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Abstract. Patient-specific orthopedic knee surgery planning requires
precisely segmenting from 3D CT images multiple knee bones, namely fe-
mur, tibia, fibula, and patella, around the knee joint with severe patholo-
gies. In this work, we propose a fully automated, highly precise, and com-
putationally efficient segmentation approach for multiple bones. First,
each bone is initially segmented using a model-based marginal space
learning framework for pose estimation followed by non-rigid boundary
deformation. To recover shape details, we then refine the bone segmen-
tation using graph cut that incorporates the shape priors derived from
the initial segmentation. Finally we remove overlap between neighbor-
ing bones using multi-layer graph partition. In experiments, we achieve
simultaneous segmentation of femur, tibia, patella, and fibula with an
overall accuracy of less than 1mm surface-to-surface error in less than
90s on hundreds of 3D CT scans with pathological knee joints.

1 Introduction
American Academy of Orthopedic Surgeons reports that over 500,000 patients
have their degenerative knees replaced each year in United States. In recent years,
the knee replacement procedure has advanced with personalized surgery designed
specifically for each patient. The procedure starts with a CT scan of patient’s
knee joint from which a 3D knee anatomy model of this patient is extracted.
This model is then used for subsequent knee surgery planning. To streamline
workflow and reduce cost, fully automatic and highly accurate segmentation of
knee bones from 3D CT images is critical in clinical practices.

Most of previous studies on automatic knee bone segmentation focused on
MR data, including the voxel based [1] or block-wise classification [2] with texture
features and intensity distribution. However, all these methods are ineffective in
dealing with the strong intensity and texture inhomogeneities between cortical
and cancellous bone in CT and MR images. To improve the segmentation ro-
bustness, statistical shape models [3] are often used as prior knowledge to guide
the segmentation [4–6]. In these methods, fast and accurate model initialization
and adaptation remains a challenge. Graph-based algorithms [7] have been ex-
tensively used to solve different vision problems, including bone segmentation
[2, 4, 8–10] as well; but the accuracy of such algorithms usually depend on seed
points often manually provided. Also the bones are segmented individually in-
stead of jointly, which often leads to sub-optimal segmentation results that even
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Fig. 1. (a) Example CT image of femur and tibia where two bones touch each other.
(b) Segmentation result where overlap occurs. (c) Joint segmentation results.

overlap with each other particularly in regions where bones are too close or
touch each other. This happens more often in the osteoarthritis patients with
degenerative cartilage as shown in Fig.1(a). To handle the bone overlap, Li et
al. [11] proposed a novel column graph-based algorithm to solve coupled surface
segmentation problems, which was later used for simultaneous bone and carti-
lage segmentation in the knee [12]. It exploits the geometric constraints between
multiple terrain-like and cylindrical surfaces; but unfolding the structures like
femur with two condyles to terrain-like surfaces is nontrivial. Kainmueller et al.
[13] proposed coupled deformable model for multiple-object segmentation, which
does not completely prohibit but discourages the overlap.

Here we present an approach for segmenting multiple knee bones that makes
two key contributions. The first contribution is its novel combination of three
state-of-the-art methods for precise segmentation of multiple knee bones of dis-
eased knees: (i) Marginal space learning(MSL) [14]. Each bone is first detected
using MSL and then deformed with a statistical shape model [3]. (ii) Graph cut
[7]. The adapted model is then used as a shape prior in a graph cut formulation
for refined segmentation. (iii) Multi-layer graph cut [18]. Because each bone is
separately segmented, their results possibly overlap. We utilize multi-layer graph
cut to remove such overlap error. The second contribution is its full automation
and computational efficiency because it needs no image unwrapping and the joint
segmentation can be performed in a small local region where the overlap occurs.
This efficiency is clinically significant for reduced cost and streamlined workflow.
Currently our approach is already deployed in Siemens image-to-implant system.

2 Learning-based Bone Detection and Model Fitting
2.1 Pose Estimation

For a given volume I, each bone is first individually detected from the volume
by searching for the optimal similarity transformation parameters or pose pa-
rameters including translation t = (tx, ty, tz), orientation r = (rx, ry, rz) and
anisotropic scaling s = (sx, sy, sz). The pose estimation task can be formulated
by maximizing the posterior probability as follows:

(t̂, r̂, ŝ) = arg max
t,s,r

P (t, s, r|I). (1)

Solving equation (1) involves the search in a nine dimensional parameter
space, which can be computationally expensive in practice. Here we adopt an
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efficient inference scheme, MSL[14], to decompose the whole search space into
marginal space inference. The object localization is split into three steps: position
estimation, position-orientation estimation, and full similarity transformation
estimation.

