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MULT-BONE SEGMENTATION FOR 3D 
COMPUTED TOMOGRAPHY 

RELATED APPLICATIONS 

The present patent document claims the benefit of the 
filing date under 35 U.S.C. S 119(e) of Provisional U.S. 
Patent Application Ser. No. 61/706,342, filed Sep. 27, 2012, 
which is hereby incorporated by reference. 

TECHNICAL FIELD 

This disclosure relates in general to the field of computed 
tomography (CT), and, more particularly, to automatic bone 
segmentation using computed tomography. 

BACKGROUND 

CT may scan a volume of a patient. Different objects may 
be adjacent to each other in the volume. The CT data from 
the scan represents both objects. To assist in diagnosis, 
planning, or implant design, the objects may be segmented. 
For example, segmentation of human bones from three 
dimensional (3D) CT images is important to many clinical 
applications such as visualization enhancement, disease 
diagnosis, implant design, cutting guide design, and Surgical 
planning. The locations or Voxels associated with each 
object are determined. 
Hand tracing of the objects, especially in three-dimen 

sions, is time consuming. Automatic detection remains a 
very challenging task due to the variety and complexity of 
bone structures, non-uniform density of bone tissues, blurred 
and weak bone boundaries due to the partial volume effect, 
and pathological cases such as osteoporosis. In particular, 
when neighboring bones are too close to each other, the 
separation of these bones becomes very difficult as the 
inter-bone gap is extremely narrow or even disappears if the 
bones border on each other. Consequently, traditional seg 
mentation methods often produce overlapping boundaries. 
FIG. 1 shows a femur (upper) and tibia (lower) with auto 
mated segmentation resulting in a region 40 of overlapping 
boundaries. The segmentation may not be accurate due to 
this overlap error. 

SUMMARY 

By way of introduction, the preferred embodiments 
described below include methods, systems, instructions, and 
computer readable media for multiple object segmentation 
for three-dimensional computed tomography. The adjacent 
objects are individually segmented. Overlapping regions or 
locations designated as belonging to both objects may be 
identified. Confidence maps for the individual segmenta 
tions are used to label the locations of the overlap as 
belonging to one or the other object, not both. This re 
segmentation is applied for the overlapping local, and not 
other locations. Confidence maps in re-segmentation and 
application just to overlap locations may be used indepen 
dently of each other or in combination. 

In a first aspect, a method is provided for multiple bone 
segmentation for three-dimensional computed tomography. 
Computed tomography (CT) data representing first and 
second bones of a patient is received. A processor segments 
separately the first and second bones. The processor refines 
the segmenting of the first bone as a function of a first 
confidence map of the segmenting and the second bone as a 
function of a second confidence map of the segmenting. The 
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2 
processor adjusts results of the segmenting of the first and 
second bones jointly as a function the first and second 
confidence maps. An image showing the first and second 
bones with the adjusted results of the segmenting is output. 

In a second aspect, a non-transitory computer readable 
storage medium has stored therein data representing instruc 
tions executable by a programmed processor for multiple 
object segmentation for three-dimensional computed tomog 
raphy. The storage medium includes instructions for labeling 
first voxels of computed tomography data as belonging to a 
first segment have a first boundary, labeling second voxels 
of computed tomography data as belonging to a second 
segment having a second boundary, at least Some of the 
second Voxels also labeled as belonging to the first segment, 
calculating first distances from the first voxels to the first 
boundary, calculating second distances from the second 
Voxels to the second boundary, minimizing an energy func 
tion as a function of the first and second distances and a 
spatial exclusion constraint Such that the first voxels are 
exclusive to the first segment and the second Voxels are 
exclusive to the second segment, and generating an image of 
the first and second segments after the minimizing. 

In a third aspect, a non-transitory computer readable 
storage medium has stored therein data representing instruc 
tions executable by a programmed processor for multiple 
object segmentation for three-dimensional computed tomog 
raphy. The storage medium includes instructions for identi 
fying locations of a first object from computed tomography 
information, identifying locations of a second object from 
the computed tomography information, determining the 
locations of the first and second objects that overlap, altering 
each of the locations of the overlap to be exclusive to the first 
or second object, and avoiding altering of the locations 
outside the overlap. 
The present invention is defined by the following claims, 

and nothing in this section should be taken as a limitation on 
those claims. Further aspects and advantages of the inven 
tion are discussed below in conjunction with the preferred 
embodiments and may be later claimed independently or in 
combination. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The components and the figures are not necessarily to 
scale, emphasis instead being placed upon illustrating the 
principles of the invention. Moreover, in the figures, like 
reference numerals designate corresponding parts through 
out the different views. 

FIG. 1 is a computed tomography image with segmenta 
tion of two objects showing overlap of the objects: 

FIG. 2 illustrates one embodiment of a method for mul 
tiple object segmentation for three-dimensional computed 
tomography; 

FIG. 3 is a flowchart diagram of another embodiment of 
a method for multiple object segmentation for three-dimen 
sional computed tomography; 

FIGS. 4A, 4B, and 4C are computed tomography images 
representing different stages of segmentation; 

FIG. 5 shows computed tomography images with over 
lapping segmentations and re-segmentation correction of the 
overlap; and 

FIG. 6 is a block diagram showing one embodiment of a 
system for multiple object segmentation for three-dimen 
sional computed tomography. 

