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Multiple object segmentation is performed for three-dimen-
sional computed tomography. The adjacent objects are indi-
vidually segmented. Overlapping regions or locations des-
ignated as belonging to both objects may be identified.
Confidence maps for the individual segmentations are used
to label the locations of the overlap as belonging to one or
the other object, not both. This re-segmentation is applied
for the overlapping local, and not other locations. Confi-
dence maps in re-segmentation and application just to over-
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1
MULTI-BONE SEGMENTATION FOR 3D
COMPUTED TOMOGRAPHY

RELATED APPLICATIONS

The present patent document claims the benefit of the
filing date under 35 U.S.C. §119(e) of Provisional U.S.
Patent Application Ser. No. 61/706,342, filed Sep. 27, 2012,
which is hereby incorporated by reference.

TECHNICAL FIELD

This disclosure relates in general to the field of computed
tomography (CT), and, more particularly, to automatic bone
segmentation using computed tomography.

BACKGROUND

CT may scan a volume of a patient. Different objects may
be adjacent to each other in the volume. The CT data from
the scan represents both objects. To assist in diagnosis,
planning, or implant design, the objects may be segmented.
For example, segmentation of human bones from three-
dimensional (3D) CT images is important to many clinical
applications such as visualization enhancement, disease
diagnosis, implant design, cutting guide design, and surgical
planning. The locations or voxels associated with each
object are determined.

Hand tracing of the objects, especially in three-dimen-
sions, is time consuming. Automatic detection remains a
very challenging task due to the variety and complexity of
bone structures, non-uniform density of bone tissues, blurred
and weak bone boundaries due to the partial volume effect,
and pathological cases such as osteoporosis. In particular,
when neighboring bones are too close to each other, the
separation of these bones becomes very difficult as the
inter-bone gap is extremely narrow or even disappears if the
bones border on each other. Consequently, traditional seg-
mentation methods often produce overlapping boundaries.
FIG. 1 shows a femur (upper) and tibia (lower) with auto-
mated segmentation resulting in a region 40 of overlapping
boundaries. The segmentation may not be accurate due to
this overlap error.

SUMMARY

By way of introduction, the preferred embodiments
described below include methods, systems, instructions, and
computer readable media for multiple object segmentation
for three-dimensional computed tomography. The adjacent
objects are individually segmented. Overlapping regions or
locations designated as belonging to both objects may be
identified. Confidence maps for the individual segmenta-
tions are used to label the locations of the overlap as
belonging to one or the other object, not both. This re-
segmentation is applied for the overlapping local, and not
other locations. Confidence maps in re-segmentation and
application just to overlap locations may be used indepen-
dently of each other or in combination.

In a first aspect, a method is provided for multiple bone
segmentation for three-dimensional computed tomography.
Computed tomography (CT) data representing first and
second bones of a patient is received. A processor segments
separately the first and second bones. The processor refines
the segmenting of the first bone as a function of a first
confidence map of the segmenting and the second bone as a
function of a second confidence map of the segmenting. The
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processor adjusts results of the segmenting of the first and
second bones jointly as a function the first and second
confidence maps. An image showing the first and second
bones with the adjusted results of the segmenting is output.

In a second aspect, a non-transitory computer readable
storage medium has stored therein data representing instruc-
tions executable by a programmed processor for multiple
object segmentation for three-dimensional computed tomog-
raphy. The storage medium includes instructions for labeling
first voxels of computed tomography data as belonging to a
first segment have a first boundary, labeling second voxels
of computed tomography data as belonging to a second
segment having a second boundary, at least some of the
second voxels also labeled as belonging to the first segment,
calculating first distances from the first voxels to the first
boundary, calculating second distances from the second
voxels to the second boundary, minimizing an energy func-
tion as a function of the first and second distances and a
spatial exclusion constraint such that the first voxels are
exclusive to the first segment and the second voxels are
exclusive to the second segment, and generating an image of
the first and second segments after the minimizing.

In a third aspect, a non-transitory computer readable
storage medium has stored therein data representing instruc-
tions executable by a programmed processor for multiple
object segmentation for three-dimensional computed tomog-
raphy. The storage medium includes instructions for identi-
fying locations of a first object from computed tomography
information, identifying locations of a second object from
the computed tomography information, determining the
locations of the first and second objects that overlap, altering
each of the locations of the overlap to be exclusive to the first
or second object, and avoiding altering of the locations
outside the overlap.

