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Abstract
In this paper, we investigate the effect of substantial

inter-image intensity changes and changes in modality on
the performance of keypoint detection, description, and
matching algorithms in the context of image registration. In
doing so, we modify widely-used keypoint descriptors such
as SIFT and shape contexts, attempting to capture the in-
sight that some structural information is indeed preserved
between images despite dramatic appearance changes.
These extensions include (a) pairing opposite-direction gra-
dients in the formation of orientation histograms and (b)
focusing on edge structures only. We also compare the sta-
bility of MSER, Laplacian-of-Gaussian, and Harris corner
keypoint location detection and the impact of detection er-
rors on matching results. Our experiments on multimodal
image pairs and on image pairs with significant intensity
differences show that indexing based on our modified de-
scriptors produces more correct matches on difficult pairs
than current techniques at the cost of a small decrease in
performance on easier pairs. This extends the applicability
of image registration algorithms such as the Dual-Bootstrap
which rely on correctly matching only a small number of
keypoints.

1. Introduction

Keypoint detection, description, and matching tech-
niques have received considerable attention in recent years
[14, 15, 16, 19, 24], and the results have been used exten-
sively for image registration and object recognition [2, 11,
20, 24, 21, 25]. These techniques work by detecting key-
points at distinctive image locations, extracting summary
descriptions of the image region surrounding the keypoints,
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Figure 1. Example of a multimodal pair with a few correct key-
point matches superimposed.

and matching these descriptions in order to match the key-
points. The design and experimental evaluation of key-
points and their descriptors has focused on affine changes
in both image position and image intensity. This paper con-
siders the effect of more dramatic changes in intensity, in-
cluding changes in image modality, on the detection, de-
scription, and matching of keypoints. Although different
modality images potentially measure different phenomena,
we assume, as is required for any keypoint method, that cor-
relating features can be detected in the two images. Ex-
amples of the types of images for which we would like to
extract and match keypoints are shown in Figs. 1 and 2.

In theory, the assumptions underlying the design of key-
point detection and, especially, description algorithms are
violated by these types of image pairs. In practice, however,
keypoint algorithms can still be effective. There are several
reasons for this. First, many image structures, especially
boundaries, tend to be preserved between images under dif-
ferent illuminations and modalities. Texture tends to be
more susceptible to change. This suggests that many of the
same keypoints, at least those that do not depend on texture,
will tend to reappear in the different images. Second, the
comparison of keypoint descriptors is a relative measure,
and therefore even when a descriptor has changed between
images, changes in other descriptors may be even greater,
causing the correct match to still be found. Third, given
the recent success of the Dual-Bootstrap registration algo-
rithm [25], which is capable of successfully aligning a pair
of images starting from just one correct keypoint match, the
demands on keypoint matching are not as great as when reg-
istration depends entirely on keypoint matching [2]. Thus,

http://www.vision.cs.rpi.edu/keypoints/


we will be satisfied with only a small number of correct
keypoint matches, provided there is a mechanism for rank-
ing the matches that places these near the top.

The goal of this paper is to investigate keypoint de-
tection, description, and matching for image pairs involv-
ing substantial changes in illumination and differences in
modalities. We use a suite of representative image pairs
with known inter-image transformations as the basis for
our investigation. We focus on just three of the top de-
tection techniques, (a) the Laplacian-of-Gaussian [11], (b)
Harris corners [7], and (c) maximally-stable extremal re-
gions (MSERs) [12], investigating the repeatability of their
locations and orientations. Among descriptors we focus on
variations of the SIFT [11] and shape-context descriptors
[1], both of which emphasize the distribution of points and
gradients. The primary differences between these, once gra-
dient information is added to shape-contexts, are the spa-
tial organization of the bins and the choice of points — all
points in a region or just the edge points. To keep our analy-
sis simple, we use the square grid of the SIFT descriptor, but
we do examine the choice of points. Moreover, we do not
conflate questions of affine invariance [4, 9, 13, 15] with
our primary investigation, choosing our data set to avoid
substantial viewpoint effects. Thus, we focus on address-
ing the primary issue: how to best capture in a descriptor
the information preserved between images. In doing so we
compare the original SIFT descriptor to modified descrip-
tors involving different ways to employ gradient and edge
information.