DESCRIPTION OF EXEMPLARY 
EMBODIMENTS 

Automatic segmentation of multiple adjacent objects is 
provided. Any objects represented by computed tomography 
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(CT) data may be segmented. For example, two different 
organs are segmented. In another example used in embodi 
ments discussed herein, adjacent bones are segmented. 
Locations represented by CT data are labeled as belonging 
to one or the other bone, such as a tibia or femur. Joint 
multi-bone segmentation is performed automatically from 
three-dimensional (3D) CT images. 

Automatic bone segmentation from 3D CT images is a 
useful yet challenging task in many clinical applications. In 
particular, when the neighboring bones around human joints 
are very close and even touch each other, conventional bone 
segmentation methods are prone to producing the overlap 
error, especially if the bones are segmented individually. A 
fully automated, computationally efficient, and accurate 
joint segmentation system is provided for multiple bone 
segmentation. In one embodiment, each bone is initially 
segmented with a marginal space learning (MSL) frame 
work for pose estimation and non-rigid boundary deforma 
tion. To eliminate the segmentation overlap, the bones are 
re-segmented with confidence maps derived from the initial 
segmentation results and spatial exclusion constraints 
between neighboring bones in a Markov random field 
(MRF). As a result, the overlap is effectively removed by 
re-segmentation. Furthermore, because the re-segmentation 
is only applied to the local overlapped area of the initial 
segmentation results, the re-segmentation has only a slight 
computational cost. This joint segmentation may reduce the 
segmentation overlap error by up to 100% compared to the 
ground truth with an extra computation of about 1 second. 

FIGS. 2 and 3 show embodiments of methods for multiple 
object segmentation for three-dimensional computed tomog 
raphy. The methods are implemented using the system of 
FIG. 6, a processor, a server, a computer, and/or a different 
system. In general, a processor receives 3D CT data and 
performs the acts of the method to output an indication of 
different locations for adjacent objects represented by the 3D 
CT data. 

Additional, different or fewer acts may be provided than 
shown in FIG. 2 or 3. For example, acts for accessing other 
types of data, acts for transmitting an output, and/or acts for 
storing the segmentation are provided. As another example, 
other initial segmentation acts are provided (e.g., acts 24-30 
or 44-58 are replaced). Any segmentation of the individual 
objects may be used. As another example, re-segmentation 
limited to overlapping locations is provided without using 
confidence mapping. The acts are performed in the order 
shown or different orders. 

In the embodiment represented by FIG. 2, the automatic 
segmentation includes an initial segmentation in act 42 and 
joint re-segmentation in act 60. In the initial segmentation of 
act 42, each bone is separately detected and segmented. The 
bone is first localized with marginal space learning in act 44. 
The best or group of best similarity transformations of the 
target bone is searched in a given volume. The position is 
found in act 46, then the orientations of the top position 
candidates are found in act 48, and then the scales of the top 
position+orientation candidates are found in act 50. Then, 
learning based 3D boundary detectors are used to infer the 
initial shape in act 54 and guide the shape deformation in the 
statistical shape model (SSM) space in act 56. The derived 
shape is further refined in act 58 using graph based segmen 
tation algorithm to better fit the image data. Other acts may 
be used. 

Because each bone is separately segmented, segmentation 
overlap may occur between neighboring bones. To remove 
the overlap error, joint re-segmentation is performed in act 
60. Overlap is identified in act 62 and the local region of 
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4 
overlap is extracted in act 64. The labels for the overlap 
region are optimized for neighboring bones simultaneously 
with spatial exclusion constraints. 

FIG.3 represents the same or similar acts of FIG. 2. The 
methods of FIGS. 2 and 3 are discussed together below. 

In act 20, CT data is received. The CT data is received by 
scanning a patient. An X-ray source and detector are rotated 
about a patient to acquire X-ray projections through a 
volume of the patient. The detected intensities are recon 
structed into data representing the Volume. In alternative 
embodiments, the CT data is received from memory. Such as 
loading data from a DICOM archive system. 
The CT data represents the patient. Parts or all of different 

organs, tissue types, bones, or other anatomical structure are 
represented by the data. For example, the data represents 
parts of the tibia and femur at the knee joint. Other tissue, 
such as other bones, may also be represented in the CT data. 
The 3D CT data has any format. In one embodiment, the 

3D CT data is formatted in a regular grid in a Cartesian 
coordinate system. Different grid locations or Voxels repre 
sent different spatial locations within the scanned volume of 
the patient. The 3D CT data as received or after reception 
may be processed to remove background, soft tissue, tissue 
not of interest or other pre-segmentation operation. 

