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REFINED LEARNING DATA DESCRIPTION OF EXAMPLE EMBODIMENTS 
REPRESENTATION FOR CLASSIFIERS 

Overview 
TECHNICAL FIELD 

According to one or more embodiments of the disclosure , 
The present disclosure relates generally to machine learn a learning machine device initializes thresholds of a data 

ing techniques , and , more particularly , to a refined learning representation of one or more data features , the thresholds 
data representation for classifiers . specifying a first number of pre - defined bins ( e.g. , uniform 

and equidistant bins ) . Next , adjacent bins of the pre - defined 
BACKGROUND 10 bins having substantially similar weights may be recipro 

cally merged , the merging resulting in a second number of 
Computer networks are infected by malware , and as the refined bins that is less than the first number . Notably , while 

variability of malware samples has been rapidly increasing merging , the device also learns weights of a linear decision 
over the last years , existing signature - based security devices , rule associated with the one or more data features . Accord 
firewalls , or anti - virus solutions provide only partial protec- 15 ingly , a data - driven representation for a data - driven classi 
tion against these threats . The ability to detect new variants fier may be established based on the refined bins and learned 
and modifications of existing malware is becoming very weights . 
important . Machine learning is beginning to be successfully 
applied to complement signature - based devices . Description 

In statistical machine learning , real - valued features 20 
extracted from data are used to construct representations that A computer network is a geographically distributed col 
enable training data - driven classifiers . For example , when lection of nodes interconnected by communication links and 
classifying network traffic , the features can be extracted segments for transporting data between end nodes , such as 
from individual connections ( flows ) or from groups of flows personal computers and workstations , or other devices , such 
as determined by communication of a user to a domain in a 25 as sensors , etc. Many types of networks are available , 
predefined time window . Data - driven classifiers are tradi ranging from local area networks ( LANs ) to wide area 
tionally based on a manually predefined representation ( i.e. , networks ( WAN ) . LANs typically connect the nodes over 
feature vectors representing legitimate and malicious com dedicated private communications links located in the same 
munication ) . Since the accuracy of the classifiers directly general physical location , such as a building or campus . 
depends on the feature vectors , manually predefining the 30 WANs , on the other hand , typically connect geographically 
representation is not optimal . dispersed nodes over long - distance communications links . 

FIG . 1A is a simplified block diagram of an example 
BRIEF DESCRIPTION OF THE DRAWINGS computer network 100 , showing a security device 105 

interconnected via a computer network ( e.g. , Internet ) 160 to 
The embodiments herein may be better understood by 35 a variety of devices . In particular , one or more user devices 

referring to the following description in conjunction with the 140 may be connected to the network 160 ( e.g. , directly or 
accompanying drawings in which like reference numerals via a proxy ) . Further , one or more servers may also be 
indicate identically or functionally similar elements , of connected to the network 160 , such as an unsafe server 180 , 
which : a safe server 190 , and other servers , such as domain name 

FIG . 1A illustrates an example computer network ; 40 servers ( DNS ) 170. Data packets 165 ( e.g. , traffic and / or 
FIG . 1B illustrates an example alternative view of the messages sent between the devices ) may be exchanged 

computer network ; among the devices of the computer network 100 using 
FIG . 2 illustrates an example computing device ; predefined network communication protocols . In this con 
FIG . 3 illustrates an example of using statistical moments text , a protocol consists of a set of rules defining how the 

or a predefined number of equidistant bins of a histogram to 45 nodes interact with each other . Those skilled in the art will 
represent feature distributions ; understand that any number of devices , links , etc. may be 

FIG . 4 illustrates an example of refined learning data used in the computer network , and that the view shown 
representation for classifiers , illustrating that there is no herein is for simplicity . Also , those skilled in the art will 
need to pre - specify the final number of bins ; further understand that while the network is shown in a 
FIGS . 5A - 5B illustrate the architecture of a typical system 50 certain orientation , the network 100 is merely an example 

using a data - driven classifier , and the architecture of the illustration that is not meant to limit the disclosure . 
proposed full - data - driven classification architecture , respec In addition , FIG . 1B is a schematic block diagram of an 
tively ; alternative view of the example computer network ( network 

