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Abstract. The diversity in appearance of diseased lung tissue makes
automatic segmentation of lungs from CT with severe pathologies chal-
lenging. To overcome this challenge, we rely on contextual constraints
from neighboring anatomies to detect and segment lung tissue across a
variety of pathologies. We propose an algorithm that combines statis-
tical learning with these anatomical constraints to seek a segmentation
of the lung consistent with adjacent structures, such as the heart, liver,
spleen, and ribs. We demonstrate that our algorithm reduces the number
of failed detections and increases the accuracy of the segmentation on
unseen test cases with severe pathologies.
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1 Introduction

Healthy lung tissue is easily distinguishable from surrounding soft tissue in CT
images due to its high air content. In contrast, pathologies like tumors, inter-
stitial lung diseases (ILD), and plural effusion 1, may dramatically alter both
the appearance and texture of the lung and its surroundings (see Fig. 1). Due
to this variability, automatic methods for segmenting healthy lung that rely on
appearance alone, such as region growing or registration, are inappropriate for
segmenting lungs from CT with severe pathologies [7].

In order to account for specific pathologies, such as ILD, some existing meth-
ods focus on utilizing texture cues [4, 11], or for tumors, robust statistical shape
models can be used [9]. In order to robustly segment diseased lung parenchyma,
other researchers have identified the need to use other nearby anatomical con-
text. For example, the curvature of nearby ribs [6] or the distance to spine [2]
can be used in addition to appearance information, or stable landmarks that
take into account neighboring ribs can be used to better align a statistical shape
model on the lung [8].

? Zhou is corresponding author. Birkbeck and Kohlberger are with Google, Zhang with
Microsoft, and Sofka with Cisco. All work was done while they were with Siemens.

1 Pleural effusion is an accumulation of pleural fluid between the parietal and visceral
pleura, and thus part of the pleural cavity, but not of the actual lung. It is a common
cause for decreased lung function and only affects the lungs directly. For this reason,
we include both the lung and the pleural cavity in our segmentation.
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Fig. 1. Examples of pathological lungs. In (a), the boundary between low/high intensity
gives rise to a lung-like shape (red), making it hard to rely solely on a shape prior to
segment pathologies.

Fig. 2. The proposed pathological lung segmentation pipeline.

However, none of these methods utilize all available anatomical context sur-
rounding the lung regions. We propose a learning-based algorithm capable of
segmenting lung from CT scans with several pathologies. From the outset, our
algorithm is designed to be robust against pathologies, and relies on context
external to the lung for each phase of the pipeline, including detection, coarse
segmentation, and fine-scale refinement. For the segmentation, we take into ac-
count region-specific anatomical constraints using derived information such as
distance to ribs or adjacent organs, such as liver and heart.

2 Methods

The lung is bounded by the ribs on the outside surface, the heart on the medi-
astinum side, and, e.g., the right lung is bounded by the liver on the bottom.
In order to use these adjacent structures, our algorithm starts by automatically
detecting them (e.g., lung, heart, liver & spleen §2.1) and rib segments (§2.2)
using statistical classifiers. The lung mesh is then deformed using appearance
cues and neighboring structures as geometric constraints (§2.3). A final detailed
refinement balances the need for a fine-scale geometry while maintaining proxim-
ity to adjacent structures and ensuring no overlap between segmentations (§2.5).
This final refinement maintains the integrity of the segmentation in the presence
of pathologies by constraining the refined solution to lie close to the detected
solution. The algorithm components and data flow are outlined in Fig. 2.

2.1 Organ detection

A central assertion in our approach is that we can apply region-specific geometric
constraints to the segmentation. In order to apply such constraints, we need our
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Fig. 3. Examples of rib lines (left), the 3D region parts for the right lung (middle),
and region specific geometric constraints (right). The lung surface is divided into three
partitions: the rib region (blue), the heart/mediastinum region (red) and the bottom
region (green). Each region of the surface uses neighboring anatomy as constraints.

detected surfaces to be in correspondence with a template surface. To this end,
we initialize our organ segmentation through the use of a statistical shape model
that has been learned from training data.

