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Abstract—Routine ultrasound exam in the second and third
trimesters of pregnancy involves manually measuring fetal head
and brain structures in 2D scans. The procedure requires a
sonographer to find the standardized visualization planes with a
probe and manually place measurement calipers on the structures
of interest. The process is tedious, time consuming, and introduces
user variability into the measurements. This paper proposes
an Automatic Fetal Head and Brain (AFHB) system for auto-
matically measuring anatomical structures from 3D ultrasound
volumes. The system searches the 3D volume in a hierarchy of
resolutions and by focusing on regions that are likely to be the
measured anatomy. The output is a standardized visualization
of the plane with correct orientation and centering as well as
the biometric measurement of the anatomy. The system is based
on a novel framework for detecting multiple structures in 3D
volumes. Since a joint model is difficult to obtain in most practical
situations, the structures are detected in a sequence, one-by-
one. The detection relies on Sequential Estimation techniques,
frequently applied to visual tracking. The interdependence of
structure poses and strong prior information embedded in our
domain yields faster and more accurate results than detecting the
objects individually. The posterior distribution of the structure
pose is approximated at each step by sequential Monte Carlo.
The samples are propagated within the sequence across multiple
structures and hierarchical levels. The probabilistic model helps
solve many challenges present in the ultrasound images of the
fetus such as speckle noise, signal drop-out, shadows caused by
bones, and appearance variations caused by the differences in the
fetus gestational age. This is possible by discriminative learning
on an extensive database of scans comprising more than two
thousand volumes and more than thirteen thousand annotations.
The average difference between ground truth and automatic
measurements is below 2 mm with a running time of 6.9 seconds
(GPU) or 14.7 seconds (CPU). The accuracy of the AFHB system
is within inter-user variability and the running time is fast, which
meets the requirements for clinical use.

Index Terms—object detection, sequential sampling, fetal head
measurements, fetal brain measurements, fetal utrasound, 3D
ultrasound.
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I. INTRODUCTION

Ultrasound is the most common imaging modality in obstet-
rics and gynecology [1] allowing real-time visualization and
examination of the fetus. In the common practice of 2D exams,
practitioners are trained to mentally reconstruct a 3D anatomy
based on images of standard 2D planes resulting in high
variations of biometric measurements depending on skill and
training [2]–[4]. The most recent breakthrough in ultrasound
imaging has come with the increasing use of systems capable
of acquiring 3D volumetric data. The advantage of such data
is in visualization of planes in which 2D acquisition is not
possible, surface rendering of anatomies, and post-exam data
processing and review [2]. The 3D acquisition decreases the
examination time [4], [5] and reduces inter- and intra-observer
variations of biometric measurements [3], especially for less
experienced sonographers. Similar to 2D exams, the major
bottleneck remains the navigation to the standardized planes
[6], in which measurements are performed. For example, to
find the ventricular plane in the fetal brain, a clinician needs
to find cavum septi pellucidi, frontal horn, atrium, and choroids
plexus (Figure 1). Finding the 2D planes in a 3D volume is
tedious and time consuming. The process introduces a learning
curve for an ultrasound specialist, who needs to recognize
artifacts caused by a 3D reconstruction and understand the
effects of various settings [2]. After the correct plane is found,
the measurements are typically performed by manually placing
calipers at specific landmarks of the measured anatomy.

This paper describes a system for Automatic Fetal Head and
Brain (AFHB) measurements from 3D ultrasound. The stan-
dardized measurements can be used to estimate the gestational
age of the fetus, predict the expected delivery date, assess the
fetal size, and monitor growth. The input to the AFHB system
is an ultrasound volume and a name of an anatomical part to
be measured. Specifically, the parts we focus on here are fetal
head and brain structures commonly measured and assessed in
the second and third trimesters of pregnancy (see Figure 2 for
examples). The output of the system is a visualization of the
plane with correct orientation and centering as well as biomet-
ric measurement of the anatomy according to The International
Society of Ultrasound in Obstetrics and Gynecology [6]. Such
system will greatly reduce the time required to obtain fetal
head and brain measurements, decrease the clinician strain,
and minimize training associated with manual navigation to
the standardized planes.
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Fig. 1. Standard planes for performing the basic examination of the
fetal nervous system and the fetal neurosonogram [6]: Ventricular plane (a),
thalamic plane (b), cerebellar plane (c), choroid plexus plane (d), and median
plane (e). Each plane is defined exactly by what anatomical landmarks and
structures should be visible according to the guidelines of the International
Society of Ultrasound in Obstetrics & Gynecology [6] (see Section II for
details).

The state-of-the-art techniques for finding anatomical struc-
tures in 3D ultrasound images focus on automatic [7], [8]
and semi-automatic [9] segmentation and detection [10], [11].
The most promising techniques are based on machine learn-
ing [10]–[13], pixel-wise classification [7], and deformable
models [13], [14]. Although several existing detection al-
gorithms can correctly identify structures of interest, they
typically do not provide the visualization plane (standardized
planes are especially important in obstetrics), do not compute
the anatomical measurements, or they are too slow to be
used in a clinical practice. Computer vision approaches for
multi-object detection [15]–[17] rely on an individual detector
for each object class followed by post-processing to prune
spurious detections within and between classes. Individual
object detectors can be connected by a spatial model to exploit
relationships between objects [18]. Relative locations of the
objects provide constraints that help make the system more
robust by focusing the search in regions where the object is
expected based on locations of the other objects. The most
challenging aspect of these algorithms is designing detectors
that are fast and robust, modeling the spatial relationships be-
tween objects, and determining the detection order. Structural

learning approaches [19], [20], have been frequently applied
to articulated 2D pose estimation [21]. Although structural
dependency in the model can improve robustness, these ap-
proaches have not yet been applied to fast and accurate pose
estimation in 3D images. The segmentation algorithms [7],
[11]–[14] could, in principle, compute the measurements from
the final segmentations, but they require the entire structure to
be segmented which is slow and not as robust.

Although several successful techniques have been proposed
for echocardiography [22], there are additional challenges in
ObGyn applications. Similarly, the images have low signal-
to-noise ratio, speckle noise, and other imaging artifacts. In
addition, there are strong shadows produced by the skull and
large intra-class variations because of differences in the fetus
age. As gestational age increases, the skull bones develop,
which makes it difficult for the acoustic signal to penetrate
to the brain anatomy. This results in decreased detail in
the image. Finally, some structures in the fetal brain are
much smaller (less than 5 mm) than structures measured in
echocardiography.

In this paper, we propose a detection system that ad-
dresses the challenges above. Our approach is motivated
by Sequential Estimation techniques [23], frequently applied
to visual tracking. In tracking, the goal is to estimate at
time t the object state xt (e.g. location and size) using
observations y0:t (object appearance in video frames). The
computation requires a likelihood of a hypothesized state that
gives rise to observations and a transition model that describes
the way states are propagated between frames. Since the
likelihood models in practical situations lead to intractable
exact inference, approximation by Monte Carlo methods, also
known as particle filtering, has been widely adopted. At each
time step t, the prediction step involves sampling from the
proposal distribution p(xt|x0:t−1,y0:t) of the current state
xt conditioned on the history of states x0:t−1 up to time
t − 1 and the history of observations y0:t up to time t. The
estimate is then computed during the update step based on the
prediction and all observations. In detection, the sequence of
probability distributions specifies a spatial order rather than a
time order. The posterior distribution of the pose (state) of each
anatomical structure is estimated based on all observations
so far. The observations are features computed from image
neighborhoods surrounding the anatomies. The likelihood of a
hypothesized state that gives rise to observations is based on a
deterministic model learned using a large annotated database
of images. The transition model that describes the way the
poses of anatomical structures are related is Gaussian. We
will discuss several transition models specific to fetal head
anatomies.

