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Abstract. We propose an automatic algorithm for phase labeling that
relies on the intensity changes in anatomical regions due to the contrast
agent propagation. The regions (specified by aorta, vena cava, liver, and
kidneys) are first detected by a robust learning-based discriminative al-
gorithm. The intensities inside each region are then used in multi-class
LogitBoost classifiers to independently estimate the contrast phase. Each
classifier forms a node in a decision tree which is used to obtain the final
phase label. Combining independent classification from multiple regions
in a tree has the advantage when one of the region detectors fail or
when the phase training example database is imbalanced. We show on a
dataset of 1016 volumes that the system correctly classifies native phase
in 96.2% of the cases, hepatic dominant phase (92.2%), hepatic venous
phase (96.7%), and equilibrium phase (86.4%) in 7 seconds on average.

1 Introduction

Computed Tomography (CT) remains the most common modality used in the
imaging of the liver and for the diagnosis of focal liver lesions. Multiphase
study obtained by multidetector-row CT (MDCT) during defined circulatory
phases best outlines the vasculature and improves detection and characteriza-
tion of parenchyma lesions [10]. Automatic algorithms for lesion classification,

Fig. 1. Contrast phase estimation is
important for automatic liver lesion de-
tection and segmentation. The hyper-
dense liver lesion is clear in the arterial
phase (left), but almost invisible in the
venous phase (right).

segmentation, and serial comparison re-
quire the knowledge of the contrast phase
to get the most accurate results (Fig-
ure 1). Currently, the phase information
either needs to be entered manually or ex-
tracted from Dicom tags. Unfortunately,
these entries are often incorrect or missing
(15-20% of the cases in our experience, see
Section 4), and their format varies across
hospitals and clinicians.

In this paper, we present an algorithm
for automatic contrast phase classification
based on the image intensity in local re-
gions. Since several organs and anatom-
ical structures are enhanced differently



during a specific contrast phase, the algorithm exploits these different levels of
enhancement to automatically determine the phase label. Our approach starts
by a robust learning-based detector of anatomical structures. The local regions
surrounding the structures are then used to train a classifier identifying the
following contrast phases: native (NP), hepatic arterial dominant (HADP), hep-
atic venous (HVP), and equilibrium (EP). The phases are explained in detail in
Section 2.

The proposed algorithm uses only the image content to automatically detect
the contrast phase without relying on the Dicom tags which often do not contain
any label information. This way, the phase labeling is standardized rather than
subjective and it can be used in the automatic contrast-specific scan analysis
such as lesion detection, segmentation, and comparison in the follow-up studies
[2, 6]. Since these algorithms might be inaccurate or even fail when the contrast
information is incorrect, the requirements on the phase detection accuracy are
high. Moreover, since the contrast estimation is adding computation to the
overall scan analysis, the algorithm must be efficient.

The robustness of our algorithm comes from the joint analysis of several local
image regions surrounding anatomical structures. Discriminative learning-based
anatomy detectors (PBT [9]) are trained using a large annotated database of
images. The anatomical structures that we use are the liver, aorta, vena cava
at the level of renal artery bifurcation, and kidney center (see Figure 4 for
examples). The learning algorithm solves the inherent ambiguity of the anatomy
locations (e.g. along the vessel or center of the liver) and approaches performance
of the human annotations. Multiple image regions used in the phase classification
increases robustness where the phase cannot be determined using one region
alone and when one of the anatomy detectors fail.

The proposed phase estimation technique is novel in three aspects. First, it
presents a way to effectively combine evidence from multiple image regions using
confidence of anatomical detectors. Second, the phase classification procedure is
based on a decision tree, where each node is a multi-class LogitBoost classifier.
Third, the organization of the tree allows to leverage prior knowledge such as
the effectiveness of each landmark to classify particular phase or to adjust the
tree topology based on the amount of training labels for each phase. We will
show on a database of CT scans that the technique can accurately classify the
phase in 93% of the cases.