FIGS . 6A - 6M illustrate the effect of a y parameter on a ing system ) 100 , in which the techniques presented herein 
resulting representation and a decision boundary of a clas- 55 may be employed . In particular , in one embodiment , net 
sifier ; working system 100 may illustrate the security device 105 as 

FIG . 7 illustrates the effect of the y parameter on the a separate training and testing device 110 and a classification 
training and testing error , where higher values of y achieve device 130. Training logic 112 and testing logic 114 reside 
better generalization ; and are executed on the training and testing device . Training 

FIG . 8 illustrates an example precision - recall curve to 60 and testing device 110 may be connected to proxy server 120 
compare the efficacy results of classifiers based on a pre via network interface unit 116 ( e.g. , a network interface 
defined number of bins per feature and based on the refined card ) . FIG . 1B further shows the classification device 130 on 
learning data representation for classifiers in accordance which detector logic 132 resides and is executed utilizing 
with one or more embodiments described herein ; and trained and tested classifier 134. Classification device 130 

FIG . 9 illustrates an example simplified procedure for 65 may also be connected to proxy server 120 via network 
refined learning data representation for classifiers in accor interface unit 136. The proxy server 120 stores proxy logs 
dance with one or more embodiments described herein . 121 of network communications to Internet 160 that are 
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established via proxy server 120. Networking system 100 been shown separately , those skilled in the art will appre 
also includes computing device 140 on which malware 142 ciate that processes may be routines or modules within other 
resides and is executed . Computing device 140 is connected processes . 
to proxy server 120 via network interface unit 146. Proxy As noted above , computer networks are infected by 
Server 120 connects computing device 140 to Internet 160. 5 malware , and as the variability of malware samples has been 
In FIG . 1B , for simplicity , only computing device 140 is rapidly increasing over the last years , existing signature 
connected to Internet 160 via proxy server 120. However , based security systems , firewalls , or anti - virus solutions 
computing device 140 may be , for example , part of an provide only partial protection against these threats . The 
enterprise network ( not shown ) , and the enterprise network ability to detect new variants and modifications of existing 
may include , but is not limited to , a plurality of computing 10 malware is becoming very important . Machine learning is 
devices , servers and other network devices that may be beginning to be successfully applied to complement signa 
infected by malware . In addition , several network elements ture - based systems . 
may be connected to Internet 160 such as DNS server 170 , Learning machine process 248 , in particular , may include 
unsafe Command & Control ( C & C ) server 180 ( e.g. , option computer executable instructions that , when executed by 
ally hosting a Domain Generation Algorithm ( DGA ) ) and a 15 processor ( s ) 220 , cause device 200 to perform anomaly 
safe network server 190 that may host one or more safe detection functions as part of an anomaly detection infra 
domains . In addition , detector logic 132 together with structure within a computer network . ( Notably , the tech 
trained and tested classifier 134 may also reside on com niques herein are not limited to computer networks , and the 
puting device 140 ( e.g. , as a security process on device 140 ) . use of a learning machine process within a computer net 

Notably , FIG . 1B shows an attempt of computing device 20 work is merely one representative use - case example . ) In 
140 to establish network communication 148 that is trig general , anomaly detection attempts to identify patterns that 
gered by malware 142. Network connection 148 initiated by do not conform to an expected behavior . For example , in one 
computing device 140 may be an attempt by malware 142 to embodiment , the anomaly detection infrastructure of the 
communicate with unsafe C & C server 180. As used herein , network may be operable to detect network attacks ( e.g. , 
malware 142 refers to an executable file that causes a 25 DDoS attacks , the use of malware such as viruses , rootkits , 
computer / processor to execute instructions , and the malware etc. ) . However , anomaly detection in the context of com 
may be in a machine language , interpreted language , inter puter networking typically presents a number of challenges : 
mediate language , script language or any other language 1. ) a lack of a ground truth ( e.g. , examples of normal vs. 
now known or hereinafter developed that causes a computer / abnormal network behavior ) , 2. ) being able to define a 
processor to execute instructions . 30 “ normal ” region in a highly dimensional space can be 