The computational speed and robustness of our system is
increased by hierarchical processing. In detection, one major
problem is how to effectively propagate detection candidates
across the levels of the hierarchy. This typically involves defin-
ing a search range at a fine level where the candidates from
the coarse level are refined. Incorrect selection of the search
range leads to higher computational cost, lower accuracy, or
drift of the coarse candidates towards incorrect refinements.
The search range in our technique is part of the model that is
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learned from the training data. The performance of our detec-
tion system is further improved by starting from structures that
are easier to detect and constraining the detection of the other
structures by exploiting spatial configurations. The difficulty
of this strategy is selecting the order of detections such that
the overall performance is maximized. Our detection schedule
is designed to minimize the uncertainty of the detections. The
Automatic Fetal Head and Brain measurement system auto-
matically finds the standard visualization plane of a requested
anatomy and displays the measurement value. The system
is fast: eight structures and six measurements are displayed
on a standard desktop computer within 14.7 or 6.9 seconds
when using CPU or GPU, respectively. The average difference
between ground truth and automatic measurements is below
2.0 mm and all measurements are within inter-user variability.

Compared to an earlier version of the work [24], this paper
handles more structures (eight structures and six measurements
vs. only three structures and three measurements) by introduc-
ing new anatomy-specific transition models. The need for a
large number of observation and transition models is addressed
by the generalization of the earlier architecture yielding the
Integrated Detection Network (IDN). The experiments are
performed on more data sets (2089 vs. only 884 in [24]) and
more thorough evaluation uses two types of measurements
and two baseline comparisons. Finally, the experiments are
extended with a new section on clinical evaluations using an
international panel of experts. Previous algorithm [10] handled
only three structures and three measurements. They were
computed at a single image resolution level which resulted
in lower accuracy and higher computational cost.

The paper is organized as follows. We start by giving an
overview of the anatomical measurements of fetal head and
brain obtained in the second and third trimesters of pregnancy
(Section II). We continue by reviewing background literature
on detection and measurements in ultrasound images and
relevant literature on multi-object detection in computer vision
(Section III). The Automatic Fetal Head and Brain measure-
ments algorithm is explained in Section IV. The evaluation in
Section V focuses on qualitative and quantitative analysis of
the AFHB system. Section VI summarizes clinical evaluations
performed at several sites internationally. We will conclude the
paper in Section VII.

II. ANATOMICAL MEASUREMENTS OF FETAL HEAD AND
BRAIN STRUCTURES

Transabdominal sonography is the technique of choice to
investigate the fetal Central Nervous System (CNS) during
late first, second and third trimesters of gestation in low risk
pregnancies [6]. Major components of this exam are visual-
izations and measurements of fetal head and brain structures
in standardized planes shown in Figure 1.

During second and third trimesters, three standardized scan
planes, thalamic, ventricular, and cerebellar, allow detection
of most cerebral anomalies [25].

The thalamic plane is used for the biometry of the head,
namely for measuring the biparietal diameter (BPD) and the
occipitofrontal diameter (OFD). The biparietal diameter is

measured outer-to-outer (i.e. across two outer boundaries of
the skull). The head circumference (HC) is computed as
an ellipse cirucmference using BPD and OFD measurements
as ellipse axes. The major landmarks in the thalamic plane
include the frontal horns of the lateral ventricles, the cavum
septi pellucidi, the thalami, and the hippocampal gyruses [6].
The plane should not show any part of the cerebellum.

The ventricular plane is slightly craniad to the thalamic
plane and it gives optimal visualization of the body and
atrium of the lateral ventricles [25]. The ventricles are me-
dially separated by the cavum septi pellucidi (CSP). To find
the ventricular plane, a clinician needs to see cavum septi
pellucidi, frontal horn, atrium, and choroids plexus. The plane
is used to measure the size of lateral ventricles (LV). The
best measurement is obtained by measuring the inner diameter
(width) of the atrium (Figure 1). In the standard ventricular
plane, only the hemisphere on the far side of the transducer
is usually clearly visualized, as the hemisphere close to the
transducer is frequently obscured by artifacts.

The cerebellar plane is obtained by slight posterior rotating
the thalamic plane to show the cerebellar hemispheres. The
cerebellum appears as a butterfly-shaped structure formed
by the round cerebellar hemispheres [6]. Other landmarks
include the cisterna magna, the thalamus, and the cavum septi
pellucidi. The cisterna magna is a fluid-filled space posterior
to the cerebellum [6]. The cerebellar plane is used to measure
the antero-posterior diameter of the cisterna magna (CM) and
the width of the cerebellar hemispheres (CER) [25].

The median (or mid-sagittal) plane shows the corpus callo-
sum (CC) with all its components; the cavum septum pellucidi,
the brain stem, pons, vermis, and posterior fossa [6]. The
corpus callosum is a midline structure overlying the lateral
ventricles that carries nerve fibers connecting the right and left
hemispheres. The visualization of this plane is used to assess
the anomalies and agenesis of the corpus callosum. There is
no measurement associated with CC.

The lateral ventricle is filled with echogenic choroid plexus
(CP). As with lateral ventricles, only the hemisphere on the far
side of the transducer is usually clearly visualized. The plane
is located craniad from the cerebellar plane. The visualization
of this plane is useful for examining choroid plexus for cysts.

III. PRIOR WORK ON QUANTITATIVE ULTRASOUND
ANALYSIS

In this section, we review previously published literature
on the detection and segmentation of anatomical structures in
ultrasound images. In addition to the challenges in echocar-
diography [22], we are facing new challenges in the obstetrics
application: (1) The algorithm needs to handle several differ-
ent structures in the brain, (2) the appearance of structures
varies more dramatically across the data set, (3) relationships
between structures should be explored to take advantage of
the additional constraints, and (4) the algorithm must be very
efficient. We start the review by a survey of works on detecting
and measuring structures in 2D and 3D ultrasound images.
We then examine a few papers on segmentation of ultrasound

In some countries, outer-to-inner measurement for BPD is more common.
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Fig. 2. Using the input volume (a), Automatic Fetal Head and Brain (AFHB)
system provides the following measurements: (b) Lateral Ventricles (LV),
(c) Cerebellum (CER) and Cisterna Magna (CM), and (d) Occipitofrontal
Diameter (OFD), Biparietal Diameter (BPD), and Head Circumference (HC).
In addition, the system provides automatic detection of median plane for
visualization of Corpus Callosum (CC) and a plane for visualization of
Choroid Plexus (CP), see Figure 1.

structures, which could be used to provide measurements. We
also briefly review several algorithms that detect and segment
brain structures in CT and MRI. Finally, we examine several
related papers on multi-object detection from computer vision.

The literature on detecting and measuring fetal head and
brain structures in 3D ultrasound images is limited. This is
due to the above challenges posed by the ultrasound modality,
by the variability of the fetal anatomical structures, and by
relatively new use of 3D ultrasound in obstetrics practice. To
capture this high variability, the most promising techniques
use non-parametric appearance models obtained from large
databases of annotated examples. Carneiro et al. [10] presented
a system for detecting and measuring three structures: cere-
bellum, cisterna magna, and lateral ventricles. The algorithm
uses a pose detector trained with Probabilistic Boosting Tree
(PBT) [26] to find the structures and semi-local context to
leverage prior knowledge of structure locations. However, only
three structures (two standardized planes) are found and the
algorithm operates on a single resolution level. This results
in lower accuracy and higher computational cost. Yaqub et
al. [7] trained random forest classifier on 10 volumes to
classify voxels to belong to one of five classes: background,
choroid plexus, posterior ventricle cavity, cavum septum pellu-
cidum, and cerebellum. The results shows that discriminative
techniques are useful for identifying structures in ultrasound
volumes. However, the testing data set is small (only 10 vol-
umes), the visualization plane must be found manually, and the
technique does not produce automatic measurements. Pauly et
al. [8] proposes to detect substantia nigra echogenicities in 3D
transcranial ultrasound by a probabilistic model consisting of
data and prior terms learned by random forests. The voxel

classification uses mean intensity features and exploits the
symmetry of the brain anatomy. The above papers [7], [8]
identify and detect structures in ultrasound volumes of the
fetus but do not focus on providing highly accurate measure-
ments of the structures.