In acts 22 and 42, an initial segmentation is performed. 
The initial segmentation includes locating the object of act 
44 or estimating the pose in act 24 and includes fitting a 
shape in act 52 or acts 26 and 28. Additional, different, or 
fewer approaches may be used for performing initial seg 
mentation. 
The initial segmentation is for individual objects. In the 

bone example, the tibia and femur are detected and seg 
mented as individual objects rather than a joint object. In act 
22, the multiple objects are separately segmented. Locations 
of one object are determined using the CT data. Locations of 
the other object are determined using the CT data. The same 
process may be applied, but different classifiers, inputs, or 
goals are used to find the different bones. Different processes 
may be used for the different objects. The voxels of each 
bone are located as separate objects without regard to any 
overlap or the location or position of other objects. One 
object is located independently of the other object. In 
alternative embodiments, features, location, or other char 
acteristics of one object are used to segment another object. 
While information about one object is used for segmenting 
another object, the segmentation of both objects is not 
spatially restricted to avoid overlap. The segmentation is 
separate since overlap may exist. 
The initial segmentation labels the voxels of the CT data. 

If a voxel belongs to the object, the voxel is labeled as such. 
If the voxel does not belong to the object, the voxel is 
labeled as such. The voxel labels indicate voxels within the 
object and/or at the boundary of the object. 
By separate segmentation of the different objects, the 

labels for a given voxel may belong to none, one, or multiple 
objects. One or more voxels or locations are labeled as or 
included as part of two or more different segments. For 
example, a group of voxels are labeled as belonging to the 
tibia and also labeled as belonging to the femur. 
Any segmentation may be used for the individual seg 

mentation. In embodiments represented in FIGS. 2 and 3. 
confidence maps are used in the individual segmentation. A 
confidence map is provided for each of the objects. In other 
embodiments, confidence mapping is not used. 

Acts 44-58 and 24-28 show two embodiments for indi 
vidual segmentation. In the discussion below, the segmen 
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tation is discussed for a given object. The segmentation is 
repeated for a different object. 

In act 24, a pose of the object is estimated. The pose is 
position, orientation, and/or scale. Any parameter structure 
for pose may be used. The pose may not include the 
boundary or otherwise segment particular locations, but 
instead indicates a parameterized or generalized location of 
the object, Such as with a bounding box, skeleton, or other 
parameterization. 

Act 44 provides an example pose estimation, but other 
pose estimations may be used. A marginal space learnt 
discriminative classifier or classifiers are trained to estimate 
the pose. Other classifiers may be used. The input features 
to the classifier are steerable, three-dimensional Haar, and/or 
input features of the CT data. The classifier is machine 
trained from annotated or ground truth training data to 
classify the pose from the input. A matrix or other function 
is learned by data processing. More than one classifier may 
be trained, such as training separate classifiers for each of 
the position, orientation and Scale estimations. 

In one embodiment, the target bone is first detected from 
the 3D CT data by searching for the optimal similarity 
transformation parameters in a given Volume I. The simi 
larity transformation parameters, or pose parameters, are 
determined by nine parameters, translation t-(t...tt), ori 
entation r=(r,rr) and anisotropic scaling S=(S,S.S.). In 
other embodiments, fewer, additional, or different param 
eters are used to characterize the pose. The pose estimation 
task can be formulated by maximizing the posterior prob 
ability as follows: 

(t,ns)=arg max P(ts, r) for ts,r (1) 

Solving the posterior probability involves the search in a 
nine dimensional parameter space, which can be very com 
putationally expensive in practice. Marginal space learning 
is applied to decompose the whole search space into mar 
ginal space inference. As shown below, the object localiza 
tion is split into three steps: position, orientation, and scale. 
Since the output of each step is a number (e.g., 100-1000) of 
candidates from that step, the search is characterized as 
position estimation, position-orientation estimation, and full 
similarity transformation estimation of acts 46, 48, and 50. 
After each step only a limited number of best candidates are 
kept to reduce the search space and speed up the inference. 
The marginal space solution of the posterior probability 
function is expressed as: 

(2) 

To learn the marginal posterior probabilities, discrimina 
tive classifiers such as probabilistic boosting trees (PBT) or 
probabilistic boosting networks may be used. 3D Haar 
features are used for location detection and steerable fea 
tures are used for orientation and Scale inferences. 

The output is a pose. The pose may be represented as a 
line, points, box, cube or other shape. FIG. 4A shows the 
pose as a rectangular box with a position, orientation, and 
scale fit to the object. The pose parameters are represented 
as a bounding box. Other representations or no representa 
tion may be used. The pose is or is not displayed to the user. 

In act 52, the shape of the object is determined. For 
example, the boundary of the bone is located. The boundary 
and determination are limited to the bounding box and/or 
use the pose estimation to avoid improper placement. 

In act 26, a shape for the object is initialized. In act 54, the 
initialization uses a statistical shape model, but other ini 
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6 
tialization may be used. For example, a random walker, 
direction filtering, thresholding, or other object detection is 
performed. 
The statistical shape model is transformed to the pose. 

