnetic return path of the yoke 
to increase the flux density in the field of view of the Bo 
magnet . Yoke 620 may be constructed of any desired fer 
romagnetic material , for example , low carbon steel , CoFe 
and / or silicon steel , etc. to provide the desired magnetic 
properties for the yoke . In some embodiments , plates 624a 
and 624b ( and / or frame 622 or portions thereof ) may be 
constructed of silicon steel or the like in areas where the 
gradient coils could most prevalently induce eddy currents . 
[ 0165 ] Exemplary frame 622 comprises arms 623a and 
623b that attach to plates 624a and 624b , respectively , and 
supports 625a and 625b providing the magnetic return path 
for the flux generated by the permanent magnets . The arms 
are generally designed to reduce the amount of material 
needed to support the permanent magnets while providing 
sufficient cross - section for the return path for the magnetic 
flux generated by the permanent magnets . Frame 622 has 
two supports within a magnetic return path for the B , field 
produced by the B , magnet . Supports 625a and 625b are 
produced with a gap 627 formed between , providing a 
measure of stability to the frame and / or lightness to the 
structure while providing sufficient cross - section for the 
magnetic flux generated by the permanent magnets . For 
example , the cross - section needed for the return path of the 
magnetic flux can be divided between the two support 
structures , thus providing a sufficient return path while 
increasing the structural integrity of the frame . 
[ 0166 ] FIG . 7 illustrates a B , magnet 700 , in accordance 
with some embodiments . B , magnet 2200 may share design 
components with B , magnet 600 illustrated in FIG . 6. In 
particular , B , magnet 700 is formed by permanent magnets 
710a and 710b arranged in a bi - planar geometry with a yoke 
720 coupled thereto to capture electromagnetic flux pro 
duced by the permanent magnets and transfer the flux to the 
opposing permanent magnet to increase the flux density 
between permanent magnets 710a and 710b . Each of per 
manent magnets 710a and 710b is formed from a plurality 
of concentric permanent magnets , as shown by permanent 
magnet 710b comprising an outer ring of permanent mag 
nets 714a , a middle ring of permanent magnets 714b , an 
inner ring of permanent magnets 714c , and a permanent 
magnet disk 714d at the center . Permanent magnet 710a may 
comprise the same set of permanent magnet elements as 
permanent magnet 710b . The permanent magnet material 
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used may be selected depending on the design requirements 
of the system ( e.g. , NdFeB , SmCo , etc. depending on the 
properties desired ) . 
[ 0167 ] The permanent magnet rings are sized and arranged 
to produce a homogenous field of a desired strength in the 
central region ( field of view ) between permanent magnets 
710a and 710b . In the exemplary embodiment of FIG . 7 , 
each permanent magnet ring comprises a plurality of circular 
arc segments sized and positioned to produce a desired B. 
magnetic field . In a similar manner to yoke 620 illustrated in 
FIG . 6 , yoke 720 is configured and arranged to capture 
magnetic flux generated by permanent magnets 710a and 
7106 and direct it to the opposing side of the B , magnet to 
increase the flux density between permanent magnets 710a 
and 710b . Yoke 720 thereby increases the field strength 
within the field of view of the B , magnet with less perma 
nent magnet material , reducing the size , weight and cost of 
the B , magnet . Yoke 720 also comprises a frame 722 and 
plates 724a and 724b that , in a manner similar to that 
described above in connection with yoke 720 , captures and 
circulates magnetic flux generated by the permanent mag 
nets 710a and via the magnetic return path of the yoke to 
increase the flux density in the field of view of the Bo 
magnet . The structure of yoke 720 may be similar to that 
described above to provide sufficient material to accommo 
date the magnetic flux generated by the permanent magnets 
and providing sufficient stability , while minimizing the 
amount of material used to , for example , reduce the cost and 
weight of the B , magnet . 
[ 0168 ] Because a permanent B , magnet , once magnetized , 
will produce its own persistent magnetic field , power is not 
required to operate the permanent B , magnet to generate its 
magnetic field . As a result , a significant ( often dominant ) 
contributor to the overall power consumption of an MRI 
system is eliminated through the use of a permanent magnet 
( as opposed to , e.g. , an electro - magnet which requires 
power ) , facilitating the development of an MRI system that 
can be powered using mains electricity ( e.g. , via a standard 
wall outlet or common large household appliance outlets ) . 
As described above , the inventors have developed low 
power , portable low - field MRI systems that can be deployed 
in virtually any environment and that can be brought to the 
patient who will undergo an imaging procedure . In this way , 
patients in emergency rooms , intensive care units , operating 
rooms and a host of other locations can benefit from MRI in 
circumstances where MRI is conventionally unavailable . 
[ 0169 ] FIGS . 8A and 8B illustrate views of a portable MRI 
system 800 , in accordance with some embodiments of the 
technology described herein . Portable MRI system 800 
comprises a B , magnet 810 formed in part by an upper 
magnet 810a and a lower magnet 810b having a yoke 820 
coupled thereto to increase the flux density within the 
imaging region . The B , magnet 810 may be housed in 
magnet housing 812 along with gradient coils 815 ( e.g. , any 
of the gradient coils described in U.S. application Ser . No. 
14 / 845,652 , titled “ Low Field Magnetic Resonance Imaging 
Methods and Apparatus ” and filed on Sep. 4 , 2015 , which is 
herein incorporated by reference in its entirety ) . In some 
embodiments , B , magnet 810 comprises an electromagnet . 
In some embodiments , B , magnet 810 comprises a perma 
nent magnet ( e.g. , any permanent magnet described in U.S. 
application Ser . No. 15 / 640,369 , titled “ LOW - FIELD MAG 
NETIC RESONANCE IMAGING METHODS AND 
APPARATUS , ” filed on Jun . 30 , 2017 , which is incorporated 