Let C = (V, T ) be a mesh with vertices V = {vi = (xi, yi, zi)}ni=1 and
triangles T . We model shape variation with a point-distribution model [1] using
a low-dimensional set of M shape modes, Uj = {uij}ni=1, and a mean vector

v̄i: vi = v̄i +
∑M
j=1 λjuij , where {λj}Mj=1 is a shape coefficient vector defining

the shape. Given a transformation, T (v; θ) parameterized by θ, e.g., a similarity
transform, the initial organ detection seeks the most probable configuration given
the input image, I:

C0 = argmaxC P (C|I, {v̄i}, {uij}) = argmaxC P (θ, {λj}Mj=1|I, {v̄i}, {uij}). (1)

This problem is solved with the discriminative method marginal space learn-
ing [12], and it is used to reliably estimate an initial object segmentation of the
lungs, C0

llung&C0
rlung, heart, C0

heart, spleen, C0
spleen, and liver, C0

liver, (e.g., [5]).
For the lungs, to avoid failed detection on large effusions with dramatically

different appearance, we first estimate the shape on a contrast adjusted input
image, Iwin = max(0,min(1, (I−80)/496)), where I is in Hounsfield unit (HU).

2.2 Rib Points Extraction

In order to extract points on the ribs to be used as constraints, discriminative
classifiers are used to identify likely rib points. These likely rib points are then
grouped into short segments, and unlikely segments are culled (Figure 3).

First, a per-voxel rib probability map, Irib(x), is obtained from a two-level
cascade of discriminative classifiers,

Irib(x) = P rib
2mm(+1|I2mm,x)π[P rib

2mm(+1|I2mm,x) > τ2]π[P rib
4mm(+1|I4mm,x) > τ1]

(2)
where π[.] is an indication function, P rib are rib point classifiers trained using
Haar features [10], τ1 is a threshold used to limit computation in the 2nd level
(2mm) to highly likely voxels, and τ2

2 is used to further threshold the 2mm

2 In practice, we tune τ1 and τ2 through the ROC curve and the final performance is
insensitive to small changes in these parameters.
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Fig. 4. Two points on the current mesh surface. vi is a healthy point, so the appearance
term is reliable, and the geometric term has little effect as indicated by the response
curves as a function of depth. On the other hand, vj is a pathological point and the
appearance term is misleading. The product of appearance and geometry gives the
correct displacement.

classifier response. I4mm and I2mm are volumes that have been isotropically
resampled to the corresponding resolution.

From the rib probability map Irib, connected components of the thresholded
mask are obtained. Each segment is grown to a maximum of size of smax =
9000mm3. Components less than smin = 2000mm3 are pruned. The remaining
segments should be like bent cylinders. To prune candidate segments that are
not like bent cylinders, a final test on the sizes of the segment along its principle
directions is performed. Let α1 > α2 > α3 denote the sizes of the segment in its
three principle directions. Remaining segments are pruned if α1

α2
< 2.5 or α2

α3
> 3.

Finally, the center points of each segment are extracted by traversing along its
principal direction and intersecting a fixed number of planes with the segment.

2.3 Pathological Lung Surface Refinement

The key component of the pathological boundary detector is to combine image
appearance cues with spatially dependent anatomical constraints that come from
the ribs and organs detected using methods in the previous sections. The mesh
initialization from §2.1 is already in correspondence with a known atlas. Also, the
indices, I = {1 ≤ i ≤ n} of the mean mesh vertices are partitioned into 3 subsets:
I = Iribs

⋃
Iheart

⋃
Ibottom, each subset corresponding to one anatomical region.

