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1
REFINED LEARNING DATA
REPRESENTATION FOR CLASSIFIERS

TECHNICAL FIELD

The present disclosure relates generally to machine learn-
ing techniques, and, more particularly, to a refined learning
data representation for classifiers.

BACKGROUND

Computer networks are infected by malware, and as the
variability of malware samples has been rapidly increasing
over the last years, existing signature-based security devices,
firewalls, or anti-virus solutions provide only partial protec-
tion against these threats. The ability to detect new variants
and modifications of existing malware is becoming very
important. Machine learning is beginning to be successfully
applied to complement signature-based devices.

In statistical machine learning, real-valued features
extracted from data are used to construct representations that
enable training data-driven classifiers. For example, when
classifying network traffic, the features can be extracted
from individual connections (flows) or from groups of flows
as determined by communication of a user to a domain in a
predefined time window. Data-driven classifiers are tradi-
tionally based on a manually predefined representation (i.e.,
feature vectors representing legitimate and malicious com-
munication). Since the accuracy of the classifiers directly
depends on the feature vectors, manually predefining the
representation is not optimal.

BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments herein may be better understood by
referring to the following description in conjunction with the
accompanying drawings in which like reference numerals
indicate identically or functionally similar elements, of
which:

FIG. 1A illustrates an example computer network;

FIG. 1B illustrates an example alternative view of the
computer network;

FIG. 2 illustrates an example computing device;

FIG. 3 illustrates an example of using statistical moments
or a predefined number of equidistant bins of a histogram to
represent feature distributions;

FIG. 4 illustrates an example of refined learning data
representation for classifiers, illustrating that there is no
need to pre-specify the final number of bins;

FIGS. 5A-5B illustrate the architecture of a typical system
using a data-driven classifier, and the architecture of the
proposed full-data-driven classification architecture, respec-
tively;

FIGS. 6A-6M illustrate the effect of a y parameter on a
resulting representation and a decision boundary of a clas-
sifier;

FIG. 7 illustrates the effect of the y parameter on the
training and testing error, where higher values of y achieve
better generalization;

FIG. 8 illustrates an example precision-recall curve to
compare the efficacy results of classifiers based on a pre-
defined number of bins per feature and based on the refined
learning data representation for classifiers in accordance
with one or more embodiments described herein; and

FIG. 9 illustrates an example simplified procedure for
refined learning data representation for classifiers in accor-
dance with one or more embodiments described herein.
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2
DESCRIPTION OF EXAMPLE EMBODIMENTS

Overview

According to one or more embodiments of the disclosure,
a learning machine device initializes thresholds of a data
representation of one or more data features, the thresholds
specifying a first number of pre-defined bins (e.g., uniform
and equidistant bins). Next, adjacent bins of the pre-defined
bins having substantially similar weights may be recipro-
cally merged, the merging resulting in a second number of
refined bins that is less than the first number. Notably, while
merging, the device also learns weights of a linear decision
rule associated with the one or more data features. Accord-
ingly, a data-driven representation for a data-driven classi-
fier may be established based on the refined bins and learned
weights.

Description

A computer network is a geographically distributed col-
lection of nodes interconnected by communication links and
segments for transporting data between end nodes, such as
personal computers and workstations, or other devices, such
as sensors, etc. Many types of networks are available,
ranging from local area networks (LANs) to wide area
networks (WANs). LANSs typically connect the nodes over
dedicated private communications links located in the same
general physical location, such as a building or campus.
WAN:S, on the other hand, typically connect geographically
dispersed nodes over long-distance communications links.

FIG. 1A is a simplified block diagram of an example
computer network 100, showing a security device 105
interconnected via a computer network (e.g., Internet) 160 to
a variety of devices. In particular, one or more user devices
140 may be connected to the network 160 (e.g., directly or
via a proxy). Further, one or more servers may also be
connected to the network 160, such as an unsafe server 180,
a safe server 190, and other servers, such as domain name
servers (DNS) 170. Data packets 165 (e.g., traffic and/or
messages sent between the devices) may be exchanged
among the devices of the computer network 100 using
predefined network communication protocols. In this con-
text, a protocol consists of a set of rules defining how the
nodes interact with each other. Those skilled in the art will
understand that any number of devices, links, etc. may be
used in the computer network, and that the view shown
herein is for simplicity. Also, those skilled in the art will
further understand that while the network is shown in a
certain orientation, the network 100 is merely an example
illustration that is not meant to limit the disclosure.

In addition, FIG. 1B is a schematic block diagram of an
alternative view of the example computer network (network-
ing system) 100, in which the techniques presented herein
may be employed. In particular, in one embodiment, net-
working system 100 may illustrate the security device 105 as
a separate training and testing device 110 and a classification
device 130. Training logic 112 and testing logic 114 reside
and are executed on the training and testing device. Training
and testing device 110 may be connected to proxy server 120
via network interface unit 116 (e.g., a network interface
card). FIG. 1B further shows the classification device 130 on
which detector logic 132 resides and is executed utilizing
trained and tested classifier 134. Classification device 130
may also be connected to proxy server 120 via network
interface unit 136. The proxy server 120 stores proxy logs
121 of network communications to Internet 160 that are