The statistical shape model is specific to the object and 
represents the average and/or deviation from average of the 
object as represented in CT data. After pose estimation, the 
shape of the target object is initialized based on the statistical 
shape model (SSM) as follows: 

c-fil-Xc, vi, r, s) (3) 

where the sum is from i=1 to N, X denotes the initialized 
shape, fis the rigid transformation with the pose parameters 
(t, r, s) estimated by the pose, LL and V represent the mean 
and leading eigenvectors of the statistical shape model 
obtained from training annotations, N is the dimension of the 
shape variation Subspace (e.g., 3 but may be another num 
ber), and c=(c., i=1,. . . . , N) are the shape variation 
coefficients inferred using machine learning techniques. 
Any machine learning for the coefficients may be used, 

such as a probabilistic boosting tree or a probabilistic 
boosting network. The coefficient learning is represented as: 

(c)=arg max P(cII, i, r, s) (4) 

The learned coefficients represent a model. Rather than 
learning a classifier to apply to the CT data of a given 
patient, the model is learned for application to any number 
of patients without input of patient specific CT data. Any 
input features from the training data may be used, Such as 
steerable features. The average represented in the model 
provides the initial shape. 
As shown in equation 4, the inference of shape variation 

coefficients can be viewed as an extended step in the general 
marginal space learning framework for non-rigid deforma 
tion. 

In act 28, the shape provided by the statistical or other 
model is deformed to the CT data for this particular place 
ment. The initialization locates the average of the statistical 
shape model based on the pose. The model is then fit to the 
CT data for the patient under examination. The model is 
deformed based on the statistics of the statistical shape 
model as fit to the CT data. 
Act 56 provides one example fitting. In act 56, the 

boundary is inferred from the statistical shape model and the 
CT data. The initialized shape is further deformed with 
boundary detectors. Any boundary detector accounting for 
the deviation or variation probabilities of the statistical 
shape model may be used. In other embodiments, the 
boundary detector uses the average shape and CT data 
without further deviation limits or statistics. For example, 
the average boundary indicates a localized search region for 
boundary detection but does not otherwise limit the bound 
ary detection. 

In one embodiment, boundary detection is formulated as 
a classification problem. The model establishes initial start 
ing points for the boundary, such as represented in a mesh. 
The classification determines whether there is a boundary 
passing point (X, Y, Z) with orientation (OX.Oy,Oz). The 
boundary detectors are used to move the mesh control points 
on the current estimated shape Surface (e.g., average shape 
position of the statistical shape model) along its normal 
direction to an optimal position relative to the CT data of the 
patient. The classification score from the boundary detector 
is the highest, lowest or other output indicating an optimal 
fit for a mesh point. After adjustment, the deformed shape is 
projected to the statistical shape model Subspace to Smooth 
out the surface. For example, the dimension of the statistical 
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shape model subspace is selected to capture 98% shape 
variations from the training annotations. The statistical 
shape model is fit to the CT data or acts as an input or 
limitation on classification of a location as a boundary or 
not. 

FIG. 4B shows example derived shape as an outline after 
boundary deformation fits the image mostly quite well. 
Some errors due to the loss of shape details by the statistical 
shape model, as well as possible boundary detection errors, 
may exist. FIG. 4B is shown to represent the concept and 
may or may not be shown to the user. Other segmentation 
approaches may be used, such as without pose estimation, 
without statistical shape modeling, without marginal space 
learning, without machine learnt classifiers, and/or with 
other processes. 

In acts 30 and 58, the segmentation is refined. The 
segmentation is altered, such as by filtering or other process. 
Any refinement may be used. The refinement may be 
optional. 

In one embodiment, the segmenting is refined using a 
confidence map for the segmentation. A graph-based energy 
function is minimized based on the confidence map. Any 
confidence map may be used, such as an output from 
probabilistic classifiers used for detecting the boundary. The 
confidence map represents a likelihood, score, or level of 
confidence that a given voxel indicated as being part of the 
object is part of the object. In one embodiment, the confi 
dence map is calculated based on distances of Voxels from 
an object boundary. For voxels labeled as being part of the 
object, the distance to a nearest boundary location of the 
object is calculated and used to determine the confidence. In 
general, the voxels within the object but further away from 
the boundary are more likely members of the object than 
voxels within the object but closer to the boundary. Distance 
maps are used as confidence maps with any function assign 
ing confidence based on the distance, such as the inverse of 
distance alone being the confidence (or distance from the 
boundary being confidence where higher numbers represent 
greater confidence). 
One example approach refines the segmentation to better 

fit to the CT data. To better fit the CT data, the graph based 
energy function is represented as: 

where the sum of D(L) is of the members of the volume 
P, the sum of XV (LL) is of the members p, q of the set 
of pairs of neighboring voxels N, where L={Lplp e P} is the 
binary labeling (Lp e{0, 1}) of volume P. and Dp(Lp) is the 
unary data term, which is defined as: 

D(L)-L (1-g(M(p)))+(1-L)g(M(p)) (6). 