(t̂, r̂, ŝ) ≈ (arg max
t

P (t|I), arg max
r

P (r|I, t̂), arg max
s

P (s|I, t̂, r̂)). (2)

After each step only a limited number of best candidates is kept to reduce the
search space and speed up the inference. To learn the marginal posterior proba-
bilities in Eq.(2), discriminative classifiers such as the probabilistic boosting tree
(PBT) [15] or the probabilistic boosting network [16] can be used. Moreover, 3D
Haar features are used for location detection and steerable features are used
for orientation and scale inferences [14]. Fig.2(a) shows an example of the pose
estimation result, where the pose parameters are represented as a bounding box.

2.2 Model Initialization and Boundary Deformation

After pose estimation, the shape of the target object is initialized using the
statistical shape model (SSM) as follows:

x = f(µ; t̂, r̂, ŝ), (3)

where x denotes the initialized shape, f is the rigid transformation with the pose
parameters (t̂, r̂, ŝ) estimated by MSL, µ represents the mean of the statistical
shape model obtained from the training annotations.

The initialized shape is then deformed with the boundary detectors. Here,
boundary detection is again formulated as a classification problem: whether
there is a boundary passing point at (X,Y, Z) with orientation (Ox, Oy, Oz).
The boundary detectors are used to move the mesh points on the current esti-
mated shape surface along its normal direction to the optimal position, where
the classification score is the highest. After adjustment, the deformed shape is
projected to the SSM subspace to smooth out and constrain the surface. In our
experiments, the dimension of the SSM subspace is selected to capture 98% of
the shape variations from the training annotations. The process is repeated a
few iterations until convergence. As an example shown in Fig.2(b), the derived
shape after boundary deformation fits the image well, but is still subject to no-
ticeable errors due to the loss of shape details by the statistical shape model, as
well as possible boundary detection errors.

3 Bone Refinement with Shape Prior in Graph Cut

To further improve the accuracy, we formulate the following graph-based energy
function with the previous segmentation result used as the shape prior:

E(L) =
∑
p∈P

Dp(Lp) +
∑

(p,q)∈N

Vp,q(Lp, Lq), (4)

where L = {Lp | p ∈ P} is the binary labeling (Lp ∈ {0, 1}) of volume P, Dp(Lp)
is the unary data term which is defined as below:

Dp(Lp) = Lp(1− g(M(p))) + (1− Lp)g(M(p)). (5)
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Fig. 2. The example result of (a) MSL pose estimation, (b) boundary detector based
deformation, and (c) graph cut based refinement.

Here, M(p) measures the signed shortest distance of voxel p to the boundary
of the prior segmentation. M(p) > 0 when p lies inside the segmentation (fore-
ground), M(p) < 0 if p is outside (background), and M(p) = 0 if p locates on
the boundary. Therefore, M can also be viewed as a confidence map of the prior
segmentation. The larger (smaller) M(p) is, the more likely voxel p should be
classified as the foreground (background). When voxel p approaches the bound-
ary (M(p) ≈ 0), label Lp becomes more uncertain and therefore more likely to
be updated by the graph cut refinement. M(p) can be efficiently computed in
linear time using the convolution method [17]. The sigmoid function g(.) is de-
fined as g(x) = 1

1+e−x/τ
, where τ is the parameter that controls the range of

uncertainty of the previous segmentation result. In Eq.(4), N is the set of all
pairs of neighboring voxels and Vp,q is the pairwise interaction term:

Vp,q = λe−
(Ip−Iq)2

2σ2 δ(Lp 6= Lq), (6)

where δ(.) is the Kronecker delta function δ(Lp 6= Lq) = 1 if Lp 6= Lq and equal
to 0 otherwise, λ and σ are the regularization parameter and contrast coefficient,
respectively, and Ip and Iq denote the intensity of voxels p and q. The pairwise
term encourages the neighboring voxels with similar intensities to be assigned
the same label.