Several papers in the literature are concerned with detecting
and measuring structures other than brain. The approaches
focus on designing specialized features [11], [27] and use
discriminative learning to build robust detectors [12], [28].
Rahmatullah et al. [28] automatically find stomach visualiza-
tion plane in 3D ultrasound volumes by searching for stomach
bubble and umbilical vein landmarks. The algorithm relies
on AdaBoost training algorithm and detects the plane in 6
seconds on average with model trained on 2384 images. This
computation time is lowered to under 1 second by using phase-
based global features in the first level of the detector [11]. The
algorithm only identifies an axis-aligned plane in a 3D scan
and therefore does not find the plane orientation. Romeny et
al. [27] find centers of ovarian follicles using the so-called
winding number of the intensity singularity. The number is
indicative of intensity minima at a given scale. It is computed
as a path integral of the angular increment of the gradient
direction vector in a closed neighborhood. Chen et al. [12]
estimate the size and position of individual ovarian follicles
by a probabilistic framework. In this framework, the parameter
space is partitioned and clustered to efficiently search the
hypotheses in a high dimensional space. The best position and
size candidate is used to initialize robust 3D segmentation.
Some of the above algorithms use discriminative learning to
reach accurate results at acceptable computational speeds [12],
[28], [29]. However, none of the techniques provides plane
orientation for the visualization of the structures. In addition,
it is not always straightforward how to extend these algorithms
to the fetal head and brain structures.

Sometimes, the detection algorithms are used to initialize
tracking [22] or segmentation [12] of anatomical structures
in 3D ultrasound. The literature on (semi-) automatic seg-
mentation is larger than literature on automatic detection and
measurement (see survey by Noble et al. [30]). These tech-
niques could, in principle, be used to provide measurements
of the structures after they have been segmented. The most
reliable algorithms are based on pixel-wise classifiers [7],
machine learning [11], [12], and deformable models [13],
[14]. Gooding et al. [9] propose a semi-automatic method for
segmenting ovarian follicles. The method relies on the level-
set framework to incorporate regional constraints and to deal
with signal dropouts. The segmentation results are used to
report volume measurements of the follicles. Hong et al. [13]
propose a 3D left ventricle segmentation algorithm which
uses a set of 2D slices and a discriminative classifier to find
the ventricle boundary. The consistency of the slices across
shapes is ensured by a non-rigid shape alignment step. Juang
et al. [31] propose a graph-based technique for automatic
segmentation of the left ventricle and atrium in 3D ultrasound
volumes. The graph is constructed in a cylindrical coordinate
space as determined by a central axis from the radial symmetry
transform. In [32] textures extracted with Gabor filters are clas-
sified as belonging to prostate or background. The extracted
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textures can also be used within a hierarchical deformable
segmentation model [14] to produce 3D segmentation. All
these segmentation techniques deal with the same challenges
of the ultrasound images stated above, but our goal is different.
Unlike segmenting a particular structure in its entirety, we are
concerned with providing an accurate measurement. Therefore,
we need to find the pose of the structure as robustly as
possible and then automatically compute the measurement.
Although requirements on measurement accuracy are very
high, the process of detecting and measuring the structure
is typically much faster and more robust than segmentation,
where delineation of the whole boundary needs to be found.

There have been several methods in literature focused on
detecting and segmenting fetal structures in 2D images. The
early techniques relied on filtering, morphological operators,
and hough transform [33]. These techniques tend to be slow
and are typically designed for a specific anatomy which
makes them difficult to generalize to new structures. Chalana
et al. [34] describe a method for detecting the biparietal
diameter and head circumference based on active contour
model. Although the technique is real-time, it requires manual
initialization. The major drawback of this approach is the
lack of the appearance term to improve the robustness and
accuracy. Zhang et al. [35] first automatically select the plane
for measuring gestational sac from a 2D ultrasound video by
a multi-scale AdaBoost classifier. The sac is then measured
in real-time by an active contour model initialized from
normalized cuts. Carneiro et al. [36] proposed a system for
detecting and measuring several anatomies in 2D ultrasound
images using the same underlying algorithm. The method
learns to discriminate between the structures of interested
and background via Probabilistic Boosting Tree classifier [26].
An efficient search technique makes the system run in under
half second. The published 2D methods for detecting and
measuring fetal anatomical structures often provide robust
results at fast computational speeds. However, the detection
and automatic measurements are harder in 3D. First, the 2D
algorithms do not need to find the best measurement plane (this
is done during the acquisition by the sonographer). Second,
the search space of the structure of interest is much smaller
and therefore the 2D algorithms can be fast. Finally, the 3D
anatomy necessitates that the features and prior constraints are
designed in 3D rather than 2D.

Magnetic Resonance Imaging (MRI) has been often used to
image brain of adults but it is less frequent for the imaging
of fetuses. Tu et al. [37] combined discriminative classifier
based on probabilistic boosting tree (PBT) [26] for appear-
ance modeling and a generative classifier based on principal
component analysis (PCA) for shape modeling. The weights
for these two terms learned automatically. The system takes
8 minutes to run to segment 8 brain structures. Anquez et
al. [38] segment fetal eyes and skull bone content in MRI
volumes. The eyes are first found by template matching. The
eye locations are then used to position a mean shape model
of the skull. The segmentation of the skull bone content is
performed by graph cuts, first in a midsagittal plane and then
in 3D. MRI fetal scanning is expensive and not approved for
fetuses of gestational age below 20 weeks. Due to motion

of the fetus during the scan, the motion correction must be
applied [39]. Finally, more constrained scanning procedure and
different imaging characteristics (higher signal-to-noise ratio,
no signal drop outs, and no shadowing artifacts) make these
techniques difficult to extend to the ultrasound domain.

Detecting multiple objects is studied from multiple aspects
in computer vision literature. In our review, we focus on
sampling, multi-resolution, and detection order selection prob-
lems. Many object detection algorithms [16], [26], [40] test
a discrete set of object poses for an object presence with a
binary classifier. Unlike these algorithms, that typically sample
the parameter space uniformly, we sample from a proposal
distribution [41] that focuses on regions of high probability.
This saves computational time as fewer samples are required
and increases robustness compared to the case, where the same
number of samples would be drawn uniformly. Speedup can
also come from using regression forests and a sparse set of
samples in a volume [42]. However, these techniques have
only been applied to detecting axis-aligned bounding boxes
around organs in CT volumes and it is not straightforward
how to obtain highly accurate measurements of the organs.

Multi-object detection techniques have focused on models
that share features [43] or object parts [17]. This sharing
results in stronger models, yet in recent literature, there has
been a debate on how to model the object context in an
effective way [44]. It has been shown that the local detectors
can be improved by modeling the interdependence of objects
using contextual [45]–[47] and semantic information [48]. The
relationships between parts is often modeled as a Markov
random field or conditional random filed [49]. This results
in accurate detection of each individual part but at a high
computational cost. Therefore, it is not possible to apply these
techniques in an online system. Furthermore, the part-based
model assumes the parts undergo articulate motion or non-
rigid deformation which is not the case in fetal head and
brain structures. In our Sequential Sampling framework, the
interdependence between objects is modeled by a transition
distribution, that specifies the “transition” of a pose of one
object to a pose of another object. This way, we make use
of the strong prior information present in medical images of
human body. The important questions are how to determine the
size of the context region (detection scale) and which objects
to detect first in an optimal way.