FIG . 2 is a schematic block diagram of an example device challenging , 3. ) the dynamic nature of the problem due to 
200 that may be used with one or more embodiments changing network behaviors / anomalies , 4. ) malicious 
described herein , e.g. , as the security device 105 ( or as behaviors such as malware , viruses , rootkits , etc. may adapt 
training and testing device 110 and / or classification device in order to appear “ normal , ” and 5. ) differentiating between 
130 ) of FIGS . 1A - 1B above . The device may comprise one 35 noise and relevant anomalies is not necessarily possible 
or more network interfaces 210 , at least one processor 220 , from a statistical standpoint , but typically also requires 
and a memory 240 interconnected by a system bus 250 , as domain knowledge . 
well as a power supply 260 . Anomalies may also take a number of forms in a computer 

The network interface ( s ) 210 contain the mechanical , network : 1. ) point anomalies ( e.g. , a specific data point is 
electrical , and signaling circuitry for communicating data 40 abnormal compared to other data points ) , 2. ) contextual 
over links coupled to the network 100. The network inter anomalies ( e.g. , a data point is abnormal in a specific context 
faces may be configured to transmit and / or receive data but not when taken individually ) , or 3. ) collective anomalies 
using a variety of different communication protocols . The ( e.g. , a collection of data points is abnormal with regards to 
memory 240 comprises a plurality of storage locations that an entire set of data points ) . Generally , anomaly detection 
are addressable by the processor 220 and the network 45 refers to the ability to detect an anomaly that could be 
interfaces 210 for storing software programs and data struc triggered by the presence of malware attempting to access 
tures associated with the embodiments described herein . The data ( e.g. , data exfiltration ) , spyware , ransom - ware , etc. 
processor 220 may comprise hardware elements or hardware and / or non - malicious anomalies such as misconfigurations 
logic adapted to execute the software programs and manipu or misbehaving code . Particularly , an anomaly may be raised 
late the data structures 245. An operating system 242 , 50 in a number of circumstances : 
portions of which are typically resident in memory 240 and Security threats : the presence of a malware using 
executed by the processor , functionally organizes the device unknown attacks patterns ( e.g. , no static signatures ) 
by , among other things , invoking operations in support of may lead to modifying the behavior of a host in terms 
software processes and / or services executing on the device . of traffic patterns , graphs structure , etc. Such anomalies 
These software processes and / or services may comprise a 55 may be detected using advanced machine learning 
“ learning machine ” process 248 , as described herein , which algorithms ( s ) capable of modeling subtle changes or 
may coordinate with various databases 242 , dictionary ( ies ) correlation between changes ( e.g. , unexpected behav 
243 , training logic 244 , testing logic 246 , and classifiers 247 . ior ) in a highly dimensional space . Such anomalies are 

It will be apparent to those skilled in the art that other raised in order to detect the presence of a 0 - day 
processor and memory types , including various computer- 60 malware ; such a malware may be used in order to 
readable media , may be used to store and execute program perform data ex - filtration thanks to a Command and 
instructions pertaining to the techniques described herein . Control ( C2 ) channel , or even to trigger ( Distributed ) 
Also , while the description illustrates various processes , it is Denial of Service ( DoS ) such as DNS reflection , UDP 
expressly contemplated that various processes may be flood , HTTP recursive get , etc. In the case of a ( D ) DoS , 
embodied as modules configured to operate in accordance 65 although technical an anomaly , the term “ DoS ” is 
with the techniques herein ( e.g. , according to the function usually used . Malware may be detected because of their 
ality of a similar process ) . Further , while the processes have impact on traffic , host models , graph - based analysis , 
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etc. , when attempting to connect to C2 channel , move and report anomaly scores to another device . Example 
laterally , or ex - filtrate information using various tech machine learning techniques that may be used to construct 
niques . and analyze such a model may include , but are not limited 