The segmentation is refined by minimizing the energy in Eq.(4) using the
max-flow/min-cut algorithm. Fig.2(c) shows the improved result after graph
based refinement.

4 Joint Bone Segmentation

Because each bone is separately initialized and refined in the previous steps, the
overlap error can not be prevented when two bones touch each other, as one
example shown in Fig.1(b). To remedy this, we present a joint re-segmentation
method to co-segment the pair of bones that overlap in the initial segmentation.
With specific spatial exclusion constraint introduced [18], the joint segmentation
can guarantee a complete removal of erroneously overlapping boundaries.

Without loss of generality, we denote the pair of bones as A and B. LA and
LB stand for the labeling of bone A and B, respectively. It means that voxel p is
inside bone A if LA(p) = 1 and otherwise if LA(p) = 0, likewise for bone B. The
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Fig. 3. The example of overlap error removed by joint segmentation. (a) pair of femur
and tibia (b) pair of patella and femur (c) pair of tibia and fibula (d) pathological
example with osteoporosis and 3D rendering of the segmentation.

energy function Eq.(4) can thus be extended to the case of two bones as follows:

E(LA, LB) =E(LA) + E(LB) =
∑
p∈P

DA(p)(LA(p)) +
∑

(p,q)∈N

VA(p,q)(LA(p), LA(q))

+
∑
p∈P

DB(p)(LB(p)) +
∑

(p,q)∈N

VB(p,q)(LB(p), LB(q)), (7)

where all the symbols follow exactly the same meaning as in Eq.(4) except that M
is now based on the segmentation result after refinement as described in Section
3. As shown in Eq.(7), the minimization of E(LA, LB) can be decomposed to
the minimization of E(LA) and E(LB) separately because no interaction terms
between LA and LB exist in the energy function Eq.(7). Therefore bone A and
B are essentially segmented separately.

There is, however, a spatial exclusion constraint between LA and LB because
bone A and B can not overlap in the space. It means that if LA(p) = 1, LB(p)

must = 0, and vice versa. This spatial constraint can be easily incorporated into
the energy function Eq.(7) by adding the pairwise terms as follows:

Ẽ(LA, LB) = E(LA, LB) +
∑
p∈P

W (LA(p), LB(p)), (8)

where

W (LA(p), LB(p)) =

{
+∞ if LA(p) = LB(p) = 1
0 otherwise

Therefore the optimal solution that minimizes the energy function Ẽ(LA, LB)
guarantees that LA(p) and LB(p) can not be both 1 at the same time (∀p ∈ P).
However, the introduced pairwise term WA(p),B(p)(LA(p), LB(p)) is supermodular
because W (0, 1) + W (1, 0) < W (0, 0) + W (1, 1), hence it can not be directly
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sym. surface error (mm) mean std. dev. min median 80 percentile

Femur (boundary deformation) 1.20 3.22 0.38 0.85 1.22
Femur (graph cut refinement) 0.83 3.35 0.43 0.55 0.67
Femur (joint segmentation) 0.82 3.33 0.43 0.55 0.67

Tibia (boundary deformation) 1.07 1.39 0.42 0.79 1.13
Tibia (graph cut refinement) 0.70 1.28 0.42 0.55 0.63
Tibia (joint segmentation) 0.69 1.25 0.42 0.55 0.63

Fibula (boundary deformation) 1.26 4.57 0.31 0.47 0.65
Fibula (graph cut refinement) 0.98 4.31 0.38 0.53 0.59
Fibula (joint segmentation) 0.96 4.29 0.38 0.53 0.59

Patella (boundary deformation) 0.72 2.07 0.35 0.62 0.67
Patella (graph cut refinement) 0.68 2.05 0.33 0.55 0.62
Patella (joint segmentation) 0.68 2.06 0.33 0.54 0.61

Table 1. The statistics of symmetric surface segmentation errors. All units are in mm.

optimized via min-cut/max-flow algorithm [19]. To address this problem, we
flip the binary meaning of label L̄B = 1 − LB , then the new energy function
Ẽ(LA, L̄B) becomes submodular everywhere and min-cut/max-flow can be used
to find the optimal labeling of LA and LB jointly.