by reference herein in its entirety ) . For example , in some 
embodiments , B , magnet 810 may be the permanent magnet 
600 described with reference to FIG . 6 or the permanent 
magnet 700 described with reference to FIG . 7 . 
[ 0170 ] Illustrative portable MRI system 800 further com 
prises a base 850 housing the electronics that operates the 
MRI system . For example , base 850 may house electronics 
including , but not limited to , one or more gradient power 
amplifiers , an on - system computer , a power distribution 
unit , one or more power supplies , and / or any other power 
components configured to operate the MRI system using 
mains electricity ( e.g. , via a connection to a standard wall 
outlet and / or a large appliance outlet ) . For example , base 
870 may house low power components , such as those 
described herein , enabling at least in part the portable MRI 
system to be powered from readily available wall outlets . 
Accordingly , portable MRI system 800 can be brought to the 
patient and plugged into a wall outlet in his or her vicinity . 
[ 0171 ] Portable MRI system 800 further comprises move 
able slides 860 that can be opened and closed and positioned 
in a variety of configurations . Slides 860 include electro 
magnetic shielding 865 , which can be made from any 
suitable conductive or magnetic material , to form a move 
able shield to attenuate electromagnetic noise in the oper 
ating environment of the portable MRI system to shield the 
imaging region from at least some electromagnetic noise . As 
used herein , the term electromagnetic shielding refers to 
conductive or magnetic material configured to attenuate the 
electromagnetic field in a spectrum of interest and posi 
tioned or arranged to shield a space , object and / or compo 
nent of interest . In the context of an MRI system , electro 
magnetic shielding may be used to shield electronic 
components ( e.g. , power components , cables , etc. ) of the 
MRI system , to shield the imaging region ( e.g. , the field of 
view ) of the MRI system , or both . 
[ 0172 ] The degree of attenuation achieved from electro 
magnetic shielding depends on a number of factors includ 
ing the type material used , the material thickness , the 
frequency spectrum for which electromagnetic shielding is 
desired or required , the size and shape of apertures in the 
electromagnetic shielding ( e.g. , the size of the spaces in a 
conductive mesh , the size of unshielded portions or gaps in 
the shielding , etc. ) and / or the orientation of apertures rela 
tive to an incident electromagnetic field . Thus , electromag 
netic shielding refers generally to any conductive or mag 
netic barrier that acts to attenuate at least 
electromagnetic radiation and that is positioned to at least 
partially shield a given space , object or component by 
attenuating the at least some electromagnetic radiation . 
[ 0173 ] It should be appreciated that the frequency spec 
trum for which shielding ( attenuation of an electromagnetic 
field ) is desired may differ depending on what is being 
shielded . For example , electromagnetic shielding for certain 
electronic components may be configured to attenuate dif 
ferent frequencies than electromagnetic shielding for the 
imaging region of the MRI system . Regarding the imaging 
region , the spectrum of interest includes frequencies which 
influence , impact and / or degrade the ability of the MRI 
system to excite and detect an MR response . In general , the 
spectrum of interest for the imaging region of an MRI 
system correspond to the frequencies about the nominal 
operating frequency ( i.e. , the Larmor frequency ) at a given 
B , magnetic field strength for which the receive system is 
configured to or capable of detecting . This spectrum is 