Multi-scale algorithms usually specify a fixed set of scales
with predetermined parameters of the detection regions [17],
[50]. Choosing the scale automatically has the advantage since
objects have different sizes and the size of the context neigh-
borhood is also different. We propose a multi-scale scheduling
algorithm that is formulated in the same way as the detection
order scheduling.

The order of detection has been specified by maximizing the
information gain computed before and after the detection mea-
surement is taken [51], by minimizing the entropy of posterior
belief distribution of observations [50], and by submodular
maximization to guarantee optimal detection speed [52]. Our
scheduling criterion is based on probability of states (object
poses) within the ground truth region. Other measures could
be used as well thanks to the flexible nature of the Sequential
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Sampling framework.

IV. SEQUENTIAL SAMPLING FOR MULTI-OBJECT
DETECTION

The input for our system is an ultrasound volume containing
the head of a fetus with a gestational age between 16 and 35
weeks. For fetuses older than 35 weeks, the ultrasound signal
has a difficulty penetrating the skull. The brain structures are
detected by a multi-object detection system as follows. The
state (pose) of the modeled object s is denoted as θs and the
sequence of multiple objects as θ0:s = {θ0,θ1, . . . ,θs}. In
our case, θs = {p, r, s} denotes the position p, orientation
r, and size s of the object s. The set of observations for
object s are obtained from the image neighborhood Vs. The
neighborhood Vs is specified by the coordinates of a bounding
box within an 3-dimensional image V , V : R3 → I , where I
is image intensity. The sequence of observations is denoted as
V0:s = {V0, V1, . . . , Vs}. This is possible since there exists
prior knowledge for determining the image neighborhoods
V0, V1, . . . , Vs. The image neighborhoods in the sequence V0:s

might overlap and can have different sizes (Figure 3). An
image neighborhood Vi might even be the entire volume
V . The observations Vs with a likelihood f(Vs|θs) describe
the appearance of each object and are assumed conditionally
independent given the state θs. The state dynamics, i.e.
relationships between object poses, are modeled with an initial
distribution f(θ0) and a transition distribution f(θs|θ0:s−1).
Note that here we do not use the first-order Markov transition
f(θs|θs−1) often seen in visual tracking.

Fig. 3. In multi-object detection, the set of observations is a sequence of
image patches {Vs}. The sequence specifies a spatial order of structures. The
structures are detected in this order which is automatically determined.

The multi-object detection problem is solved by recursively
applying prediction and update steps to obtain the posterior
distribution f(θ0:s|V0:s). The prediction step computes the
probability density of the state of the object s using the state
of the previous object, s− 1, and previous observations of all
objects up to s− 1:

f(θ0:s|V0:s−1) = f(θs|θ0:s−1)f(θ0:s−1|V0:s−1). (1)

When detecting object s, the observation Vs is used to compute

the estimate during the update step as:

f(θ0:s|V0:s) =
f(Vs|θs)f(θ0:s|V0:s−1)

f(Vs|V0:s−1)
, (2)

where f(Vs|V0:s−1) is the normalizing constant.
As simple as they seem these expressions do not have

analytical solution in general. This problem is addressed by
drawing m weighted samples {θj

0:s, w
j
s}mj=1 from the distri-

bution f(θ0:s|V0:s), where {θj
0:s}mj=1 is a realization of state

θ0:s with weight wj
s.

In most practical situations, sampling directly from
f(θ0:s|V0:s) is not feasible. The idea of importance sampling
is to introduce a proposal distribution p(θ0:s|V0:s) which
includes the support of f(θ0:s|V0:s).

In order for the samples to be proper [41], the weights are
defined as

w̃j
s =

f(V0:s|θj
0:s)f(θj

0:s)

p(θj
0:s|V0:s)

wj
s = w̃j

s/

m∑
i=1

w̃i
s. (3)

Since the current states do not depend on observations from
other objects then

p(θ0:s|V0:s) = p(θ0:s−1|V0:s−1)p(θs|θ0:s−1, V0:s). (4)

Note, that Vs was left out of the first term since the states
in the sequence θ0:s−1 do not depend on it. The states are
computed as

f(θ0:s) = f(θo)

s∏
j=1

f(θj |θ0:j−1). (5)

Substituting (4) and (5) into (3), we have

w̃j
s =

f(V0:s|θj
0:s)f(θj

0:s)

p(θj
0:s−1|V0:s−1)p(θj

s|θ
j
0:s−1, V0:s)

(6)

= w̃j
s−1

f(V0:s|θj
0:s)f(θj

0:s)

f(V0:s−1|θj
0:s−1)f(θj

0:s−1)p(θj
s|θ

j
0:s−1, V0:s)

(7)

= w̃j
s−1

f(Vs|θj
s)f(θj

s|θ
j
0:s−1)

p(θj
s|θ

j
0:s−1, V0:s)

. (8)

In this paper, we adopt the transition prior f(θj
s|θ

j
0:s−1)

as the proposal distribution. Compared to the more general
proposal, p(θj

s|θ
j
0:s−1, V0:s), the most recent observation is

missing. In practice, this does not pose a problem in our
application since the predicted samples are near the likelihood
peaks. The importance weights are then calculated as:

w̃j
s = w̃j

s−1f(Vs|θj
s). (9)

In future, we plan to design more sophisticated proposal
distributions to leverage relations between multiple objects
during detection.

When detecting each object, the sequential sampling
produces the approximation of the posterior distribution
f(θ0:s|V0:s) using the samples from the detection of the
previous object as follows:
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1) Obtain m samples from the proposal distribution, θj
s ∼

p(θj
s|θ

j
0:s−1).

2) Reweight each sample according to the importance ratio

w̃j
s = w̃j

s−1f(Vs|θj
s). (10)

Normalize the importance weights.
3) Resample the particles using their importance weights

to obtain more particles in the peaks of the distribution.
Finally, compute the approximation of f(θ0:s|V0:s):

f(θ0:s|V0:s) ≈
m∑
j=1

wj
sδ(θ0:s − θj

0:s), (11)

where δ is the Dirac delta function.

A. The Observation and Transition Models

The set of best instance parameters θ̂s for each object s is
estimated using the observations Vs

θ̂s = arg max
θs

P (Vs|θs). (12)

Let us now define a random variable ys ∈ {−1,+1}, where
ys = +1 indicates the presence and ys = −1 absence of the
object s. To leverage the power of a large annotated dataset,
we use a discriminative classifier (PBT [26]) to best decide
between positive and negative examples of the object. PBT
combines a binary decision tree with boosting, letting each tree
node be an AdaBoost classifier. This way, the miss-classified
positive or negative examples early on can still be correctly
classified by children nodes. We can now evaluate the prob-
ability of an anatomy being detected as P (ys = +1|θs, Vs),
which denotes posterior probability of the object presence with
parameters θs given observations Vs. This is a natural choice
for the observation model in Eq. (12),

θ̂s = arg max
θs

P (ys = +1|θs, Vs) (13)

In tracking, often a Markov process is assumed for the tran-
sition kernel f(θs|θ0:s−1) = f(θs|θs−1), as time proceeds.
However, this is too restrictive for multiple object detection.
The best transition kernel might stem from an object different
from the immediate precursor, depending on the anatomical
context. In this paper, we use a pairwise dependency

f(θs|θ0:s−1) = f(θs|θj), j ∈ {0, 1, . . . , s− 1}. (14)

We model f(θs|θj) as a Gaussian distribution estimated
from the training data. The statistical model captures spatial
relationships between the structures while ignoring abnormal
configurations that may be caused by brain malformations.
During detection, the predictions are used as the best available
estimates even for abnormal cases.