The major advantage of the multi-layer graph cut is its ‘simplicity’. The
existing methods [10, 12, 13] based on the multi-column graph segmentation [11]
all require point correspondence on adjacent surfaces for coupled deformation.
Thus they are limited to terrain-like or cylindrical surfaces. Otherwise, complex
methods are required to find so called shared profiles [13] or electric lines of
force [10] which connect corresponding points on two surfaces and constitute the
non-intersecting columns of the graph. By contrast, multi-layer graph cut makes
no assumption of the shape of interactive surfaces, and does not need any such
preprocessing. Hence it is easy to implement and also runs fast, taking less than
1s to remove all the segmentation overlaps in our implementation.

5 Experiments

In the experiment, we collect 465 CT volumes around the knee with an average
size of 200×200×150 voxels and 1×1×1mm voxel spacing, as shown in Fig.1. The
annotations are obtained by experts based on visual assessment and consensus
review. We randomly select 217 volumes for training the learning pipeline in
Section 2, and use the remaining 248 volumes for testing. First, we compare the
segmentation result after each step in the proposed method. As error measure
we first computed the shortest Euclidean distances between each result mesh
and its corresponding annotated mesh at every vertex of the former as well
as every vertex of the latter, and then averaged all such distances. As shown
in Table 1, the proposed method achieves quality segmentation with average
symmetric surface error lower than 1mm for all four bones, and that is less than
the 1mm voxel resolution. The graph cut refinement with shape prior decreases
the mean error about 5 ∼ 35%. Still we have failed cases (albeit very few) that
contribute to the large variance in the surface error.
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femur segmentation 1 2 3 4 5 6 7 8 9 10

before joint segmentation 3493 2075 1165 912 802 237 228 213 146 137
after joint segmentation 161 40 27 4 3 86 18 1 0 0
reduction % 95.4 98.1 97.7 99.6 99.6 63.7 92.1 99.5 100 100

tibia segmentation 1 2 3 4 5 6 7 8 9 10

before joint segmentation 3791 2729 1745 1562 896 522 491 448 312 286
after joint segmentation 1198 257 142 838 602 515 62 324 302 302
reduction % 68.4 90.6 91.9 46.4 32.8 1.3 87.4 27.7 3.2 -12.9

Table 2. The size (mm3) of the overlap area between femur segmentation and tibia
ground truth also between tibia segmentation and femur ground truth.

The overlaps after initial segmentation could happen when two bones almost
touch each other (cartilages severely worn out). Those volumes are about 5%
to 10% in our database. But this overlap usually occurs only around touching
surfaces of neighboring bones, a very small region compared to the whole bone
surface, so the numerical improvement by joint segmentation is not that obvious
in Table 1. We use a different measurement to evaluate the effectiveness of the
joint segmentation step to remove the overlap error. As shown in Table 2, we
compare the size of the overlap area between femur result and tibia ground
truth, as well as between tibia result and femur ground truth. For brevity, we
only listed the 10 worst volumes with the largest overlap errors generated from
previous individual segmentation step. The results show that the proposed joint
segmentation can significantly reduce the overlap up to 100% in most of the
cases, especially for the femur segmentation. Consistent improvements (except
one case1) can be observed for the pair of patella and femur and the pair of tibia
and fibula too. The joint segmentation result also depends on initial segmentation
result of each bone. Fig. 3 shows examples of the overlap error eliminated by
joint segmentation with a pathological example.

For each bone, the individual segmentation as described in Section 2 and
3 takes about 20 seconds to complete (Intel R©CoreTMCPU @ 2.29 GHz and
3.23GB RAM). Because the joint re-segmentation in Section 4 is only applied to
the local overlap region, it can be computed efficiently and only takes about 1
second on the average. If the the initial segmentation does not overlap, the joint
re-segmentation can be skipped with little extra computational cost.

6 Conclusion

In this work, we present a fully automated method and system for segmenting
multiple knee bones from 3D CT images. Our novel combination of marginal
space learning, graph cut with shape-prior, and joint multi-layer graph cut for
overlap removal achieves sub-mm segmentation accuracy needed for orthopedic
surgery planning with a running speed of less than 90s for reduced cost and
streamlined planning workflow in clinical practices, while guaranteeing no over-

1 If initial femur segmentation leaks into tibia too much, it will affect the joint seg-
mentation result of tibia adversely. Thats why joint Tibia #10 is worse, although it
is very rare.
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lap in the segmentation results between knee bones. In future, we plan to apply it
for segmentation of other objects such as organs from other imaging modalities.
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