some 
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referred to herein as the operating spectrum for the MRI 
system . Thus , electromagnetic shielding that provides 
shielding for the operating spectrum refers to conductive or 
magnetic material arranged or positioned to attenuate fre 
quencies at least within the operating spectrum for at least a 
portion of an imaging region of the MRI system . 
[ 0174 ] In portable MRI system 800 illustrated in FIGS . 8A 
and 8B , the moveable shields are thus configurable to 
provide shielding in different arrangements , which can be 
adjusted as needed to accommodate a patient , provide access 
to a patient , and / or in accordance with a given imaging 
protocol . For example , for an imaging procedure such as a 
brain scan , once the patient has been positioned , slides 860 
can be closed , for example , using handle 862 to provide 
electromagnetic shielding 865 around the imaging region 
except for the opening that accommodates the patient's 
upper torso . As another example , for an imaging procedure 
such as a knee scan , slides 860 may be arranged to have 
openings on both sides to accommodate the patient's leg or 
legs . Accordingly , moveable shields allow the shielding to 
be configured in arrangements suitable for the imaging 
procedure and to facilitate positioning the patient appropri 
ately within the imaging region . 
[ 0175 ] In some embodiments , a noise reduction system 
comprising one or more noise reduction and / or compensa 
tion techniques may be performed to suppress at least some 
of the electromagnetic noise that is not blocked or suffi 
ciently attenuated by shielding 865. In particular , the inven 
tors have developed noise reduction systems configured to 
suppress , avoid and / or reject electromagnetic noise in the 
operating environment in which the MRI system is located . 
According to some embodiments , these noise suppression 
techniques work in conjunction with the moveable shields to 
facilitate operation in the various shielding configurations in 
which the slides may be arranged . For example , when slides 
960 are opened , increased levels of electromagnetic noise 
will likely enter the imaging region via the openings . As a 
result , the noise suppression component will detect 
increased electromagnetic noise levels and adapt the noise 
suppression and / or avoidance response accordingly . Due to 
the dynamic nature of the noise suppression and / or avoid 
ance techniques described herein , the noise reduction system 
is configured to be responsive to changing noise conditions , 
including those resulting from different arrangements of the 
moveable shields . Thus , a noise reduction system in accor 
dance with some embodiments may be configured to operate 
in concert with the moveable shields to suppress electro 
magnetic noise in the operating environment of the MRI 
system in any of the shielding configurations that may be 
utilized , including configurations that are substantially with 
out shielding ( e.g. , configurations without moveable 
shields ) . 
[ 0176 ] To ensure that the moveable shields provide shield 
ing regardless of the arrangements in which the slides are 
placed , electrical gaskets may be arranged to provide con 
tinuous shielding along the periphery of the moveable 
shield . For example , as shown in FIG . 8B , electrical gaskets 
867a and 867b may be provided at the interface between 
slides 860 and magnet housing to maintain to provide 
continuous shielding along this interface . According to some 
embodiments , the electrical gaskets are beryllium fingers or 
beryllium - copper fingers , or the like ( e.g. , aluminum gas 
kets ) , that maintain electrical connection between shields 