B. Integrated Detection Network (IDN)

Large number of observation and transition models creates
a need for flexible architecture that would simplify algorithm
design. To address this need, we propose Integrated Detection
Network (IDN), which simplifies design, modification, tuning,
and implementation of sophisticated detection systems [53].

As shown in Figure 4(left), IDN is a pairwise, feed-forward
network. IDN consists of nodes that perform operations on
the input data and produce zero or more output data. The
operations, such as candidate sample detection, propagation,
and aggregation, are only related to each other through data
connections. This makes it possible to easily add new nodes
and data types to an existing network. The design is a gener-
alization of the Hierarchical Detection Network (HDN) [24],
which only focused on detection nodes. The same network
is used in both detection and training which enables rapid
prototyping and algorithm evaluation. Furthermore, the basic
network building blocks (such as rigid detector encapsulating
position, orientation, and size detection) can be designed and
interconnected into complex hierarchies. Such flexible design
makes it easy to manage large-scale detection systems.

C. Detection Order Selection

Unlike a video, where the observations arise in a naturally
sequential fashion, the spatial order in multi-object detection
must be selected. The goal is to select the order such that
the posterior probability P (θ0:s|V0:s) is maximized in the
neighborhood region around the ground truth. Since deter-
mining this order has exponential complexity in the number
of objects, we adopt a greedy approach. We first split the
training data into two sets. Using the first set, we train all
object detectors individually to obtain posterior distributions
f(θ0|V0), f(θ1|V1), . . . , f(θs|Vs). The second set is used for
order selection as follows.

We aim to build an Integrated Detection Network (IDN)
from the order selection as illustrated in Figure 4(right).
Suppose that we find the ordered detectors up to s − 1,
θ(0),θ(1), . . . ,θ(s−1). We aim to add to the network the best
pair [s, (j)] (or feed-forward path) that maximizes the expected
value of the following score S[s, (j)] over both s and (j)
computed from the second training set:

S[s, (j)] = (15)∫
θs∈Ω(

˜θs)

θ(0:s−1)∈Ω(
˜θ(0:s−1))

f(θ(0:s−1)|V(0:s−1))f(θs|θ(j))f(Vs|θs)dθsdθ(0:s−1),

where Ω(θ̃) is the neighborhood region around the ground
truth θ̃. The expected value is approximated as the sample
mean of the cost computed for all examples of the second
training data set. The order selection above is related to the
learning structured predictors [19], [20] with the difference of
selecting the predicted objects in a greedy fashion.

During hierarchical detection, larger object context is con-
sidered at coarser image resolutions resulting in robustness
against noise, occlusions, and missing data. High detection
accuracy is achieved by focusing the search in a smaller
neighborhood at the finer resolutions. The resolution level and
the size of the image neighborhoods {Vi} can be selected using
the same mechanism as the order selection by introducing
additional parameters [24].
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(0) (1) (s-2) (s-1)node1

data1 data2

(2) (s-3) s

Fig. 4. Integrated Detection Network (IDN) consists of nodes that operate on
data (left). Illustration of the Integrated Detection Network (IDN) and order
selection (right). See text for details.

D. Anatomy-specific Transition Models

Sequential sampling in the detection of fetal head and brain
structures is constrained by the anatomical domain present in
the neurosonography scans. We take advantage of this con-
straint by designing two anatomy-specific transition models,
one for the cisterna magna and one for lateral ventricles and
choroid plexus.

The cisterna magna is found posterior to the cerebellum
in the cerebellar plane. Both structures are measured in the
same plane which reduces the search space of the automatic
detection: the pose of the cisterna magna is predicted from
the pose of the cerebellum within the cerebellar plane. We
can write the transition model from (14) as

f(θs|θj) = f(θCM |θ̂CER) = N (µCER−CM , σ
2
CER−CM ),

(16)
where µCER−CM = {pCER−CM , rCER−CM , sCER−CM}
and σ2

CER−CM denote the mean and variance of the pose
transition between cerebellum pose estimate θ̂CER and cis-
terna magna. Furthermore, pCER−CM = (px, py, 0) and
rCER−CM = (rx, ry, 0) due to the planar constraint. It is
important to note, that the CER estimate θ̂CER is computed
first using all samples, rather than sequentially propagating
them. This has two effects. First, CM samples are enforced to
lie on the plane of the CER estimate. Second, the orientation of
CM samples is within the CER estimate plane. As a result, this
prediction model yields faster CM detection due to the reduced
search subspace and more robust results due to the elimination
of incorrect CER samples and enforced local search. Typically,
200 samples are used for position and orientation and 50
samples are used for size estimation.

It is possible to make use of the constrained scanning
procedure to design transition models specific to LV and
CP. The fetal head volume is typically scanned through the
sphenoid phontanel and squamosal suture by finding the right
angle along the side of the head. Following this procedure, the
acquired scan shows the axial view and the variation of the
scan orientation is constrained by the acquisition angle. The
choroid plexus plane always have constrained orientation w.r.t.
the scanning probe. Since only the hemisphere on the far side
of the transducer can be clearly visualized (Section II), only
LV measurement and CP visualization in this hemisphere is
required. We take advantage of this constraint by training a
separate detector for LV and CP in left and right hemispheres.
The samples are propagated only to one side as determined by
the orientation of the head from cerebellum candidates. The

Antares S2000 Total
CER, CM, LV 884 1205 2089

HC, BPD, OFD 365 1206 1571
CC, CP 0 1193 1193

Total (all structures) 3747 9619 13366

TABLE I
ANNOTATION COUNTS FOR EACH STRUCTURE IN IMAGES FROM SIEMENS

ANTARES AND SIEMENS S2000 SYSTEMS.

transition model assumes the following form:

f(θs|θj) = f(θLV |θCER) =



N (µCER−LV L, σ
2
CER−LV L)

arccos(qj
CER · qr) > 0

for at least half samples

N (µCER−LV R, σ
2
CER−LV R)

otherwise,
(17)

where µCER−LV L, µCER−LV R and σCER−LV L, σCER−LV R

denote the mean and variance of the pose transition between
cerebellum and left and right lateral ventricle. The orientation
qj
CER = (qjx, q

j
y, q

j
z) specifies the orientation of a cerebellum

sample j. The reference orientation qr = (0, 1, 0) indicates
the volume orientation vector. Due to the constrained scanning
procedure, the angle between qCER and qr will be close to 0
or 180 degrees depending on whether the brain was scanned
through the left or right side of the head. In practice, only one
of the transition models is used in each volume. This way, the
candidates are always sampled in the hemisphere further away
from the probe which increases the robustness and speed of
the lateral ventricle detection. Similar procedure is followed
for CP transition model.

V. EXPERIMENTAL EVALUATION

The AFHB algorithm is evaluated in terms of the ability to
detect the correct anatomical structures (Section V-A) and in
terms of providing accurate measurements of these structures
(Section V-B). The next section (Section VI) summarizes
clinical evaluations using feedback from experts in ultrasound
obstetrics exam.