2. Detection Techniques

We investigate three representative detectors: (1) The
Laplacian-of-Gaussian (LoG) detector [11] finds peak
Laplacian responses across both spatial and scale dimen-
sions in a Gaussian scale-space image representation. (2)
Harris corners [13] are complementary features to blobs,
and are detected by finding maxima of the Harris corner-
ness measure [7]. Similar detectors have proven useful in
the medical imaging literature [8]. (3) Maximally-stable
extremal regions (MSERs) [12], which are found as image
areas that are stable with respect to the change of intensity
thresholds. In the experiments, we used our own implemen-
tation of LoG and publicly-available MSER [12] and Har-
ris corner [23] executables. The LoG implementation uses
filtering techniques similar to [3]. We choose these three
detectors (a) to represent effective local and region-based
techniques and (b) because of their relative efficiency (e.g.
over entropy-based methods such as [10]) both in practice
and in running a large suite of experiments.

3. Descriptors

The SIFT descriptor [11] is computed by partitioning
the image region surrounding each detected keypoint into

a 4 × 4 grid of subregions, and computing an orientation
histogram of 8 bins in each subregion. The grid is square,
with thex-axis oriented along the keypoint gradient direc-
tion, and the width of the grid being approximately12-times
the detected scale of the keypoint. Within each subregion,
the gradient orientation of each pixel is entered into the ori-
entation histogram, with weighted vote proportional to the
gradient magnitude. A normalized 128-component vector
is formed by concatenating the 16 region containers. Key-
points are matched between images or between an image
and a keypoint database by minimizing the distance be-
tween descriptors. A ratio test, comparing the distances
between the best and the second best match for a given key-
point, is used as a measure of match quality. Originally,
all keypoints with a ratio below 0.8 were considered strong
candidates for being correct [11]. In the Dual-Bootstrap
[25], keypoints are instead ranked-ordered by this distinc-
tiveness measure.

While the SIFT descriptor is invariant to linear changes
in intensity, the image pairs we consider here involve non-
linear changes. The questions we address are (1) how badly
does this affect performance, and (2) can anything be done
to improve performance. Under the latter category, we con-
sider two alternatives, moving toward a structural view of
the keypoint neighborhood:

Gradient Mirroring (GM): The first alternative simply
associates anti-parallel gradient directions and there-
fore considers gradient directions in the interval[0, π)
instead of[0, 2π). In effect this makes the descriptor
invariant to contrast reversals. While this makes sense
for many multimodal image pairs (Fig. 2), there is an
associated loss of information — the descriptor is now
length 64. Similar steps have been used in object de-
tection applications [5], where the goal is determining
if an image (or image region) of an object is an instance
of the class.

Edge Precursors (EP): The second alternative adopts the
shape-context [1, 17, 18, 22] idea of using only de-
tected points. Features are found by (1) computing the
gradient outer product matrix over a small neighbor-
hood at each pixel, (2) computing the trace of this ma-
trix at each pixel, and (3) selecting pixels that are local
maxima of this trace along the dominant direction of
their matrix. This is similar to the edge computation
described in the original Harris corner detector paper
[7]. The resulting points may be viewed as edge pre-
cursors. This realizes the intuition that the informa-
tion preserved under modality and strong illumination
changes is primarily along the boundaries. In comput-
ing the actual descriptor, the4 × 4 SIFT grid is used
with gradient directions in the interval[0, π), as above.
Thus, the primary difference with gradient mirroring
is that a selected subset of pixel locations is used to
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Brain T1-T2 Brugge Square Mauna Loa