During boundary refinement, each vertex independently is deformed to vi ←
vi + tin, where

ti = argmaxt∈[tmin,tmax]Pi(t|I), (3)

with the search being locally constrained within a range [tmin, tmax]. The result-
ing displaced mesh is regularized by projection onto the shape subspace, and the
process is repeated for a few iterations.

The per-vertex score in (3) is computed as a combination of appearance,
fai (t), and structural cues, fgi (t), Pi(t|I) = fai (t)fgi (t). We assume fai (t) is the
best model to use assuming no pathology. However, the opposite is true for
pathological surfaces, where appearance cues are misleading, and we rely on
fgi (t). Figure 4 illustrates how the geometric term helps in the case of a pathology.
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Identified too far from rib region

Identified region of pathology

Large distance to spleen/liver

Fig. 5. If lung regions adjacent to the rib surface are too far from the ribs, the input
is identied as pathological. For the bottom region, the pathological pipeline will be
activated if the surface is not close enough to the adjacent organ (e.g., liver or spleen).

Unlike previous methods that model the appearance term with an image
gradient (e.g., [9]), or region-based term, we instead use a discriminative model
for the appearance in the form of a classifier that is learned from training data [5]:

fai (t) = P (+1|vi + tni, I). (4)

The classifier, P (+1|vi + tni, I), measures the probability that the displaced
point vi+ tni belongs to the surface of the lung. To model this posterior, we use
a probabilistic boosting tree with steerable features [12].

The anatomical term, fgi (t), penalizes the surface from being far away from
the adjacent structure using a Gaussian kernel mixed with a uniform prior:

fgi (t) = exp

(
− (t− (ystruct(vi)− vi)

Tni − τi)2

2σ2
i

)
+

α

tmax − tmin
, (5)

where ystruct(v) is the closest point on the adjacent relevant structure from
the source point v. The per-vertex τi parameter allows for a spatially varying
offset between the adjacent structure and the lung surface being segmented.
These spatially varying parameters account for errors in mesh correspondence
and unreliability of geometric constraints, e.g., on regions close to the spine.
Adding the uniform prior reduces the influence of the geometric in the case that
ystruct(v) is far away from vi.

We estimate the spatial varying {τi} and {σi} from a given set of K training
instances. We first compute for each vertex i an estimate of τi as the average
distance to the neighboring structure from that point: τ̄i = 1

K

∑K
k τi,k, with

τi,k being the distance estimated for training sample k. The standard deviation
can be used as an estimate for σi. To ensure these values vary smoothly over
the surface, we perform a weighted smoothing operation over the surface of the
mesh, τi = (τ̄i +meanj∈N(i)(τ̄j))/2, where N(i) are neighbors of vertex i.

2.4 Identifying Pathological Lungs

To make our pipeline capable of also efficiently handling healthy lung cases,
we only apply the pathological boundary processing if the initialization from
the basic pipeline is determined to be pathological. Determining if a case is
healthy or pathological also uses anatomical constraints. A lung is determined
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as pathological when either the anatomical constraints between the lung/rib
surface and lung/bottom organ surface are not satisfied. (Fig. 5).

For the lung/rib surface, first, we sample the rib probability image above
the surface of the lung attached to the rib and take the maximum value of Irib
at values of 2mm, 4mm, and 6mm above the lung surface. We then produce
a binary function on the lung surface for regions of the lung surface that are
confidently close to a rib as χ(v) = (maxt=2,4,6 Irib(v + nt)) > 0.67. If any part
of the rib-adjacent lung surface is more than 25mm from a point with χ(v) = 1,
then we declare that the lung is a pathology. Figure 5 illustrates the regions of
the surface near a rib, as well as the red region farther than 25mm.

To identify cases where the bottom region is pathological, the vertices on
the bottom region that are closely coupled to the bottom organ are identified as
A = {vi : i ∈ Ibottom, σi ≤ 5}. If too many vertices in A (e.g., 15%) are far from
the bottom organ (say beyond 3σi), we perform the pathological processing.