865 and ground during and after slides 860 are moved to 
desired positions about the imaging region . 
[ 0177 ] To facilitate transportation , a motorized component 
880 is provide to allow portable MRI system to be driven 
from location to location , for example , using a control such 
as a joystick or other control mechanism provided on or 
remote from the MRI system . In this manner , portable MRI 
system 800 can be transported to the patient and maneuvered 
to the bedside to perform imaging . 
[ 0178 ] The portable MRI systems described herein may be 
operated from a portable electronic device , such as a note 
pad , tablet , smartphone , etc. For example , tablet computer 
875 may be used to operate portable MRI system to run 
desired imaging protocols and to view the resulting images . 
Tablet computer 875 may be connected to a secure cloud to 
transfer images for data sharing , telemedicine , and / or deep 
learning on the data sets . Any of the techniques of utilizing 
network connectivity described in U.S. application Ser . No. 
14 / 846,158 , titled “ Automatic Configuration of a Low Field 
Magnetic Resonance Imaging System , ” filed Sep. 4 , 2015 , 
which is herein incorporated by reference in its entirety , may 
be utilized in connection with the portable MRI systems 
described herein . 
[ 0179 ] As described above , FIG . 9A illustrates a portable 
MRI system 900 that has been transported to a patient's 
bedside to perform a brain scan . FIG . 9B illustrates portable 
MRI system 900 that has been transported to a patient's 
bedside to perform a scan of the patient's knee . As shown in 
FIG . 9B , shield 960 have electrical gaskets 867c . 
[ 0180 ] It should be appreciated that the electromagnetic 
shields illustrated in FIGS . 8A - 8B and 9A - 9B are exemplary 
and providing shielding for an MRI system is not limited to 
the example electromagnetic shielding described herein . 
Electromagnetic shielding can be implemented in any suit 
able way using any suitable materials . For example , elec 
tromagnetic shielding may be formed using conductive 
meshes , fabrics , etc. that can provide a moveable “ curtain ” 
to shield the imaging region . Electromagnetic shielding may 
be formed using one or more conductive straps ( e.g. , one or 
more strips of conducting material ) coupled to the MRI 
system as either a fixed , moveable or configurable compo 
nent to shield the imaging region from electromagnetic 
interference , some examples of which are described in 
further detail below . Electromagnetic shielding may be 
provided by embedding materials in doors , slides , or any 
moveable or fixed portion of the housing . Electromagnetic 
shields may be deployed as fixed or moveable components , 
as the aspects are not limited in this respect . 
[ 0181 ] FIG . 10 is a diagram of an illustrative computer 
system on which embodiments described herein may be 
implemented . An illustrative implementation of a computer 
system 1000 that may be used in connection with any of the 
embodiments of the disclosure provided herein is shown in 
FIG . 10. For example , the processes described with refer 
ence to FIGS . 3 and 4A may be implemented on and / or using 
computer system 1000. As another example , the computer 
system 1000 may be used to train and / or use any of the 
neural network statistical models described herein . The 
computer system 1000 may include one or more processors 
1002 and one or more articles of manufacture that comprise 
non - transitory computer - readable storage media ( e.g. , 
memory 1004 and one or more non - volatile storage media 
1006 ) . The processor 1002 may control writing data to and 
reading data from the memory 1004 and the non - volatile 
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storage device 1006 in any suitable manner , as the aspects of 