Boston Library Pizzeria Tree Branch

Angiogram City Streets

Figure 2. Several example pairs from our 21 image-pair dataset. These include T1 and T2 phases of MRI (Brain T1-T2), different camera
exposures (Brugge Square), thermal and short wave IR (Mauna Loa), a more straight-forward pair (Boston Library), a neon sign during the
day and in the evening (Pizzeria), a visible spectrum and IR (Tree Branch) pair, different phases of retinal imaging modalities (Angiogram),
multispectral and visible spectrum images of a city (City), and a digital camera and a web cam with removed IR filter (Streets). See
http://www.vision.cs.rpi.edu/keypoints/ for the complete dataset.

compute the descriptor.

We have tried two other techniques: (1) ignoring gradi-
ent magnitudes when using the edge-based technique, sim-
ilar to earlier versions of shape-contexts [1], and (2) tak-
ing the structure preservation idea further by using the out-
put of the Canny edge detector. In both cases the results
are nowhere near competitive with the techniques examined
carefully here, so we do not discuss them.

Overall, we now have two alternatives for the descriptor,
SIFT-GM and SIFT-GMEP, to use each with the scale-space
LoG detector, the MSER detector, and the multiscale Harris
corner detector. Together with the original SIFT this gives
nine detection/descriptor combination methods to test.

4. Experiments

Our experiments evaluate keypoint detection and match-
ing for multimodal image pairs and for image pairs involv-
ing strong illumination changes. In this evaluation it is im-
portant to keep two goals in mind. The first is maximiz-
ing the overall number of correct keypoint matches. This
is consistent with object detection [5], object recognition
[6, 18, 24], and keypoint-based registration [2]. The second
goal is ensuring that at least a few keypoints are matched
correctly and that these matches occur near the top of the
rank ordering. This enables the success of registration algo-
rithms such as the Dual-Bootstrap [25] that are capable of
aligning images starting from just one keypoint match, but

consider several different initial matches.

4.1. Data Set
We collected an experimental dataset of image pairs

(Fig. 2), including 8 pairs taken by different sensors, 5 med-
ical image pairs, and 9 visible spectrum pairs, of which 3
have extreme illumination change. Image sizes range from
352 × 233 to 2532 × 2483. This dataset represents a sam-
pling of the endless variation in possible appearance and
modality changes, and therefore our results must be viewed
as suggestive of the effectiveness of keypoint detection and
matching in any context.

In order to generate our results, a verified transfor-
mation was obtained for each image pair by running the
publicly-available Dual-Bootstrap executable [25] and sup-
plying manual initial estimates for pairs that failed to initial-
ize automatically. The transformation was manually ver-
ified as being correct by careful examination of the final
alignment result. Most of the pairs chosen are quite diffi-
cult, but a few are relatively easy. These were included to
measure the potential loss in performance on more straight-
forward pairs when attempting to improve performance on
challenging ones.

4.2. Detection Repeatability
In evaluating detection repeatability, each tested detec-

tor is applied to each image separately, and then the verified
transformation is applied to the moving image to map its
keypoints into the fixed image. We can then find the clos-
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est fixed image keypoint to each mapped keypoint. If the
location is (generously) within 6 pixels, the orientation dif-
ference is within 10 degrees, and the ratio between scales
is within 0.67 − 1.5, we consider the match to be “cor-
rect”. This notion of correctness is generally sufficient for
the Dual-Bootstrap to succeed, although it is perhaps a little
too generous for the keypoints-only registration technique
of [2]. We use this definition of correctness throughout the
experiments.

The ideal analysis would be an ROC curve for each of
the detectors, summarized across all image pairs. We found
this meaningless to generate because there is an extremely-
wide fluctuation in the performance across different images.
Therefore, we set an operating point of the LoG and Harris
detectors by limiting the total number of points and of the
MSER detector by choosing the default parameters. Raw
numbers and percentages of repeated detections on a per-
image-pair based are summarized in Table 1. Observe that
the overall percentage of correct matches varies from as low
as 0.5% to as high as 48.5%. On one-third of the image pairs
all detectors had less than 10% repeatability. Next, note
that the LoG consistently had the most matches and MSERs
the fewest, but when we compare repeatability percentages,
the results are mixed. Finally, which detector does better
overall depends on which image pairs are considered.