Misbehaving devices : a device such as a laptop , a server to , nearest neighbor ( NN ) techniques ( e.g. , k - NN models , 
of a network device ( e.g. , storage , router , switch , 5 replicator NN models , etc. ) , statistical techniques ( e.g. , 
printer , etc. ) may misbehave in a network for a number Bayesian networks , etc. ) , clustering techniques ( e.g. , 
of reasons : 1. ) a user using a discovery tool that k - means , etc. ) , neural networks ( e.g. , reservoir networks , 
performs ( massive ) undesirable scanning in the net artificial neural networks , etc. ) , support vector machines 
work ( in contrast with a lawful scanning by a network ( SVMs ) , or the like . 
management tool performing device discovery ) , 2. ) a 10 One class of machine learning techniques that is of 
software defect ( e.g. a switch or router dropping packet particular use in the context of anomaly detection is clus 
because of a corrupted RIB / FIB or the presence of a tering . Generally speaking , clustering is a family of tech 
persistent loop by a routing protocol hitting a corner niques that seek to group data according to some typically 
case ) . predefined notion of similarity . For instance , clustering is a 

Dramatic behavior change : the introduction of a new 15 very popular technique used in recommender systems for 
networking or end - device configuration , or even the grouping objects that are similar in terms of people's taste 
introduction of a new application may lead to dramatic ( e.g. , because you watched X , you may be interested in Y , 
behavioral changes . Although technically not anoma etc. ) . Typical clustering algorithms are k - means , density 
lous , a machine - learning - enabled node having com based spatial clustering of applications with noise ( DB 
puted behavioral model ( s ) may raise an anomaly when 20 SCAN ) and mean - shift , where a distance to a cluster is 
detecting a brutal behavior change . Note that in such as computed with the hope of reflecting a degree of anomaly 
case , although an anomaly may be raised , a learning ( e.g. , using a Euclidian distance and a cluster based local 
system such as machine learning ( particularly , a self outlier factor that takes into account the cluster density ) . 
learning network ) is expected to learn the new behavior Replicator techniques may also be used for purposes of 
and dynamically adapts according to potential user 25 anomaly detection . Such techniques generally attempt to 
feedback . replicate an input in an unsupervised manner by projecting 

Misconfigured devices : a configuration change may trig the data into a smaller space ( e.g. , compressing the space , 
ger an anomaly : a misconfigured ACL , route redistri thus performing some dimensionality reduction ) and then 
bution policy , routing policy , QoS policy maps , or the reconstructing the original input , with the objective of 
like , may have dramatic consequences such a traffic 30 keeping the “ normal ” pattern in the low dimensional space . 
black - hole , QoS degradation , etc. Such misconfigura Example techniques that fall into this category include 
tion may be advantageously identified by learning principal component analysis ( PCA ) ( e.g. , for linear mod 
machine process 248 , in order to be detected and fixed . els ) , multi - layer perceptron ( MLP ) ANNs ( e.g. , for non 