The present invention is defined by the following claims,
and nothing in this section should be taken as a limitation on
those claims. Further aspects and advantages of the inven-
tion are discussed below in conjunction with the preferred
embodiments and may be later claimed independently or in
combination.

BRIEF DESCRIPTION OF THE DRAWINGS

The components and the figures are not necessarily to
scale, emphasis instead being placed upon illustrating the
principles of the invention. Moreover, in the figures, like
reference numerals designate corresponding parts through-
out the different views.

FIG. 1 is a computed tomography image with segmenta-
tion of two objects showing overlap of the objects;

FIG. 2 illustrates one embodiment of a method for mul-
tiple object segmentation for three-dimensional computed
tomography;

FIG. 3 is a flowchart diagram of another embodiment of
a method for multiple object segmentation for three-dimen-
sional computed tomography;

FIGS. 4A, 4B, and 4C are computed tomography images
representing different stages of segmentation;

FIG. 5 shows computed tomography images with over-
lapping segmentations and re-segmentation correction of the
overlap; and

FIG. 6 is a block diagram showing one embodiment of a
system for multiple object segmentation for three-dimen-
sional computed tomography.

DESCRIPTION OF EXEMPLARY
EMBODIMENTS

Automatic segmentation of multiple adjacent objects is
provided. Any objects represented by computed tomography
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(CT) data may be segmented. For example, two different
organs are segmented. In another example used in embodi-
ments discussed herein, adjacent bones are segmented.
Locations represented by CT data are labeled as belonging
to one or the other bone, such as a tibia or femur. Joint
multi-bone segmentation is performed automatically from
three-dimensional (3D) CT images.

Automatic bone segmentation from 3D CT images is a
useful yet challenging task in many clinical applications. In
particular, when the neighboring bones around human joints
are very close and even touch each other, conventional bone
segmentation methods are prone to producing the overlap
error, especially if the bones are segmented individually. A
fully automated, computationally efficient, and accurate
joint segmentation system is provided for multiple bone
segmentation. In one embodiment, each bone is initially
segmented with a marginal space learning (MSL) frame-
work for pose estimation and non-rigid boundary deforma-
tion. To eliminate the segmentation overlap, the bones are
re-segmented with confidence maps derived from the initial
segmentation results and spatial exclusion constraints
between neighboring bones in a Markov random field
(MRF). As a result, the overlap is effectively removed by
re-segmentation. Furthermore, because the re-segmentation
is only applied to the local overlapped area of the initial
segmentation results, the re-segmentation has only a slight
computational cost. This joint segmentation may reduce the
segmentation overlap error by up to 100% compared to the
ground truth with an extra computation of about 1 second.

FIGS. 2 and 3 show embodiments of methods for multiple
object segmentation for three-dimensional computed tomog-
raphy. The methods are implemented using the system of
FIG. 6, a processor, a server, a computer, and/or a different
system. In general, a processor receives 3D CT data and
performs the acts of the method to output an indication of
different locations for adjacent objects represented by the 3D
CT data.

Additional, different or fewer acts may be provided than
shown in FIG. 2 or 3. For example, acts for accessing other
types of data, acts for transmitting an output, and/or acts for
storing the segmentation are provided. As another example,
other initial segmentation acts are provided (e.g., acts 24-30
or 44-58 are replaced). Any segmentation of the individual
objects may be used. As another example, re-segmentation
limited to overlapping locations is provided without using
confidence mapping. The acts are performed in the order
shown or different orders.

In the embodiment represented by FIG. 2, the automatic
segmentation includes an initial segmentation in act 42 and
joint re-segmentation in act 60. In the initial segmentation of
act 42, each bone is separately detected and segmented. The
bone is first localized with marginal space learning in act 44.
The best or group of best similarity transformations of the
target bone is searched in a given volume. The position is
found in act 46, then the orientations of the top position
candidates are found in act 48, and then the scales of the top
position+orientation candidates are found in act 50. Then,
learning based 3D boundary detectors are used to infer the
initial shape in act 54 and guide the shape deformation in the
statistical shape model (SSM) space in act 56. The derived
shape is further refined in act 58 using graph based segmen-
tation algorithm to better fit the image data. Other acts may
be used.

Because each bone is separately segmented, segmentation
overlap may occur between neighboring bones. To remove
the overlap error, joint re-segmentation is performed in act
60. Overlap is identified in act 62 and the local region of
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overlap is extracted in act 64. The labels for the overlap
region are optimized for neighboring bones simultaneously
with spatial exclusion constraints.