We use a total of 2089 fetal head volumes with sizes ranging
from 94×75×125 mm to 279×173×221 mm and the size av-
erage of 186×123×155 mm. The volumes were acquired using
Siemens Antares and Siemens S2000 ultrasound systems. The
data sets were converted from acoustic to Cartesian coordinate
system and resampled to 1 mm3 resolution. The gestational
ages ranged from 16 weeks to 35 weeks. The annotation counts
for each structure are summarized in Table I. Overall, 13366
structures were annotated by an experienced sonographer with
higher counts for S2000 volumes. Out of the total of 2089
volumes, 1982 were used for training and 107 for testing. To
further increase the number of annotations, we took advantage
of the symmetry in the anatomy of the head and a standardized
position of the head in the scan (axial acquisition through the
squamosal suture). The data (and annotations) were flipped
along X, Z, and XZ axes, which resulted in a total of 8356
volumes and 53464 annotations.
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All structures were annotated by finding the accurate plane
and drawing the measurement line according to the guidelines
of the International Society of Ultrasound in Obstetrics &
Gynecology [6] (see Section II for an overview). Since the
corpus callosum does not have a measurement associated with
it, for the purposes of training a detector, we annotated this
structure as follows. The annotation line was drawn in the
median plane from the bottom of the genu inside the body of
corpus callosum. Similarly, the choroid plexus is annotated by
extending the annotation line along its longest axis in the plane
where the choroid plexus is most visible (see Figure 10). The
annotation planes together with the measurement lines define
uniquely the poses. The line center, the line orientation with
the annotation plane, and the line length define the position p,
orientation r, and size s parameters of each pose. Therefore,
the position of the annotation plane is defined by the line
center and the orientation of the plane is defined by the line
orientation. The 3D size parameter of the pose is extended by
a fixed ratio to increase the context (the scaling ranges from
1.2 to 10.0 depending on the resolution and structure size).
Since the BPD and OFD measurements are in the same plane,
they are combined into a single pose. The 3D size parameter
of the pose then consists of (OFD length × BDP length ×
depth). The depth was conveniently chosen as the BPD length.
The poses are used to train a detector for each structure. The
detected poses are mapped back to measurement lines and
visualization planes for display.

A. IDN for Fetal Head and Brain Measurements

The structure poses defined in the previous section are used
to train a Integrated Detection Network (IDN) (Section IV-B)
on the training data set. The resulting network showing all
structures at three resolution levels is shown in Figure 5.
All-in-all, the network contains 10 detectors, 54 classifiers,
and a total of 45 IDN nodes. The IDN nodes consists of
position (10), orientation (9), and size detectors (8), as well
as candidate prediction (7), splitting / joining (4), aggregation
(6), and data handling (1). There is one detector for each of
the eight structures with combined skull detector (SKU) for
OFD, BPD, and HC, and there are two additional resolution
levels for CER. LV and CP have a separate detector for left
and right side (Section IV-D). Each detector consists of a
classifier trained to detect position, position+orientation, and
position+orientation+size (10 detectors × 3 = 30 classifiers).
Each classifier is also bootstrapped to increase robustness
against false positives [24], [54] (30 × 2 = 60). This is done
by training the second classifier using the samples processed
by the first classifier. There is no classifier for CER 4 mm
orientation, size, and CER 2 mm size since the low resolution
does not provide enough detail to detect these reliably [53] (60
- 6 = 54 classifiers). Additional nodes comprise of candidate
aggregation and prediction [53].

Our first experiment tests the accuracy of correctly detecting
the fetal head and brain structures. This is done by running the
detector on each of the 107 unseen volumes and comparing the
pose (position, orientation, and size) of each detected structure
with the pose of the corresponding annotated structure. The

position [mm] ort. [deg] size [mm]
CER 1.75 ± 0.92 5.26 ± 2.33 3.56 ± 2.85
CM 1.95 ± 0.93 5.75 ± 2.20 3.02 ± 2.00
LV 1.72 ± 0.93 11.06 ± 6.12 3.51 ± 2.41

SKU 2.00 ± 0.89 7.03 ± 2.95 4.27 ± 2.85
CC 1.89 ± 0.96 9.46 ± 5.47 4.23 ± 3.73
CP 1.83 ± 0.78 11.29 ± 5.44 5.59 ± 3.86

TABLE II
AVERAGE POSE DETECTION ERRORS FOR EACH TRAINED DETECTOR

APPLIED ON UNSEEN VOLUMES. STATISTICS WERE COMPUTED TO SHOW
ERRORS IN POSITION, ORIENTATION, AND SIZE OF THE BOUNDING BOX.
THE ERRORS TEND TO BE HIGHER WHEN THERE IS AN UNCERTAINTY IN

ANNOTATION (E.G. SKU POSITION AND LV ORIENTATION). THE ERRORS
TEND TO BE LOWER FOR STRUCTURES THAT ARE CLEAR TO ANNOTATE

(E.G. CER ALL MEASURES AND CM ORIENTATION).

orientation error was calculated by angular distance (using
quaternion representation). For CC and CP, the orientation
error only considers normal of the measurement plane. The
size error was computed as the Euclidean distance between
two 3D points, where the point vectors represent sizes of the
detected and annotated structures.

The quantitative analysis of the pose detection errors is
in Table II. Mean of the 95% smallest errors was computed
by comparing the detected locations to manual labeling. The
position error is lower than 2 mm on all structures but skull
(SKU) with standard deviation below 1 mm. The skull is
the largest structure and it is hard to determine the skull
center accurately even during annotation. The orientation error
is lowest for CER and CM since there is no ambiguity in
annotating these structures. The error is larger for LV but still
acceptable as seen from the clinical evaluations (Section VI).
Annotating LV is challenging due to small size and difficulty
in finding the inner diameter of the atrium accurately [6].
Annotation of CP is also challenging since it is a banana-
shaped structure and finding the best visualization plane can
be hard. The size errors tend to be larger for larger structures
which is in agreement with the level of accuracy that can
be achieved when measuring these structures. Overall, the
detection errors are lower when compared to [24] and [10].
These papers report position detection error above 2 mm for
CER, CM, and LV.

B. Automatic Measurement

Our second analysis is focused on providing automatic
measurement of fetal head and brain structures. The mea-
surement value is shown along with the visualization of the
measurement plane to the obstetrician during ultrasound exam.
The measurement line is obtained directly from the detected
pose. The position and orientation parameters define the center
and orientation of the measurement line, respectively. The size
parameter defines the measurement line length.

We computed the error in two different ways. The first
value, length error, was computed as a difference between
lengths of the automatic measurement line and the annota-
tion line. This measure therefore ignores the inaccuracies in
the structure position and plane orientation. Evaluating this

Large failures have low probability values and are deferred to manual
measurement.
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Fig. 5. During training, database of annotated images is used to train the Integrated Detection Network (IDN) at resolutions 4, 2, and 1 mm. During detection,
the IDN is used to automatically provide measurements on a new image. The arrows in the IDN diagram indicate the interdependency and detection order of
brain structures: Cerebellum (CER), Cisterna Magna (CM), Lateral Ventricles (LVL - left, LVR - right), Corpus Callosum (CC), and Choroid Plexus (CPL
- left, CPR - right). The detection of Occipitofrontal Diameter (OFD), Biparietal Diameter (BPD), and Head Circumference (HC) is performed by the skull
(SKU) detector.

error is useful since it determines the impact of using the
automatically determined measurements in clinical practice.
The second value, plane error, was computed as a maximum
distance between corresponding line end-points (see Figure 6).
This measure incorporates differences between detected and
annotated positions and plane orientations.

Fig. 6. Error measures computed to evaluate automatic measurements. The
length error is computed as a difference between lengths of the automatic
measurement and manual annotation. The plane error is computed as a
maximum distance between corresponding line end-points. The latter also
considers inaccuracies in structure position and plane orientation.