2 Contrast Enhancement in CT

In the first breath-hold of approximately 24 seconds, the arterial dominant phase
(HADP) acquires images with arterial and arterioportal enhancement [5]. In the
second breath-hold of about 10 seconds, portal enhancement is scanned begin-
ning 60 seconds after the injection of contrast medium (hepatic venous phase,
HVP). During this phase, maximum enhancement of the liver parenchyma and
strong enhancement of renal cortex and medulla is achieved. Finally, a 3-min
delayed scan (equilibrium phase, EP) is acquired. The renal calices and pelvis
start to fill with excreted contrast after approximately 120 seconds [4]. Native



phase (NP) scan is obtained without contrast injection. Specific enhancement
of organs in each of the phases makes it possible to estimate the contrast phase
based on the organ scans. Often, only one phase is acquired (see Section 4).

In the clinical routine, contrast phase information is usually added manually
to the series description or image comments Dicom fields. Unfortunately, this
information is not structured or standardized. Even with the new Dicom objects
aimed to capture timing and phase of enhancement [1], they are not widely
adopted and there already exists a vast amount of data with unstructured tags.
The acquisition timing information in the image meta data (if available) could
be used to extract time delay between multiple scans. However, the delay after
the start of contrast injection could not be obtained since the power injector for
the agent is not coupled with the scanner. Moreover, all phases are not always
scanned to reduce the amount of radiation to the patient. In our approach, we
do not rely on the meta data but rather use the image regions surrounding liver,
aorta, vena cava (at the renal vein branching), and kidneys to automatically
estimate the contrast phase.

To illustrate the image intensity changes in various contrast phases, we com-
puted the following statistics. Each anatomical region was used to obtain a his-
togram of intensities and a statistical value of the histogram was plotted for all
volumes (Figure 2). We used the mean value of the histogram for aorta and vena
cava and peak value for liver and kidneys (due to intensity inhomogeneities). The
figure shows, that the regions are indicative of the contrast phase. However, it
is not possible to classify all the phases by one of the regions alone as evidenced
by overlaps in the plots.
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Fig. 2. Intensity statistics computed from 1016 volumes within the image regions de-
fined by aorta, vena cava, liver, and left kidney (right kidney plot is similar). The in-
tensities within the selected anatomical structures are indicative of the contrast phase.

3 Algorithm

Our algorithm automatically determines a probabilistic estimate of the image
contrast phase. The set of phases P that we estimate is composed of hepatic dom-
inant phase (HADP), hepatic venous phase (HVP), native phase (NP) (without
contrast injection), and equilibrium phase (EP). The algorithm uses a set of ob-
servations for contrast phase ri obtained from the neighborhoods V1, V2, ..., Vt of
the image V . Each neighborhood Vj is specified by the coordinates of a bounding
box within a d-dimensional image V , V : Rd → [0, 1]. The set of observations
describe the intensity appearance specific for each region and phase. The goal of



the phase contrast detection algorithm is to estimate for a given volume V the
probability mass function p(ri|V ) for each contrast phase ri ∈ P.

Estimating the phase ri becomes difficult when the number of phases in
the set P is large; it is easier to distinguish between two phases than among
four. Furthermore, not all observations are useful for classification of each phase,
especially when the observations are the same for two or more phases (this is a
case for kidney regions as can be seen from Figure 2). To address this problem,
we propose a multi-level algorithm, where the number of phases |Ps| at each
level s is smaller, Ps ⊂ P, and the set of observations is also smaller. In our
experiments, we found that two levels achieve reliable contrast phase estimation
(Figure 3). In this case, we can write

p(ri|V ) =
∑

k

p(ri|V, qk)p(qk|V ), (1)

where ri and qk are contrast phases estimated at level 2 and level 1, respectively.
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Fig. 3. Multiple level algorithm (right) has advantages compared to a single level al-
gorithm (left) when the phase training data is imbalanced and effectively exploits
discriminative power of each landmark. In our case, kidneys are useful for classifying
EP phase but not the other phases (as seen in Figure 2).