M(p) measures the signed shortest distance of VOXelp to the 
boundary of the segmentation after boundary deformation. 
M(p)>0 when p lies inside the segmentation (foreground), 
M(p)<0 if p is outside the segmentation (background), and 
M(p)=0 if p is located on the segmentation boundary. M can 
be viewed as the confidence map of the previous segmen 
tation. The larger (or smaller) M(p) is, the more likely voxel 
p should be classified as the foreground (or background). 
When voxel p approaches the segmentation boundary, (M(p) 
s0), label Lp becomes more uncertain, and more likely to be 
updated by the segmentation refinement. g(.) is any function 
to map the distance to confidence, Such as the sigmoid 
function defined as: 

g(x)=1/(1+e") (7) 

where t is the parameter that controls the range of uncer 
tainty of the previous segmentation result (e.g., 3-5 mm). In 
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8 
equation 5, N is the set of all pairs of neighboring Voxels, 
and V, is the pair-wise interaction term: 

we-(p-lasquared 2osquaredoLazL) (8) 

where 8(.) is the Kronecker delta function: 

Ö(Liz L)=1 if Izl, and 0 if I-I. 
and where w and O are the regularization parameter and 
contrast coefficient, respectively. Any values may be used 
such as 1-2 for and 30-175 for O. I and I denote the 
intensities of Voxels p and q, respectfully. The pairwise term 
encourages the neighboring Voxel with similar intensities to 
be assigned the same label. 
The segmentation is refined by minimizing the energy 

function of equation 5. Any optimization of the energy 
function may be used, such as solving using the min-cut/ 
max-flow algorithm with polynomial time complexity. Other 
Solutions, functions, other graph-based cost functions, or 
other approaches to refinement may be used. 

FIG. 4C shows an example of the improved result after 
graph-based segmentation refinement. One or more errors 
are removed. The result is a segment representing the object 
as labeled in the CT data. Other segmentation may be used. 

Multiple objects are separately or individually segmented. 
For adjacent objects, one or more voxels may be labeled as 
belonging to multiple objects. Although the individual seg 
mentation may usually achieve good results, the segmenta 
tion of each individual bone is performed separately without 
any spatial constraints. Hence, the overlap error may occur 
when two objects become very close to each other, as shown 
in the example of FIG. 1 for two bones. 

In acts 60 and 34, re-segmentation is performed jointly to 
remove the overlap error. Joint re-segmentation incorporates 
a spatial constraint to prevent overlap. The segmentations 
are further refined using the spatial constraint, or the refine 
ment of acts 30 and 58 incorporates the spatial constraint. 
To make the re-segmentation more computationally effi 

cient, the re-segmentation is only performed for Voxels 
labeled as belonging to multiple objects or only for the 
overlap locations. In acts 32 and 62, the overlap locations are 
identified. The labels of voxels are checked to determine 
whether a given voxel is labeled by the individual segmen 
tations as belonging to more than one object. Alternatively, 
the re-segmentation is performed for a local region of a 
pre-determined or user set size around and including the 
overlapping locations. In yet other embodiments, the re 
segmentation is performed for all locations or Voxels. 

In act 64, the local overlap region is extracted. Only the 
CT data for the overlap is used or only the data in a region 
around the overlap is used. By data masking other data or by 
removing the values for Voxels in the region or overlap, the 
CT data for re-segmentation is extracted. Alternatively, the 
CT data is used without extraction so that adjacent voxels 
are available for re-segmentation calculations. 

In act 34, the results of the individual segmenting are 
adjusted jointly. The labels for the locations are altered to be 
exclusive to only one object instead of two or more. Any 
criteria may be used to select one of multiple objects for a 
given VOXel. The criteria are joint, so incorporates both 
objects into the consideration. 

In one embodiment, confidence maps are used for joint 
re-segmentation. The confidence maps from the two or more 
objects indicate likelihood of the location or voxel being a 
member of the respective object. The object with the highest 
confidence is selected as the object for the voxel. Other 
approaches to avoid non-Smooth boundaries may be used for 
altering jointly. 
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Rather than mere selection, a graph-based energy function 
may be used. In act 66, pairwise co-segmentation with 
spatial constraints is used. A graph-based energy function 
constrained to label each voxel without overlap of the 
objects is minimized. The distances or the confidence are 
used in combination with the spatial constraint to alter the 
voxel labels to be exclusive to a single or no object. With a 
specific spatial exclusion constraint introduced, the re-seg 
mentation guarantees the complete removal of the overlap 
eO. 

The pair of objects are labeled as A and B. L. and L. Stand 
for the labeling of bone A and B, respectively. Voxel p is 
inside bone A if L-1 and otherwise if L-0, likewise 
for bone B. The energy function of equation 5 is extended to 
the case of two objects as follows: 

where the sums of D are of the voxels in the volume P, the 
sums of V are of the voxels in the set N, and where all the 
symbols have the same meaning as in equation 5. Equation 
9 is applied separately and in addition to the use of equation 
5 in segmentation. Equation 9 is used for the joint re 
segmentation, so M is now based on the segmentation results 
after refinement of acts 30 and 58. As shown in equation 9. 
the minimization of E(LL) can be decomposed to the 
minimization of E(L) and E(L) separately because no 
interaction terms between L and L. exist in the energy 
function of equation 9. Objects A and B are essentially 
segmented separately. 