The evaluation of the automatic measurement errors is in
Table III and Figure 7. The values for OFD, BPD, and HC
were all computed from the detected skull (SKU) pose. The
Head Circumference (HC) is computed as an ellipse circum-
ference given major and minor axes as provided by OFD and
BPD. The HC plane error is computed as a maximum of OFD
and BPD plane error for each measurement. The table does not
show errors for CC and CP since there is no clinical interest
in the measurement of these structures. The length error is
shown in the second column of the table. The error tends
to be larger for larger measurements (e.g. HC and OFD). The
average measurement lengths for all structures is in the seventh
column. The third column shows the error as a percentage
w.r.t. ground truth length. Small structures have higher per-
centage errors since even small inaccuracies have larger effect
compared to the measurements of these structures. The plane

error is shown in the fourth column. The values are higher
than for the length error since this error measure takes into
account inaccuracies in the plane orientation. The IDN plane
errors are consistently lower when compared to the results
when independently detecting structures at 1 mm resolution
(shown in fifth column) and when detecting structures with
a hierarchy of 4, 2, and 1 mm resolution detectors (sixth
column). The plane errors for the hierarchical detection are
lower than for the single-resolution detection. Comprehensive
evaluation in Figure 7 shows the accuracy on all of the testing
cases.

Our next evaluation includes visual comparison of different
results along with the length and plane errors. Figure 8
shows example results for CER, CM, and LV. Figure 9 shows
example results for OFD, BPD, and HC. Finally, Figure 10
shows results for CC and CP. Length and plane errors are
reported for each case (note, that larger plane error does not
necessarily mean that the length error will also be large as
can be seen from the way they are computed (Figure 6). For
each structure, two cases are shown: one case with lower than
average plane error and one case with higher than average
plane error as compared to the overall statistics (Table III).
The purpose of this examination is three-fold. First, different
scans are selected for each measurement which shows the
high variability in the dataset. Second, the overview gives a
clear idea how measurement errors correlate with the visual
appearance of the respective planes and all structures that
should be present according to the scanning guidelines [6].
Third, the larger plane errors do not necessarily mean that the
scan would be rejected for diagnostic purposes – they are still
acceptable for assessing fetal health, size, and growth. This
is because the automatic measurements are within inter-user
variability as we will show in the next section.

The average running times of the entire system (includ-
ing data loading) is 45.2 seconds on computer with Intel
Core 2 Duo, 2.66 GHz processor. When using GPU (nVidia
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length err.[mm] length err.[%] plane err.[mm] plane err. 1 [mm] plane err. 421 [mm] GT length [mm]
CER 1.37 ± 1.10 3.96 ± 2.88 2.81 ± 1.24 2.84 ± 1.19 - 32.65 ± 6.60
CM 0.87 ± 0.58 15.29 ± 10.41 2.30 ± 0.96 4.87 ± 7.35 2.38 ± 1.21 5.70 ± 1.35
LV 1.01 ± 0.70 17.75 ± 13.19 2.21 ± 0.98 2.65 ± 1.51 2.28 ± 1.22 5.88 ± 1.31

OFD 2.31 ± 1.76 2.61 ± 1.93 5.69 ± 1.86 5.85 ± 2.33 5.91 ± 2.30 86.47 ± 11.81
BPD 0.94 ± 0.68 1.30 ± 0.88 4.74 ± 1.97 5.06 ± 2.33 5.03 ± 2.19 70.47 ± 11.24
HC 4.06 ± 2.82 1.61 ± 1.09 6.19 ± 1.95 6.65 ± 2.34 6.60 ± 2.33 247.57 ± 36.13

TABLE III
AVERAGE MEASUREMENT ERRORS FOR EACH TRAINED DETECTOR APPLIED ON UNSEEN VOLUMES. THE 2ND COLUMN SHOWS THE length error AND THE

4TH COLUMN SHOWS THE plane error COMPUTED ACCORDING TO FIGURE 6. THE PLANE ERROR IS LARGER OVERALL SINCE IT CONSIDERS
INACCURACIES IN THE PLANE ORIENTATION. THE 3RD COLUMN SHOWS THE LENGTH ERROR AS A PERCENTAGE W.R.T. GROUND TRUTH LENGTH. THE
5TH AND 6TH COLUMN SHOW RESULTS OF DETECTING EACH STRUCTURE INDEPENDENTLY AT 1 MM RESOLUTION AND WITH A HIERARCHY OF 4, 2,

AND 1 MM RESOLUTIONS, RESPECTIVELY. THE 7TH COLUMN SHOWS THE AVERAGE MEASUREMENT LENGTHS COMPUTED FROM GROUND TRUTH (GT).
SEE THE TEXT FOR A DISCUSSION OF THESE RESULTS.
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Fig. 7. Sorted length measurement errors (left) and plane measurement errors (right) computed for all structures using measures from Figure 6. The gradual
increase of errors shows that the measurements are accurate for all structures with only a few outliers (towards the right of the figures). The largest error is
for Head Circumference (HC) since it is the longest measurement (Table III. The plane measurement errors are larger since they also account for errors in
the detection of the measurement plane.

GeForce 9800 GT) on the same machine, the running time
is 6.9 seconds. The GPU implementation includes detectors
(feature extraction and classification) for each structure. On
a computer with Intel Six-core processor w. hyper threading,
2.40 GHz, the running time is 14.7 seconds using IDN network
(Figure 5), 23.6 seconds using a hierarchy of 4, 2, and 1 mm
resolutions for each structure independently, and 35.8 seconds
using 1 mm resolution for each structure.

VI. CLINICAL EVALUATION

The AFHB algorithm was evaluated in a clinical setting.
Total of 10 experts (doctors and sonographers) in ultrasound
obstetrics exam were recruited from Europe, Asia, and United
States. The results of the fully automatic algorithm are com-
pared w.r.t. the experts and quantitatively analyzed in the next
sections.

The following evaluation protocol was followed for each
expert. The AFHB prototype system was installed on a laptop
computer. All experts used the same set of 10 volumes of
different quality and varying degree of imaging artifacts. The
evaluation started by loading the first volume and running the
AFHB algorithm. The user then selected the first structure
which triggered automatic navigation to the measurement
plane and automatic placement of the calipers to indicate
the measurement. The user then had a choice to accept the

automatic measurement and proceed to the next structure or
manually correct the plane and the measurement result. This
was done by using a mouse to navigate to the new measure-
ment plane and manually placing the calipers to indicate the
measurement. This process was repeated for all structures.
Finally, the corrected results were saved such that the next
volume can be processed. The evaluation focused on the
measurements and therefore Corpus Callosum and Choroid
Plexus planes were excluded.

Statistical analysis of the results is performed using modi-
fied Williams index [34]. Williams index measures an agree-
ment of a reference user (e.g. automated system) with the
joint agreement of other users. This is done by evaluating how
much the reference user agrees with the other users compared
to the agreement of the other users among themselves. Let us
represent the database of measurements as xi,j , i ∈ 0, . . . n,
j ∈ 1, . . . , N , where i is a user index and j is case (image)
index. The automated measurement is denoted by i = 0 and
the users by i ∈ {1, . . . , n}. The index is computed for each
structure s as

Is =

1
n

∑n
j=1

1
D0,j

2
n(n−1)

∑
j

∑
j′:j′>j

1
Dj,j′

, (18)

where Dj,j′ = 1
N

∑N
i=j e(xi,j , xi,j′) with e being the mea-

surement error. The index is computed for both point and
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length measurement error.
A confidence interval for the Williams index is computed

using a jackknife non-parametric sampling technique [55]:

Is(·) ± z0.95se, (19)

where z0.95 = 1.96 is the 95th percentile of the standard
normal distribution. The jackknife estimate of the standard
error is given by

se =

{
1

N − 1

N∑
i=1

[Is(i) − Is(·)]
2

}1/2

, (20)

where Is(·) = 1
N

∑N
i=j Is(i). The sampling procedure works

by leaving out image i out of the computation of Dj,j′ and
computing the Williams index Is(i) as in Eq. (18) for the
remaining N − 1 images. Reliable reference measurements
have the value of the index close to 1.