2.5 Final Refinement

Although the explicit mesh-based representation above allowed us to easily define
region-specic anatomical constraints that were necessary to segment pathological
lungs, the mesh-based surface representation is inadequate in obtaining voxel-
level fine-scale detail. In order to obtain a more precise segmentation, we convert
the initialized mesh surfaces into an implicit formulation and perform a fine-
scale refinement using level sets [3]. The level set representation allows us to
integrate appearance-based data terms with anatomical constraints (such as non-
overlapping constraints) between neighboring organs. See [3] for details.

3 Experiments

Our lung detectors and related parameters have been trained on a total of 185
right lung and 196 left lung cases. The MSL classifiers were trained on 3mm
isotropic volumes. Using the percentage of ground truth lung volume with values
greater than 512 HU as an indicator of the severity of the pathology, the majority
of our training examples are from healthy lungs: only 7 (resp. 2) left (resp. right)
lung cases had between 25%-50% unhealthy tissue.

We test our pipeline on a set of CT images containing 17 left and 33 right
lung pathologies having an average dimension of 465 × 448 × 328 and spacing
of 1.11 × 1.11 × 2.61mm. Our cases have 12 left lungs with greater than 25%
unhealthy tissue, 5 of which are greater than 50%. There are 21 right lung
cases with greater than 25% unhealthy tissue and 10 cases with greater than
50% unhealthy tissue. The average run time for our test cases is 64s, including
processing time for lung, liver, heart, and spleen, and ribs. All training and test
data sets are manually annotated by experts.

The basic detection pipeline that relies on the input image only to detect the
bounding box fails on 3/17 and 5/33 cases for left and right lung respectively
(i.e., bounding box fails to return a box with high enough confidence). Table 1
illustrates statistics on mean surface-to-surface distance error (in mm) and vol-
umetric statistics for the unseen test set. The error was only computed on the
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Fig. 6. Lung segmentation without (top) and with anatomical constraints (bottom) us-
ing the heart (red) and liver (blue). Errors decrease from 8.55mm to 4.49mm, 22.26mm
to 6.16mm, 4.7mm to 3.3mm, and 3.2mm to 2.57mm.

Table 1. Average surface-to-surface error (Mean, median, and 80% highest error in
mm) & volumetric stats (Dice Coeff and Relative Volume Difference) on unseen cases.

Mean(STD) Median 80% Dice Coeff Rel.Vol. Fail

L.Lung Basic 4.76(2.47) 4.23 7.18 0.84 -0.14 3
L.Lung Path. 3.44(0.96) 3.84 4.25 0.89 -0.06 0

L.Lung LevSet 2.49(1.14) 2.19 3.69 0.91 0.01 0

R.Lung Basic 5.72(3.96) 4.02 8.25 0.85 -0.19 5
R.Lung Path. 3.64(1.21) 3.36 4.31 0.91 -0.06 0

R.Lung LevSet 2.23(0.97) 2.01 2.69 0.94 0.06 0

non-failure cases. In the table, the mean and median errors decrease after using
the pathological pipeline. But as pathologies may only occupy a small region
of the surface, the error measure between the basic detection and pathological
detection may only decrease slightly.

In the case of large tumors and effusions, the use of the anatomical constraints
is essential to providing a geometric consistent lung segmentation. This is better
illustrated with examples (Fig. 6). The geometric constraints give a segmentation
that hugs the rib boundary regardless of appearance. The final refinement causes
a decrease in surface error on all regions (including healthy regions), further
boosting the performance. Fig. 7 shows the final level set refinement on several
challenging cases.

4 Conclusions

The original image is affected by large changes due to pathological lung ap-
pearance. Our experiments have shown that structural constraints are neces-
sary to accurately segment pathological lungs, when combined with statistical
learning. Future improvements include more accurate rib segmentation, better
correspondence in our shape models, or including other anatomical constraints,
for example, from the aorta.
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Fig. 7. Qualitative results of the hard cases used in the experimental analysis.
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