For joint re-segmentation, a spatial exclusion constraint 
exists between L and L because object A and B cannot 
overlap in the space. If L-1, La must–0, and vice 
versa. This spatial constraint is incorporated into the energy 
function of equation 9 by adding the pairwise terms as 
follows: 

E (LL)-E(LLB)+X. (Lacey LB(e) (10) 

where W(LL)--o if L-L-1 and otherwise is 
O. 
The optimal Solution that minimizes the energy function 

E(L.L) guarantees that L. and La cannot be both 1 
at the same time (Wp eP). The introduced pairwise term 
War (L.L.) is Super-modular because W(0, 1)+W 
(1,0)-W(0, 0)+W(1, 1), so cannot be directly optimized via 
the min-cut/max-flow algorithm. To address this problem, 
the binary meaning of label L is flipped to L1-LB or 
otherwise altered to avoid this ambiguity. The energy func 
tion E(LL) becomes sub-modular everywhere and the 
min-cut/max-flow solution may be used to find the optimal 
labeling of L and L. jointly. Alternatively, a different 
minimization solution may be used. 

Since the minimization is performed only for a local 
region associated with the overlap, only Voxels in the 
overlap are altered. The adjustment is performed only for the 
identified overlap voxels. This avoids altering the labels of 
Voxels outside of the overlap region. The joint segmentation 
with spatial constraints is applied only to a local overlap 
region generated from the initial segmentation of each 
individual bone. If there is no overlap in the initial segmen 
tation, the joint segmentation is skipped. This results in 
efficient computation as compared to running joint segmen 
tation with spatial constraint priors from the beginning (i.e., 
as compared to joint segmentation without separate indi 
vidual segmentation). 

In act 36, an image is output. The image shows the objects 
with the adjusted results of the segmenting. A graphic, 
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10 
highlighting, colorization, or other visual cue is added to or 
included in the image to distinguish one object from another. 
For example, one bone or a boundary around one bone is a 
different color than the bone or boundary of another bone. 
The image is generated after minimization so that no parts 
of the adjacent bones are indicated as belonging to both 
bones. FIG. 5 shows four examples of bones with overlap 
(right side of each pair) resulting from individual segmen 
tation and the results displayed after joint re-segmentation 
(left side of each pair). The boundaries are indicated by 
differently colored graphic lines. 
The image is a three-dimensional rendering to a two 

dimensional image of the CT data from a user or processor 
selected viewing direction. The rendering may use Surface, 
projection, or other rendering. In other embodiments, the 
image is a two-dimensional image representing a plane 
through the Volume, such as provided with a multi-planar 
reconstruction or user selected viewing plane. 

FIG. 6 illustrates an exemplary system or platform for 
automated orthopedic Surgery planning. The system 
includes a processor 12, a memory 14, a display 16, and a 
CT scanner 18. The processor 12, memory 14 and display 16 
are a computer, laptop, tablet, workstation, server, CT work 
station, or other processing device. Additional, different, or 
fewer components may be provided. For example, a user 
input, network interface, and/or multiple processors are 
provided. As another example, the CT scanner 18 is not 
provided. 
The CT scanner 18 includes a source and detector. A 

gantry rotates the Source and detector about a patient. A 
C-arm may be used instead of the gantry for CT-like imaging 
that produces CT data. The CT scanner 18 scans the patient 
with X-rays. The processor 12 or other processor (e.g., of the 
CT scanner 18) reconstructs the CT data representing the 
volume from the detected X-ray information. 
The display 16 is a CRT, LCD, flat panel, plasma, 

projector, printer, combinations thereof or any other now 
known or later developed display. Using a graphics process 
ing unit or other hardware or software, the display 16 
generates black and white or color pixels in a Cartesian or 
other coordinate format for presenting a graphical user 
interface, CT image, segment information, a CT image with 
segment information, or combinations thereof. In alternative 
or additional embodiments, the segments are output to the 
memory 14, a different memory, transmitted over a network, 
or provided to the processor 12 for further operations (e.g., 
Surgical planning, implant design, or cutting guide design). 
The memory 14 stores data, Such as confidence maps, 

distances, classifiers, models, calculated input features, 
images, CT data, or other information used for multiple bone 
segmentation for three-dimensional computed tomography. 
Other data may be stored. 

Alternatively or additionally, the memory 14 is a non 
transitory computer readable storage medium storing data 
representing instructions executable by the programmed 
processor for multiple object segmentation for three-dimen 
sional computed tomography. The instructions for imple 
menting the processes, methods and/or techniques discussed 
herein are provided on computer-readable storage media or 
memories, such as a cache, buffer, RAM, removable media, 
hard drive or other computer readable storage media. Com 
puter readable storage media include various types of Vola 
tile and nonvolatile storage media. The functions, acts or 
tasks illustrated in the figures or described herein are 
executed in response to one or more sets of instructions 
stored in or on computer readable storage media. The 
functions, acts or tasks are independent of the particular type 



US 9,495,752 B2 
11 

of instructions set, storage media, processor or processing 
strategy and may be performed by Software, hardware, 
integrated circuits, firmware, micro code and the like, oper 
ating alone, or in combination. Likewise, processing strat 
egies may include multiprocessing, multitasking, parallel 
processing, and the like. 