A. Inter-user Variability

In this section, we analyze inter-user variability using eval-
uation protocol described in the previous subsection. Average
length and plane errors were computed for each of the 10 users
and each brain structure. The computation uses average user as
ground truth and follows description from V-B and Figure 6.
The results for length errors are summarized in Table IV and
Figure 11(left) and results for plane errors are in Table V
and Figure 11(right). Comparing to the results of automatic
measurement using length and plane errors in Table III, it
can be seen that the automatic results are within range of
the inter-user variability. This demonstrates the high accuracy
of the fully automatic measurement system. Tables IV and
V also show the result of AFHB automatic measurement
compared to the average user. These errors are lower than
those in Table III since the experts were presented AFHB
result for acceptance or correction (see evaluation protocol
description in Section VI. Some users have larger errors than
others. For example, users 4 and 6 have larger plane errors
(Table V) than other users. This typically means that the
users did not strictly follow the guidelines of the International
Society of Ultrasound in Obstetrics & Gynecology [6] when
adjusting the measurements. The plots in Figure 11 show the
ranges of plane and length measurement errors (minimum and
maximum) computed w.r.t. average user. The plots also show
the deviation of each user w.r.t. initial AFHB result. It is clear
that from these plots that the user variability can be quite large,
especially for the longer measurements, and that the average
changes to the results provided by AFHB system are small.
All experts stated that the changes to the AFHB results are
not clinically significant.

The Williams index for each measurement is shown in
Table VI. The values of the confidence interval are close to 1
for all measurements. This represents a high level of agreement
of the automatic measurements w.r.t. joint agreement of the
users when compared to the agreement of the users among
themselves.

User CER CM LV BPD OFD HC
1 1.66 0.73 0.62 1.75 1.73 3.39
2 1.70 1.03 0.80 1.65 2.56 6.28
3 1.38 0.77 0.67 2.58 1.58 3.14
4 1.14 0.83 0.59 1.35 2.33 4.80
5 1.43 0.84 0.57 1.35 1.83 4.19
6 1.56 1.81 0.77 1.23 2.88 5.19
7 1.35 1.08 0.73 1.53 1.94 3.46
8 1.51 1.14 0.77 1.54 2.41 4.34
9 1.33 1.08 0.63 1.41 1.63 3.36
10 1.50 0.85 0.58 1.46 1.99 3.76

Avg. 1.46 1.02 0.67 1.59 2.09 4.19
AFHB 1.35 0.62 0.53 1.04 1.85 3.99

TABLE IV
LENGTH ERROR (IN MM) COMPUTED ACCORDING TO FIGURE 6 FOR EACH

OF THE 10 USERS AND STRUCTURE MEASUREMENT. AVERAGE ERROR
WAS COMPUTED FOR EACH USER W.R.T. ALL OTHER USERS. THE LAST

TWO ROWS SHOW THE AVERAGE INTER-USER VARIABILITY AND AVERAGE
DEVIATION FROM THE INITIAL AFHB AUTOMATIC MEASUREMENT. THE

LENGTH ERRORS COMPUTED FROM AUTOMATIC MEASUREMENTS
(TABLE III) ARE WITHIN THE INTER-USER VARIABILITY.

User CER CM LV BPD OFD HC
1 2.57 1.62 1.84 6.93 6.45 6.58
2 3.27 2.49 1.94 5.94 7.42 7.51
3 2.93 1.89 1.69 5.03 5.09 5.23
4 2.97 1.90 2.64 8.81 16.35 16.36
5 2.56 1.64 1.63 4.45 5.14 5.31
6 2.59 2.93 1.95 6.36 9.82 10.34
7 2.92 2.41 2.23 4.55 5.34 5.56
8 3.24 2.54 2.18 5.01 5.67 5.74
9 2.42 2.00 1.86 4.51 5.39 5.76
10 2.59 1.79 1.76 4.62 5.35 5.43

Avg. 2.81 2.12 1.97 5.62 7.20 7.38
AFHB 1.74 1.87 1.32 3.23 5.35 5.39

TABLE V
PLANE ERROR (IN MM) COMPUTED ACCORDING TO FIGURE 6 FOR EACH

OF THE 10 USERS AND STRUCTURE MEASUREMENT. AVERAGE ERROR
WAS COMPUTED FOR EACH USER W.R.T. ALL OTHER USERS. THE LAST

TWO ROWS SHOW THE AVERAGE INTER-USER VARIABILITY AND AVERAGE
DEVIATION FROM THE INITIAL AFHB AUTOMATIC MEASUREMENT. THE

LENGTH ERRORS COMPUTED FROM AUTOMATIC MEASUREMENTS
(TABLE III) ARE WITHIN THE INTER-USER VARIABILITY.

VII. CONCLUSION

Wider acceptance of 3D ultrasound systems will be pos-
sible if they are easy to use, operator independent, and
make the examination faster [4]. The Automatic Fetal Head
and Brain (AFHB) measurement system proposed in this
paper helps address this need. This unique system provides
dramatic workflow improvements by reducing time required
to measure anatomical structures, by reducing user variance
for all measurements, and by increasing measurement accu-
racy. This is achieved by employing a sequential sampling
model which makes it possible to use fewer samples of
the structure pose and formally extend the class of binary
classification algorithms [16], [26] to multiple structures. This
saves computational time and increases accuracy since the
samples are taken from the regions of high probability of the
posterior distribution. This process is applied across a multi-
resolution hierarchy when detecting one structure, but also
when predicting pose parameters based on other structures.
Such system is capable of resolving inherent challenges in
obstetrics ultrasound imagery, such as speckle noise, signal
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WI length 95% CI length WI plane 95% CI plane
CER 1.08 (0.94, 1.27) 1.61 (1.49, 1.77)
CM 1.65 (1.37, 2.05) 1.13 (0.94, 1.40)
LV 1.27 (1.10, 1.48) 1.49 (1.30, 1.75)

BPD 1.53 (1.28, 1.88) 1.74 (1.61, 1.88)
OFD 1.13 (0.96, 1.35) 1.35 (1.29, 1.41)
HC 1.37 (1.31, 1.43) 1.05 (0.88, 1.29)

TABLE VI
WILLIAMS INDEX (WI) AND CONFIDENCE INTERVALS (CI) COMPUTED

FOR LENGTH AND PLANE MEASUREMENT ERRORS. THE VALUES ARE
CLOSE TO 1, WHICH INDICATES AGREEMENT OF THE AUTOMATIC

MEASUREMENT WITH THE USERS.

drop-out, strong shadows produced by the skull, and large
intra-class variation caused by differences in gestational age.
The system runs in 6.9 seconds on a GPU compatible with
state-of-the-art ultrasound systems which makes it suitable for
clinical use. All structures are accurately detected within inter-
user variability.

The described framework opens up several possible avenues
of future research. One area we are particularly interested in
is how to include dependence on multiple objects at each
detection stage. This will result in a stronger geometrical con-
straint and therefore improve performance on objects that are
difficult to detect by exploiting only the pairwise dependence.
This will also help when extending the AFHB system to other
anatomical structures and measurements in routine ultrasound
examinations.
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Fig. 8. The automatic measurement results (cyan) compared to ground truth (red) for Cerebellum (CER), Cisterna Magna (CM), and Lateral Ventricles (LV).
The first row of each structure shows results with approximately average plane error and the second row shows results with higher than average plane error.
Plane and length errors on the left are reported (in mm). Note, that the cases with higher error are still acceptable for clinical use. The last two columns show
the agreement of the detection plane in the sagittal and coronal cross section.
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