We estimate the contrast using neighborhood image regions surrounding
liver, aorta, vena cava, and kidneys. Each oriented region j is defined by the
parameters θj = {p, r, s}, that specify the position (p), orientation (r), and size
(s) of the region. The set of observations inside the image neighborhood Vj is
taken from the region defined by j and therefore

p(qk|V ) =
∑

j

p(qk|V, j)p(j). (2)

Prior distribution p(j) of regions surrounding anatomical structures is uniform.
The term p(qk|V, j) specifies distribution of contrast phase qk for region j. Fur-
thermore, since the pose of the anatomy j is defined by parameters θj

p(qk|V, j) =
∫

p(qk, θj |V )dθj (3)

=
∫

p(θj |V )p(qk|θj , V )dθj . (4)



In practice, we replace the integration over the parameters by the best instance

p(qk|V, j) ≈ p(θ̂j |V )p(qk|θ̂j , V ). (5)

The set of the best instance parameters θ̂j for each anatomical region j is esti-
mated using a volumetric context surrounding the anatomy position:

θ̂j = arg max
θj

P(θj |V ), (6)

where P(θj |V ) is the probability of the parameters given the image volume. Let
us now define a random variable y ∈ {−1, +1}, where y = +1 indicates the
presence and y = −1 absence of the anatomy. We train a Probabilistic Boosting
Tree classifier (PBT) [9] with nodes composed of AdaBoost classifiers trained
to select Haar and steerable features [8] that best discriminate between positive
and negative examples of the anatomy. We can then evaluate the probability of
an anatomy being detected as P(y = +1|θj , V ). A natural choice for Eq. 6 is to
use the P(y = +1|θj , V ),

θ̂j = arg max
θj

P(y = +1|θj , V ). (7)

This way, we sucessfuly convert the above problem to a detection problem. The
derivation for p(qk|V ) applies to all levels of the algorithm.

We use a Multi-class LogitBoost (MLBoost) [3] classifier and a Haar fea-
ture selection from AdaBoost [3] to estimate the contrast phase distribution
p(qk|θ̂j , V ) in Eq. 5. The MLBoost is a generalization of a two-class AdaBoost,
interpreted using the forward additive logistic regression. The LogitBoost algo-
rithm uses quasi-Newton steps [7] for fitting an additive symmetric logistic model
by maximum-likelihood. At each iteration, the algorithm increases the classifi-
cation accuracy on the training data by adding a new function fkm(θ̂j , V ) to
the response function Fk(θ̂j , V ). The output of the training is a set of response
functions, one for each phase qk

Fk(θ̂j , V ) =
∑
m

fkm(θ̂j , V ). (8)

The posterior phase probability p(qk|θ̂j , V ) is then given by

p(qk|θ̂j , V ) =
exp(Fk(θ̂j , V ))∑
i exp(Fi(θ̂j , V ))

. (9)

The functions {fkm} are assumed piecewise constant functions of responses com-
puted using a set of weak classifiers selected incrementally during boosting [3].

4 Experiments

Our experiments evaluate the accuracy of individual region detectors and final
classification performance.



The data set consists of 1016 CT scans with sizes ranging from 512×512×38
to 512×512×512 voxels and resolutions ranging from 0.52×0.52×0.5 to 1.27×1.27×5.0
mm resampled to a 3 mm isotropic resolution (sufficient for phase estimation ap-
plication). The images were annotated by an expert, resulting in the landmark
and phase annotation counts summarized in Table 1. The phase label in the Di-
com tags is incorrect in 6.4% and missing in 9.1% of the cases (total of 15.5%)3.
Total of 61.8%, 29.3%, and 8.9% studies have scans from one, two, and three
phases, respectively. No study contains scans from all four phases.

Native HAP PVIP HVP EP Total

Liver 81 152 128 209 17 587
Aorta 239 152 125 349 45 910

Vena Cava 174 135 104 177 42 632
Left Kidney 159 113 120 304 50 746

Right Kidney 146 158 122 314 55 795

By Phase 242 174 141 378 81 1016
Table 1. Number of annotated volumes organized by each landmark and phase. The
least number of volumes was obtained during the EP phase since it is not scanned as
often as the other phases.