In one embodiment, the instructions are stored on a 
removable media device for reading by local or remote 
systems. In other embodiments, the instructions are stored in 
a remote location for transfer through a computer network or 
over telephone lines. In yet other embodiments, the instruc 
tions are stored within a given computer, CPU, GPU, or 
system. 
The processor 12 is a general processor, applications 

specific integrated circuit, digital signal processor, field 
programmable gate array, multiple processors, analog cir 
cuit, digital circuit, network server, graphics processing unit, 
combinations thereof, or other now known or later devel 
oped device for performing segmentation. The user may 
input an activation command, select a patient, select patient 
bone data, select a Surgical procedure or otherwise initialize 
a workflow calling for segmentation. The processor 12 
automatically segments multiple objects, including adjacent 
objects, free of overlap. By sequencing through the process, 
the processor 12 is configured to automatically segment 
without further user input, such as no input of a location or 
region in an image. In alternative embodiments, the user 
may confirm and/or alter segmentation, such as by inputting 
one or more locations. 

In one embodiment, the processor 12 is an IntelC) CoreTM 
CPU operating at 2.29 GHz with 3.23 GB of RAM for the 
memory 14. For each initial segmentation (see FIG. 2), the 
processor 12 takes about 20-30 seconds, depending on the 
bone being segmented. The overlap region is usually much 
smaller than the whole volume. Where the joint re-segmen 
tation is only applied to the local overlap region generated 
from the initial segmentations, the joint re-segmentation 
may be computed efficiently. For example, joint re-segmen 
tation is performed in about 1 second on the average. If the 
initial segmentation results do not overlap, the joint re 
segmentation is skipped with negligible extra computational 
cost. The joint re-segmentation reduces overlap error by 
100%, but may reduce by less in other embodiments. 
The segmentation includes use of a machine-learned 

classifier. One or more machine-learned detectors or classi 
fiers are used to detect the pose, boundary, statistical shape, 
and/or boundary deformation. Any machine learning may be 
used. A single class or binary classifier, collection of differ 
ent classifiers, cascaded classifiers, hierarchal classifier, 
multi-class classifier, model-based classifier, classifier based 
on machine learning, or combinations thereof may be used. 
Multi-class classifiers include CART, K-nearest neighbors, 
neural network (e.g., multi-layer perceptron), mixture mod 
els, or others. A probabilistic boosting tree may be used. 
Error-correcting output code (ECOC) may be used. 
The classifier is trained from a training data set using a 

computer. Any number of expert annotated sets of data is 
used. For example, about 200 hundred volumes representing 
the objects of interest are annotated. Different training sets 
or the same training sets with different annotations are used 
to machine train classifiers for different objects, different 
boundary points, different pose parameters, or other different 
uses of classifiers. The annotation indicates a ground truth, 
Such as an object boundary within the Volumes or planes 
extracted from the volumes. This large number of annota 
tions allows use of machine learning to learn relevant 
features over a large pool of possible features. 
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Any features may be used. The features include 3-D Haar, 

wavelet-like, intensity, steerable, gradient, and/or other fea 
tures. The classifier learns various feature vectors for dis 
tinguishing between a desired anatomy and information not 
being detected. The classifier is taught to distinguish based 
on the features. Features that are relevant to the segmenta 
tion of anatomy are extracted and learned in a machine 
algorithm based on the experts annotations. The training 
determines the most determinative features for a given 
classification and discards non-determinative features. Dif 
ferent combinations of features may be used for detecting 
different objects, the same object at different resolutions or 
times, and/or the same object associated with different 
location, translation, rotation, or scale. For example, differ 
ent sequential classification stages utilize different features 
computed from the 3D volume data. Each classifier selects 
a set of discriminative features that are used to distinguish 
the positive target from negatives. 
The data used for the classifiers is CT data. The features 

are extracted from the reconstructed CT intensities. The CT 
data is raw, reconstructed data. In other embodiments, the 
data is filtered or otherwise processed prior to use for 
segmentation. Other types of imaging (e.g., different modal 
ity) or patient specific non-imaging data (e.g., age, weight, 
and/or other diagnostically relevant information) may be 
used. 
Once trained, the classifier is used as part of segmenta 

tion. By inputting the patient-specific data corresponding to 
discriminative features of one or more classifiers, the loca 
tions for different objects are determined. The trained clas 
sifiers are represented by matrices where the input feature 
values are input to the matrices and the learned output 
results. Other structures than matrices may be used to 
embody the learnt classifiers. 

While the invention has been described above by refer 
ence to various embodiments, it should be understood that 
many changes and modifications can be made without 
departing from the scope of the invention. It is therefore 
intended that the foregoing detailed description be regarded 
as illustrative rather than limiting, and that it be understood 
that it is the following claims, including all equivalents, that 
are intended to define the spirit and scope of this invention. 

What is claimed is: 
1. A method for multiple bone segmentation for three 

dimensional computed tomography, the method comprising: 
receiving computed tomography (CT) data representing 

first and second bones of a patient; 
separately segmenting, by a processor, the first and second 

bones; 
refining, by the processor, just the segmenting of the first 
bone using a first confidence map of the segmenting, 
the first confidence map being a first spatial distribution 
over voxels; 

refining, by the processor, just the segmenting of the 
second bone using a second confidence map of the 
segmenting, the second confidence map being a second 
spatial distribution over the voxels; 

then, adjusting, by the processor, results of the segment 
ing of the first and second bones jointly using the first 
and second confidence maps; and 

outputting an image showing the first and second bones 
with the adjusted results of the segmenting. 