Technique Min / Out of Avg / Out of Max / Out of
LoG 20 / 2302 279 / 1891 793 / 2027
Harris 10 / 2000 219 / 1452 771 / 2000
MSER 7 / 375 131 / 1391 699 / 1961

Table 1. Summary of keypoint detection results. Minimum, aver-
age, and maximum numbers of correct matches out of how many
were possible for all pairs in the dataset. MSERs produce the least
number of correct matches overall.

4.3. Descriptor Experiments
In evaluating the descriptors, for each image pair we

compute keypoints and their descriptors in each image and
then match them between the two images. For each key-
point, the top two matches are found and the descriptor
distance ratio between these two is computed as the “dis-
tinctiveness” measure of the best match. The set of best
matches for all keypoints is rank-ordered by distinctiveness.
The best 100 are then evaluated to determine which are cor-
rect. The number correct among these is the starting point
for comparison across methods. We assess the performance
of the two variations of the descriptor using LoG keypoints,
MSER keypoints, and Harris corners and compare it to the
original SIFT.

The results are evaluated in several ways. First, the raw
numbers are presented using a bar chart in Fig. 3. This
shows several things: (a) that no one method is better than
any other on all pairs, and (b) that the number of correct
matches varies dramatically across the data set, and (c) that
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Angiogram 4 1 1 8 4 1 27 10 45
Bay 1 1 1 2 1 10 1 29 1
Boston 1 1 1 1 1 1 1 1 1
Boston Library 1 1 1 1 1 1 1 1 1
Brain T1-T2 76 − 24 3 2 1 2 5 8
Brain T1-PD 1 6 2 2 3 8 1 11 5
Brain T2-PD 1 1 1 2 2 1 1 3 1
Brugge Square 1 1 1 1 1 1 1 12 1
Brugge Tower 1 1 1 1 1 2 1 1 1
Capital Region 52 − 2 − − 4 − − −
City 1 1 6 1 1 1 1 4 1
Day Night 6 5 1 5 − 1 7 5 7
EO-IR-1 90 − 1 − 58 13 28 55 74
EO-IR-2 2 31 11 4 2 1 3 15 9
Grand Canyon 2 1 17 1 1 1 1 1 1 1
Mauna Loa 1 1 2 1 1 1 1 2 6
MR-CT 90 1 7 36 6 17 17 3 3
Pizzeria 1 4 2 1 1 2 1 3 7
Satellite 1 1 1 1 1 1 1 2 1
Streets 1 56 − 2 7 12 1 2 2
Tree Branch − − − 2 1 1 1 3 2
White Tower 1 1 1 57 3 1 1 87 1

Table 2. The position of the first correct keypoint in the rank-
ordering for each detector-descriptor and each image pair. For
many pairs the first available keypoint match is the correct one and
the position improved dramatically for difficult pairs (e.g. Brain
T1-T2, EO-IR-1). SIFT-GM computed at MSERs gives at least
one correct match for all pairs.

there are some image pairs for which certain combinations
produce no correct matches.

Our second evaluation is motivated by the observations
that the Dual-Bootstrap algorithm needs only one match to
start its registration process (it tests multiple such initializa-
tions), and the algorithm produces an accurate final trans-
formation for more than 80% of the correct initial matches.
Thus, for the different detector-descriptor combinations we
evaluate the position of the first correct match in the rank-
ordering for each detector-descriptor combination. It can
be seen from Table 2 that this is the top-ranked match for
many pairs. On the other hand, for several difficult image
pairs (e.g. Brain T1-T2, EO-IR-1) the position of the cor-
rect match improved dramatically for all descriptor modi-
fications. SIFT-GM computed at MSERs gives at least one
correct match for all pairs and the position of the first correct
match found is close to the beginning. Therefore it performs
best in this ranking.