the disclosure provided herein are not limited in this respect . 
To perform any of the functionality described herein , the 
processor 1002 may execute one or more processor - execut 
able instructions stored in one or more non - transitory com 
puter - readable storage media ( e.g. , the memory 1004 ) , 
which may serve as non - transitory computer - readable stor 
age media storing processor - executable instructions for 
execution by the processor 1002 . 
[ 0182 ] Having thus described several aspects and embodi 
ments of the technology set forth in the disclosure , it is to be 
appreciated that various alterations , modifications , and 
improvements will readily occur to those skilled in the art . 
Such alterations , modifications , and improvements are 
intended to be within the spirit and scope of the technology 
described herein . For example , those of ordinary skill in the 
art will readily envision a variety of other means and / or 
structures for performing the function and / or obtaining the 
results and / or one or more of the advantages described 
herein , and each of such variations and / or modifications is 
deemed to be within the scope of the embodiments described 
herein . Those skilled in the art will recognize , or be able to 
ascertain using no more than routine experimentation , many 
equivalents to the specific embodiments described herein . It 
is , therefore , to be understood that the foregoing embodi 
ments are presented by way of example only and that , within 
the scope of the appended claims and equivalents thereto , 
inventive embodiments may be practiced otherwise than as 
specifically described . In addition , any combination of two 
or more features , systems , articles , materials , kits , and / or 
methods described herein , if such features , systems , articles , 
materials , kits , and / or methods are not mutually inconsis 
tent , is included within the scope of the present disclosure . 
[ 0183 ] The above - described embodiments can be imple 
mented in any of numerous ways . One or more aspects and 
embodiments of the present disclosure involving the perfor 
mance of processes or methods may utilize program instruc 
tions executable by a device ( e.g. , a computer , a processor , 
or other device ) to perform , or control performance of , the 
processes or methods . In this respect , various inventive 
concepts may be embodied as a computer readable storage 
medium ( or multiple computer readable storage media ) 
( e.g. , a computer memory , one or more floppy discs , com 
pact discs , optical discs , magnetic tapes , flash memories , 
circuit configurations in Field Programmable Gate Arrays or 
other semiconductor devices , or other tangible computer 
storage medium ) encoded with one or more programs that , 
when executed on one or more computers or other proces 
sors , perform methods that implement one or more of the 
various embodiments described above . The computer read 
able medium or media can be transportable , such that the 
program or programs stored thereon can be loaded onto one 
or more different computers or other processors to imple 
ment various ones of the aspects described above . In some 
embodiments , computer readable media may be non - transi 
tory media . 
[ 0184 ] The terms “ program ” or “ software ” are used herein 
in a generic sense to refer to any type of computer code or 
set of computer - executable instructions that can be 
employed to program a computer or other processor to 
implement various aspects as described above . Additionally , 
it should be appreciated that according to one aspect , one or 
more computer programs that when executed perform meth 
ods of the present disclosure need not reside on a single 