FIG. 3 represents the same or similar acts of FIG. 2. The
methods of FIGS. 2 and 3 are discussed together below.

In act 20, CT data is received. The CT data is received by
scanning a patient. An x-ray source and detector are rotated
about a patient to acquire x-ray projections through a
volume of the patient. The detected intensities are recon-
structed into data representing the volume. In alternative
embodiments, the CT data is received from memory, such as
loading data from a DICOM archive system.

The CT data represents the patient. Parts or all of different
organs, tissue types, bones, or other anatomical structure are
represented by the data. For example, the data represents
parts of the tibia and femur at the knee joint. Other tissue,
such as other bones, may also be represented in the CT data.

The 3D CT data has any format. In one embodiment, the
3D CT data is formatted in a regular grid in a Cartesian
coordinate system. Different grid locations or voxels repre-
sent different spatial locations within the scanned volume of
the patient. The 3D CT data as received or after reception
may be processed to remove background, soft tissue, tissue
not of interest or other pre-segmentation operation.

In acts 22 and 42, an initial segmentation is performed.
The initial segmentation includes locating the object of act
44 or estimating the pose in act 24 and includes fitting a
shape in act 52 or acts 26 and 28. Additional, different, or
fewer approaches may be used for performing initial seg-
mentation.

The initial segmentation is for individual objects. In the
bone example, the tibia and femur are detected and seg-
mented as individual objects rather than a joint object. In act
22, the multiple objects are separately segmented. Locations
of'one object are determined using the CT data. Locations of
the other object are determined using the CT data. The same
process may be applied, but different classifiers, inputs, or
goals are used to find the different bones. Different processes
may be used for the different objects. The voxels of each
bone are located as separate objects without regard to any
overlap or the location or position of other objects. One
object is located independently of the other object. In
alternative embodiments, features, location, or other char-
acteristics of one object are used to segment another object.
While information about one object is used for segmenting
another object, the segmentation of both objects is not
spatially restricted to avoid overlap. The segmentation is
separate since overlap may exist.

The initial segmentation labels the voxels of the CT data.
It a voxel belongs to the object, the voxel is labeled as such.
If the voxel does not belong to the object, the voxel is
labeled as such. The voxel labels indicate voxels within the
object and/or at the boundary of the object.

By separate segmentation of the different objects, the
labels for a given voxel may belong to none, one, or multiple
objects. One or more voxels or locations are labeled as or
included as part of two or more different segments. For
example, a group of voxels are labeled as belonging to the
tibia and also labeled as belonging to the femur.

Any segmentation may be used for the individual seg-
mentation. In embodiments represented in FIGS. 2 and 3,
confidence maps are used in the individual segmentation. A
confidence map is provided for each of the objects. In other
embodiments, confidence mapping is not used.

Acts 44-58 and 24-28 show two embodiments for indi-
vidual segmentation. In the discussion below, the segmen-
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tation is discussed for a given object. The segmentation is
repeated for a different object.

In act 24, a pose of the object is estimated. The pose is
position, orientation, and/or scale. Any parameter structure
for pose may be used. The pose may not include the
boundary or otherwise segment particular locations, but
instead indicates a parameterized or generalized location of
the object, such as with a bounding box, skeleton, or other
parameterization.

Act 44 provides an example pose estimation, but other
pose estimations may be used. A marginal space learnt
discriminative classifier or classifiers are trained to estimate
the pose. Other classifiers may be used. The input features
to the classifier are steerable, three-dimensional Haar, and/or
input features of the CT data. The classifier is machine
trained from annotated or ground truth training data to
classify the pose from the input. A matrix or other function
is learned by data processing. More than one classifier may
be trained, such as training separate classifiers for each of
the position, orientation and scale estimations.