In the first experiment, we assess the performance of the anatomical structure
detectors. The data set with structure annotations was separated randomly into
two disjoint sets, one for training (70% of volumes) and one for testing (30%).
Each detector was trained using the training data set of all available contrast
phases. The detectors were evaluated on the testing data set and the results
compared against the annotations. The training errors of each landmark are
shown in Table 2. The detection errors are low overall. Occasionally, a detector
can have a larger error but this still does not mean the phase classification will be
incorrect since we are using evidence from multiple anatomical regions (Eq. 5).

Aorta Vena Cava Liver Left Kidney Right Kidney
Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev.

Center [mm] 1.33 1.22 3.31 3.91 9.24 6.99 3.78 2.24 4.23 3.72
Angle [deg] 3.08 2.00 4.72 2.88 10.85 5.93 8.04 2.39 8.11 2.36

Size [mm] 1.01 1.30 1.00 1.72 17.81 10.60 7.04 4.40 10.05 3.28
Table 2. Accuracy of the region detectors. The errors for vena cava are larger than
aorta due to similar intensity as the liver parenchyma in NP. The vessel position and
size errors along the vessel and angle rotations around the vessel are not considered
due to ambiguity. The errors for kidneys and liver are higher due to their larger sizes.

Finally, we present the results of the contrast phase estimation. We trained
Multi-class LogitBoost [3] phase classifiers using the annotated anatomical re-
gions. The final phase classification performance after 4-fold cross validation is

3 In our another database of 514 volumes, the phase label in the Dicom tags is incorrect
in 5.8% and missing in 14.7% of the cases (total of 20.5%). We manually removed
the language, formatting, and abbreviation ambiguities of the Dicom entries.



summarized in a confusion Table 3. The classification accuracy is high for NP,
HADP, and HVP phases, ranging between 92.2% and 96.7%. For the EP phase,
the performance is lower due to the low number of training examples. The EP
phase is most often confused with HVP phase which is caused by different parts
of kidney being enhanced during these phases (cortex and medulla in HVP and
calices and pelvis in EP). It might be possible to improve the result by seg-
menting these regions to separate them for phase classifier training. The overall
phase classification speed is 7 seconds on average. Example qualitative anatom-
ical structure detection result and phase classification are shown in Figure 4.

We also compared the two-level algorithm to a single level system where each
anatomical region is used to estimate all phases (Figure 3). This system has

Detection NP HADP HVP EP

GT NP 96.2 0.8 0.00 3.0
GT HADP 2.0 92.2 5.4 0.4
GT HVP 0.5 1.1 96.7 2.2
GT EP 0.00 4.5 9.1 86.4

Table 3. Confusion table showing per-
centages of correctly and incorrectly
identified phases when compared to the
ground truth (GT) labeling.

advantage compared to estimating the
phase from all regions jointly since the
region detection might fail. However, due
to imbalanced training set (Table 1) and
poor discrimination of phases in kidneys
(Figure 2), the phase was correctly clas-
sified only in 85% cases with correct EP
classification only in 29% cases.

5 Conclusion

We presented an automatic phase classification algorithm in CT volumes. Our
approach starts by a discriminative learning-based detector of anatomical struc-
tures. The regions surrounding the structures are used in Multi-class LogitBoost
classifiers to accurately characterize the contrast phase. The system robustly
classifies native phase (correct classification in 96.2% of the cases), hepatic dom-
inant phase (92.2% correct), hepatic venous phase (96.7% correct), and equilib-
rium phase (86.4% correct). The overall speed is 7 seconds on average.

In future, we plan to exploit the time relationship between phases. This will
help when there are scans from multiple phases available. We will also investigate
the possibility of using pairs of anatomical regions during classification. This will
limit the influence of intensity differences across regions for a particular phase as
the classifier would focus on relative intensity values computed within the pair
of the regions rather than on absolute intensity values in each region.
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