computer or processor , but may be distributed in a modular 
fashion among a number of different computers or proces 
sors to implement various aspects of the present disclosure . 
[ 0185 ) Computer - executable instructions may be in many 
forms , such as program modules , executed by one or more 
computers or other devices . Generally , program modules 
include routines , programs , objects , components , data struc 
tures , etc. that perform particular tasks or implement par 
ticular abstract data types . Typically the functionality of the 
program modules may be combined or distributed as desired 
in various embodiments . 
[ 0186 ] Also , data structures may be stored in computer 
readable media in any suitable form . For simplicity of 
illustration , data structures may be shown to have fields that 
are related through location in the data structure . Such 
relationships may likewise be achieved by assigning storage 
for the fields with locations in a computer - readable medium 
that convey relationship between the fields . However , any 
suitable mechanism may be used to establish a relationship 
between information in fields of a data structure , including 
through the use of pointers , tags or other mechanisms that 
establish relationship between data elements . 
[ 0187 ] When implemented in software , the software code 
can be executed on any suitable processor or collection of 
processors , whether provided in a single computer or dis 
tributed among multiple computers . 
[ 0188 ] Further , it should be appreciated that a computer 
may be embodied in any of a number of forms , such as a 
rack - mounted computer , a desktop computer , a laptop com 
puter , or a tablet computer , as non - limiting examples . Addi 
tionally , a computer may be embedded in a device not 
generally regarded as a computer but with suitable process 
ing capabilities , including a Personal Digital Assistant 
( PDA ) , a smartphone or any other suitable portable or fixed 
electronic device . 
[ 0189 ] Also , a computer may have one or more input and 
output devices . These devices can be used , among other 
things , to present a user interface . Examples of output 
devices that can be used to provide a user interface include 
printers or display screens for visual presentation of output 
and speakers or other sound generating devices for audible 
presentation of output . Examples of input devices that can be 
used for a user interface include keyboards , and pointing 
devices , such as mice , touch pads , and digitizing tablets . As 
another example , a computer may receive input information 
through speech recognition or in other audible formats . 
[ 0190 ] Such computers may be interconnected by one or 
more networks in any suitable form , including a local area 
network or a wide area network , such as an enterprise 
network , and intelligent network ( IN ) or the Internet . Such 
networks may be based on any suitable technology and may 
operate according to any suitable protocol and may include 
wireless networks , wired networks or fiber optic networks . 
[ 0191 ] Also , as described , some aspects may be embodied 
as one or more methods . The acts performed as part of the 
method may be ordered in any suitable way . Accordingly , 
embodiments may be constructed in which acts are per 
formed in an order different than illustrated , which may 
include performing some acts simultaneously , even though 
shown as sequential acts in illustrative embodiments . 
[ 0192 ] All definitions , as defined and used herein , should 
be understood to control over dictionary definitions , defini 
tions in documents incorporated by reference , and / or ordi 
nary meanings of the defined terms . 
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[ 0193 ] The indefinite articles " a " and " an , ” as used herein 
in the specification and in the claims , unless clearly indi 
cated to the contrary , should be understood to mean “ at least 
one . ” 
[ 0194 ] The phrase " and / or , " as used herein in the speci 
fication and in the claims , should be understood to mean 
“ either or both ” of the elements so conjoined , i.e. , elements 
that are conjunctively present in some cases and disjunc 
tively present in other cases . Multiple elements listed with 
" and / or ” should be construed in the same fashion , i.e. , " one 
or more ” of the elements so conjoined . Other elements may 
optionally be present other than the elements specifically 
identified by the “ and / or ” clause , whether related or unre 
lated to those elements specifically identified . Thus , as a 
non - limiting example , a reference to “ A and / or B ” , when 
used in conjunction with open - ended language such as 
" comprising ” can refer , in one embodiment , to A only 
( optionally including elements other than B ) ; in another 
embodiment , to B only ( optionally including elements other 
than A ) ; in yet another embodiment , to both A and B 
( optionally including other elements ) ; etc. 
[ 0195 ] As used herein in the specification and in the 
claims , the phrase “ at least one , ” in reference to a list of one 
or more elements , should be understood to mean at least one 
element selected from any one or more of the elements in the 
list of elements , but not necessarily including at least one of 
each and every element specifically listed within the list of 
elements and not excluding any combinations of elements in 
the list of elements . This definition also allows that elements 
may optionally be present other than the elements specifi 
cally identified within the list of elements to which the 
phrase “ at least one ” refers , whether related or unrelated to 
those elements specifically identified . Thus , as a non - limit 
ing example , " at least one of A and B ” ( or , equivalently , “ at 
least one of Aor B , ” or , equivalently “ at least one of A and / or 
B ” ) can refer , in one embodiment , to at least one , optionally 
including more than one , A , with no B present ( and option 
ally including elements other than B ) ; in another embodi 
ment , to at least one , optionally including more than one , B , 
with no A present ( and optionally including elements other 
than A ) ; in yet another embodiment , to at least one , option 
ally including more than one , A , and at least one , optionally 
including more than one , B ( and optionally including other 
elements ) ; etc. 
[ 0196 ] In the claims , as well as in the specification above , 
all transitional phrases such as “ comprising , ” “ including , ” 
" carrying , ” “ having , " " containing , ” “ involving , ” “ holding , ” 
" composed of , ” and the like are to be understood to be 
open - ended , i.e. , to mean including but not limited to . Only 
the transitional phrases " consisting of ” and “ consisting 
essentially of shall be closed or semi - closed transitional 
phrases , respectively . 
[ 0197 ] The terms “ approximately ” and “ about " may be 
used to mean within + 20 % of a target value in some 
embodiments , within + 10 % of a target value in some 
embodiments , within 25 % of a target value in some embodi 
ments , within + 2 % of a target value in some embodiments . 
The terms “ approximately ” and “ about ” may include the 
target value . 
What is claimed is : 
1. A method , comprising : 
obtaining input magnetic resonance ( MR ) data using at 