In one embodiment, the target bone is first detected from
the 3D CT data by searching for the optimal similarity
transformation parameters in a given volume 1. The simi-
larity transformation parameters, or pose parameters, are

determined by nine parameters, translation t=(t,.t,,t,), ori-
entation r=(r,,r,,r,) and anisotropic scaling s=(s,,s,,s,). In

other embodiments, fewer, additional, or different param-
eters are used to characterize the pose. The pose estimation
task can be formulated by maximizing the posterior prob-
ability as follows:

("t, v "s)=arg max P(t,s,7|) for t,s,»

M

Solving the posterior probability involves the search in a
nine dimensional parameter space, which can be very com-
putationally expensive in practice. Marginal space learning
is applied to decompose the whole search space into mar-
ginal space inference. As shown below, the object localiza-
tion is split into three steps: position, orientation, and scale.
Since the output of each step is a number (e.g., 100-1000) of
candidates from that step, the search is characterized as
position estimation, position-orientation estimation, and full
similarity transformation estimation of acts 46, 48, and 50.
After each step only a limited number of best candidates are
kept to reduce the search space and speed up the inference.
The marginal space solution of the posterior probability
function is expressed as:

(°t,"r8)=arg max PQ)P(r|L1)P(s|Lt, r)~arg max P(t|])
arg max P(r|l,"t) arg max P(s|,t,r)

@

To learn the marginal posterior probabilities, discrimina-
tive classifiers such as probabilistic boosting trees (PBT) or
probabilistic boosting networks may be used. 3D Haar
features are used for location detection and steerable fea-
tures are used for orientation and scale inferences.

The output is a pose. The pose may be represented as a
line, points, box, cube or other shape. FIG. 4A shows the
pose as a rectangular box with a position, orientation, and
scale fit to the object. The pose parameters are represented
as a bounding box. Other representations or no representa-
tion may be used. The pose is or is not displayed to the user.

In act 52, the shape of the object is determined. For
example, the boundary of the bone is located. The boundary
and determination are limited to the bounding box and/or
use the pose estimation to avoid improper placement.

In act 26, a shape for the object is initialized. In act 54, the
initialization uses a statistical shape model, but other ini-
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6

tialization may be used. For example, a random walker,
direction filtering, thresholding, or other object detection is
performed.

The statistical shape model is transformed to the pose.
The statistical shape model is specific to the object and
represents the average and/or deviation from average of the
object as represented in CT data. After pose estimation, the
shape of the target object is initialized based on the statistical
shape model (SSM) as follows:

x=flu+Zcv, 1 RS)

®
where the sum is from i=1 to N, x denotes the initialized
shape, f'is the rigid transformation with the pose parameters
("t, 'r, "s) estimated by the pose, u and v represent the mean
and leading eigenvectors of the statistical shape model
obtained from training annotations, N is the dimension of the
shape variation subspace (e.g., 3 but may be another num-
ber), and c=(c,, i=1, . . . , N) are the shape variation
coeflicients inferred using machine learning techniques.
Any machine learning for the coefficients may be used,
such as a probabilistic boosting tree or a probabilistic
boosting network. The coefficient learning is represented as:

("c)=arg max P(cl,"t,’r"s)

Q)

The learned coefficients represent a model. Rather than
learning a classifier to apply to the CT data of a given
patient, the model is learned for application to any number
of patients without input of patient specific CT data. Any
input features from the training data may be used, such as
steerable features. The average represented in the model
provides the initial shape.

As shown in equation 4, the inference of shape variation
coeflicients can be viewed as an extended step in the general
marginal space learning framework for non-rigid deforma-
tion.

In act 28, the shape provided by the statistical or other
model is deformed to the CT data for this particular place-
ment. The initialization locates the average of the statistical
shape model based on the pose. The model is then fit to the
CT data for the patient under examination. The model is
deformed based on the statistics of the statistical shape
model as fit to the CT data.

Act 56 provides one example fitting. In act 56, the
boundary is inferred from the statistical shape model and the
CT data. The initialized shape is further deformed with
boundary detectors. Any boundary detector accounting for
the deviation or variation probabilities of the statistical
shape model may be used. In other embodiments, the
boundary detector uses the average shape and CT data
without further deviation limits or statistics. For example,
the average boundary indicates a localized search region for
boundary detection but does not otherwise limit the bound-
ary detection.

In one embodiment, boundary detection is formulated as
a classification problem. The model establishes initial start-
ing points for the boundary, such as represented in a mesh.
The classification determines whether there is a boundary
passing point (X, Y, 7Z) with orientation (0Ox,0y,0z). The
boundary detectors are used to move the mesh control points
on the current estimated shape surface (e.g., average shape
position of the statistical shape model) along its normal
direction to an optimal position relative to the CT data of the
patient. The classification score from the boundary detector
is the highest, lowest or other output indicating an optimal
fit for a mesh point. After adjustment, the deformed shape is
projected to the statistical shape model subspace to smooth
out the surface. For example, the dimension of the statistical