The third method of evaluation, presented in Fig. 5, at-
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Figure 3. Bar charts showing the number of correct keypoints
among the top100 for each of the methods. For ease of read-
ing, this is split across descriptors computed for LoG keypoints,
descriptors computed for corners, and descriptors computed for
MSERs.

tempts to increase understanding of these results. The ver-
tical axis in the figure represents the number of correct key-
point matches,k, in the top 100, while the horizontal axis
represents the number of image pairs,p. A curve is plotted
for each detector-descriptor combination. A point(k, p) on
the curve means thatp image pairs had at leastk correct
matches. Thus, if the curve for one combination is consis-
tently higher than the curve for another, it means there are

Figure 4. Example of correctly matched keypoint regions using
SIFT-GM evaluated at LoG keypoints. Notice the dramatic non-
linear changes between images within the pairs. The regions were
resized for display.

more pairs with that number of correct matches. Particular
attention should be paid tolarger values ofp.

This plot now makes clear the trade-offs introduced by
the different descriptors considered. By moving away from
standard SIFT, using Gradient Mirroring (GM) and using
Edge Precursors (EP), we obtain better performance on dif-
ficult pairs (as seen on the right side of the curve) at the
expense of reduced matches on easier pairs. When a regis-
tration algorithm needs only one or two correct keypoint
matches (or even just a few) to initialize the successful
alignment of an image pair, this is an acceptable trade-off,
especially since the trade-off does not tend to affect the
rank-ordered positions of the top matches. Thus, all de-
scriptor modifications proposed here give better results on
harder pairs than the standard SIFT. Overall, SIFT-GMEP at
LoG locations gives the best results in terms of the number
of correct matches even though, as seen in Table 2, SIFT-
GM at MSERs is most successful in terms of position of
the first correct keypoint. This suggests that success of a
detector-descriptor pairing is not dependent solely on the
individual success of the detector or the descriptor. Inter-
estingly, MSERs performed the worst in terms of detection
repeatability (Table 1). The types of regions it detects, how-
ever, are highly descriptive which makes them successful
when used in matching. Examples of the descriptor regions
for several correct matches are in Fig. 4.

5. Conclusions

Several conclusions may be drawn from our experimen-
tal results.
• While keypoint detectors and the SIFT descriptor were

designed under the assumption of linear changes in in-
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Figure 5. Descriptors evaluated at(a) LoG, (b) corners, and(c) MSERs. Plot of the number of correct matches,k (vertical) and the number
of image pairs,p, (horizontal) havingat leastthat number of correct matches. Higher curves are better, especially on the right side of the
plot.
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tensity, they can be effective in matching image pairs
taken under substantially different illumination condi-
tions and even changes in modality. Here, effective-
ness means that they produce at least a few correct
matches whose distinctiveness measure ranks them
near the top. This is sufficient for these image pairs to
be accurately aligned by algorithms such as the Dual-
Bootstrap.

• The effectiveness of the SIFT descriptor in matching of
challenging image pairs may be improved by equating
anti-parallel gradient directions (SIFT-GM) and focus-
ing the calculation on edge precursors (SIFT-GMEP).
This is achieved with a negligible loss in performance
for easier image pairs.

• The repeatability of keypoint detection under changes
in illumination and modality is disappointingly low, re-
inforcing a result reported in [25] that corner matching
alone is not sufficient for the most difficult image reg-
istration problems.

• No one keypoint detector is most effective for all pairs,
suggesting that a combination of detectors be used in
practice.

• Finally, while keypoint detection, description, and
matching on challenging image pairs are usually ef-
fective for initializing some registration algorithms, it
seems quite unlikely that they are sufficient for recog-
nition algorithms that depend on large numbers of cor-
rect keypoint matches.

The final point clearly highlights a challenge for future work
on keypoint detection and description.
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