2. The method of claim 1 wherein receiving comprises 
receiving the CT data representing a three-dimensional 
volume of the patient, the three-dimensional volume includ 
ing the first and second bones and including other tissue. 
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3. The method of claim 1 wherein separately segmenting 
comprises segmenting the first bone individually from the 
CT data and segmenting the second bond individually from 
the CT data. 

4. The method of claim 1 wherein separately segmenting 
comprises locating Voxels representing the first bone in a 
process and locating Voxels representing the second bone in 
a repetition of the process, the process using different 
classifiers for the different bones. 

5. The method of claim 1 wherein separately segmenting 
comprises estimating first and second poses of the first and 
second bones, the first and second poses including position 
and orientation. 

6. The method of claim 5 wherein estimating the first and 
Second poses comprises estimating with marginal space 
learnt discriminative classifiers using three-dimensional 
Haar features of the CT data. 

7. The method of claim 5 wherein separately segmenting 
comprises initializing first and second shapes for the first 
and second bones with first and second statistical shape 
models transformed to the first and second poses, respec 
tively. 

8. The method of claim 7 wherein separately segmenting 
comprises deforming the first and second shapes as a func 
tion of the first and second statistical shape models and the 
CT data. 

9. The method of claim 1 wherein refining for the first and 
Second bones comprise minimizing a graph-based energy 
function, where the graph-based energy function is a func 
tion of the first and second confidence maps, respectively. 

10. The method of claim 9 wherein refining for the first 
and second bones comprise refining as a function of the first 
and second confidence maps comprising distance maps with 
greater confidence for voxels at a greater distance from 
boundaries. 

11. The method of claim 1 wherein adjusting comprises 
minimizing a graph-based energy function constrained to 
label each voxel without overlap of the first bone with the 
second bone. 

12. The method of claim 1 further comprising: 
identifying voxels labeled as both the first and the second 

bone; and 
performing the adjusting only for the identified voxels. 
13. The method of claim 1 wherein outputting comprises 

displaying the image with the first bone distinguished from 
the second bone. 

14. In a non-transitory computer readable storage medium 
having stored therein data representing instructions execut 
able by a programmed processor for multiple object seg 
mentation for three-dimensional computed tomography, the 
Storage medium comprising instructions for: 

labeling first voxels of computed tomography data as 
belonging to a first segment of a first bone having a first 
boundary; 

labeling second voxels of computed tomography data as 
belonging to a second segment of a second bone having 
a second boundary, at least some of the second voxels 
also labeled as belonging to the first segment; 

calculating first distances from the first voxels to the first 
boundary of the first bone; 
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14 
calculating second distances from the second voxels to the 

second boundary of the second bone without referenc 
ing the first boundary of the first bone; 

minimizing an energy function as a function of the first 
and second distances and a spatial exclusion constraint 
such that the first voxels are exclusive to the first bone 
and the second voxels are exclusive to the second bone, 
the spatial exclusion being a check for bone overlap 
using the labeling as being the first and second bones; 
and 

generating an image of the first and second segments after 
the minimizing. 

15. The non-transitory computer readable storage medium 
of claim 14 wherein minimizing is performed only for a 
local region associated with the second voxels also labeled 
as belonging to the first segment. 

16. The non-transitory computer readable storage medium 
of claim 14 wherein labeling the first and second voxels 
comprise separately segmenting the first and second seg 
ments as the first and second bones. 

17. The non-transitory computer readable storage medium 
of claim 14 wherein labeling the first and second voxels 
comprise separately determining first and second position 
and orientation poses, fitting first and second statistical 
shape models, and minimizing first and second cost func 
tions for the first and second fit statistical shape models as 
a function of the first and second distances for the first and 
Second segments, respectively. 

18. In a non-transitory computer readable storage medium 
having stored therein data representing instructions execut 
able by a programmed processor for multiple object seg 
mentation for three-dimensional computed tomography, the 
storage medium comprising instructions for: 

identifying locations of a first object from computed 
tomography information; 

identifying locations of a second object from the com 
puted tomography information; 

determining the locations of the first and second objects 
that overlap where the overlap locations are identified 
as being both the first and second objects; 

altering each of the locations of the overlap to be exclu 
sive to the first or second object; and 

avoiding altering any of the locations outside the overlap 
Such that locations of the first and second objects not 
being overlap locations are output as segmentation 
results. 

19. The non-transitory computer readable storage medium 
of claim 18 wherein identifying the locations of the first and 
Second objects comprise identifying for the first object 
independently of the second object and identifying for the 
second object independently of the first object. 

20. The non-transitory computer readable storage medium 
of claim 18 wherein identifying the locations of the first and 
Second objects comprises segmenting separately as a func 
tion of first and second confidence maps, respectively, and 
wherein altering comprises altering as a function of the first 
and second confidence maps jointly for the first and second 
objects. 
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