least one radio - frequency ( RF ) coil of a magnetic 
resonance imaging ( MRI ) system ; and 

generating an MR image from the input MR data at least 
in part by using a neural network model to suppress at 
least one artefact in the input MR data . 

2. The method of claim 1 , wherein the at least one artefact 
comprises RF interference , and wherein the generating com 
prises using the neural network model to suppress the RF 
interference . 

3. The method of claim 2 , wherein the RF interference 
comprises external RF interference generated by a device 
external to the MRI system . 

4. The method of claim 3 , wherein the device external to 
the MRI system includes a medical device located in a same 
room as the MRI system . 

5. The method of claim 2 , wherein the MRI system 
includes an imaging region , and wherein the RF interference 
comprises internal RF interference generated by at least one 
component of the MRI system located outside of the imag 
ing region . 

6. The method of claim 5 , wherein the at least one 
component of the MRI system includes one or more mag 
netics components of the MRI system . 

7. The method of claim 6 , wherein the one or more 
magnetics components of the MRI system include a gradient 
coil of the MRI system . 

8. The method of claim 1 , wherein the at least one artefact 
includes noise generated by circuitry in an MR receiver 
chain and / or noise generated by a subject or object being 
imaged . 

9. The method of claim 1 , 
wherein the neural network model comprises a first neural 

network portion configured to process data in a spatial 
frequency domain ; and 

wherein using the neural network model to suppress the at 
least one artefact in the input MR data comprises 
processing , with the first neural network portion , spatial 
frequency domain data obtained from the input MR 
data . 

10. The method of claim 1 , 
wherein the input MR data is in a sensor domain ; 
wherein the neural network model comprises a first neural 

network portion configured to process data in the 
sensor domain ; and 

wherein using the neural network model comprises using 
the neural network model to suppress the at least one 
artefact in the input MR data comprises processing , 
with the first neural network portion , the input MR 
data . 

11. The method of claim 1 , wherein the neural network 
model comprises a first neural network portion configured to 
process the input MR data in a domain other than the image 
domain . 

12. The method of claim 11 , 
wherein the first neural network portion comprises a 

spectral unpooling layer , and 
wherein processing the input MR data with the first neural 

network comprises applying the spectral unpooling 
layer . 

13. The method of claim 12 , wherein the first neural 
network portion further comprises a spectral pooling layer , 
a plurality of convolutional layers , and a skip connection . 

14. The method of claim 10 , wherein applying the spectral 
unpooling layer comprises applying a pointwise multiplica 
tion layer for combining first features having a first resolu 
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tion provided via a skip connection with second features 
having a second resolution lower than the second resolution . 

15. The method of claim 1 , wherein the neural network 
model comprises : 

a first neural network portion configured to suppress RF 
interference , the first neural network portion compris 
ing one or more convolutional layers ; and 

a second neural network portion configured to suppress 
noise , the second neural network portion comprising 
one or more convolutional layers . 

16. The method of claim 16 , wherein the neural network 
model further comprises : 

a third neural network portion configured to suppress 
noise from image - domain data obtained using the input 
MR data . 

17. The method of claim 1 , further comprising : 
obtaining , during a first time period , RF artefact measure 
ments using the at least one RF coil of the MRI system , 
wherein the RF artefact measurements include mea 
surements of RF interference and / or noise ; 

obtaining , during a second time period different from the 
first time period , MR measurements of a subject in the 
imaging region of the MRI system ; 

generating artefact - corrupted MR data by combining the 
RF artefact measurements with the MR measurements 
of the subject ; and 

training the neural network model using the artefact 
corrupted MR data . 

18. The method of claim 1 , further comprising : 
synthesizing RF artefact measurements , wherein the RF 

artefact measurements include synthesized measure 
ments of RF interference and / or noise ; 

obtaining MR measurements of a subject in the imaging 
region of the MRI system ; 

generating artefact - corrupted MR data by combining the 
synthesized RF artefact measurements with the MR 
measurements of the subject ; and 

training the neural network model using the artefact 
corrupted MR data . 

19. A system , comprising : 
at least one computer hardware processor , and 
at least one non - transitory computer - readable storage 
medium storing processor executable instructions that , 
when executed by the at least one computer hardware 
processor , cause the least one computer hardware 
processor to perform : 
obtaining input magnetic resonance ( MR ) data using at 

least one radio - frequency ( RF ) coil of a magnetic 
resonance imaging ( MRI ) system ; and 

generating an MR image from the input MR data at 
least in part by using a neural network model to 
suppress at least one artefact in the input MR data . 

20. A magnetic resonance imaging ( MRI ) system , com 
prising : 

a magnetics system comprising : 
a B , magnet configured to provide a B , field for the 
MRI system ; 

gradient coils configured to provide gradient fields for 
the MRI system ; and 

at least one RF coil configured to detect magnetic 
resonance ( MR ) signals ; 

a controller configured to : 
control the magnetics system to acquire input MR using 

the at least one RF coil ; and 
generating an MR image from the input MR data at 

least in part by using a neural network model to 
suppress at least one artefact in the input MR data . 