In various embodiments , machine learning process 248 linear models ) , and replicating reservoir networks ( e.g. , for 
may utilize machine learning techniques to perform anomaly 35 non - linear models , typically for time series ) . 
detection in the network . In general , machine learning is Notably , an example self learning network ( SLN ) infra 
concerned with the design and the development of tech structure that may be used to detect network anomalies may 
niques that take as input empirical data ( such as network have a network of devices that are configured to operate as 
statistics and performance indicators ) , and recognize com part of an SLN infrastructure to detect , analyze , and / or 
plex patterns in these data . One very common pattern among 40 mitigate network anomalies such as network attacks ( e.g. , by 
machine learning techniques is the use of an underlying executing a corresponding learning machine process 248 ) . 
model M , whose parameters are optimized for minimizing Such an infrastructure may include certain network devices 
the cost function associated to M , given the input data . For acting as distributed learning agents ( DLAs ) and one or 
instance , in the context of classification , the model M may more supervisory / centralized devices acting as a supervisory 
be a straight line that separates the data into two classes ( e.g. , 45 learning agent ( SLA ) . A DLA may be operable to monitor 
labels ) such that M = a * x + b * y + c and the cost function would network conditions ( e.g. , router states , traffic flows , etc. ) , 
be the number of misclassified points . The learning process perform anomaly detection on the monitored data using one 
then operates by adjusting the parameters a , b , c such that the or more machine learning models , report detected anomalies 
number of misclassified points is minimal . After this opti to the SLA , and / or perform local mitigation actions . Simi 
mization phase ( or learning phase ) , the model M can be used 50 larly , an SLA may be operable to coordinate the deployment 
very easily to classify new data points . Often , M is a and configuration of the DLAs ( e.g. , by downloading soft 
statistical model , and the cost function is inversely propor ware upgrades to a DLA , etc. ) , receive information from the 
tional to the likelihood of M , given the input data . DLAS ( e.g. , detected anomalies / attacks , compressed data for 

Computational entities that rely on one or more machine visualization , etc. ) , provide information regarding a detected 
learning techniques to perform a task for which they have 55 anomaly to a user interface ( e.g. , by providing a webpage to 
not been explicitly programmed to perform are typically a display , etc. ) , and / or analyze data regarding a detected 
referred to as learning machines . In particular , learning anomaly using more CPU intensive machine learning pro 
machines are capable of adjusting their behavior to their 
environment . For example , a learning machine may dynami One type of network attack that is of particular concern in 
cally make future predictions based on current or prior 60 the context of computer networks is a Denial of Service 
network measurements , may make control decisions based ( DoS ) attack . In general , the goal of a DoS attack is to 
on the effects of prior control commands , etc. prevent legitimate use of the services available on the 

For purposes of anomaly detection in a network , a learn network . For example , a DoS jamming attack may artifi 
ing machine may construct a model of normal network cially introduce interference into the network , thereby caus 
behavior , to detect data points that deviate from this model . 65 ing collisions with legitimate traffic and preventing message 
For example , a given model ( e.g. , a supervised , un - super decoding . In another example , a DoS attack may attempt to 
vised , or semi - supervised model ) may be used to generate overwhelm the network's resources by flooding the network 

cesses . 
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with requests ( e.g. , SYN flooding , sending an overwhelming While the former approach is typically used to detect new 
number of requests to an HTTP server , etc. ) , to prevent threats , it suffers from lower precision which limits its 
legitimate requests from being processed . A DoS attack may practical usefulness due to large amount of false alerts . 
also be distributed , to conceal the presence of the attack . For Data - driven classifiers trained on known malicious samples 
example , a distributed DoS ( DDoS ) attack may involve 5 achieve better efficacy results , but the results are directly 
multiple attackers sending malicious requests , making it dependent on the samples used in the training . Once a 
more difficult to distinguish when an attack is underway . malware changes the behavior , the system needs to be 
When viewed in isolation , a particular one of such a request retrained . With continuously rising number of malware 
may not appear to be malicious . However , in the aggregate , variants , this becomes a major bottleneck in modern mal 
the requests may overload a resource , thereby impacting 10 ware detection systems . Therefore , the robustness and 
legitimate requests sent to the resource . invariance of features extracted from raw data plays the key 

Botnets represent one way in which a DDoS attack may role when classifying new malware . 
be launched against a network . In a botnet , a subset of the The problem of changing malware behavior can be for 
network devices may be infected with malicious software , malized by recognizing that a joint distribution of the 
thereby allowing the devices in the botnet to be controlled by 15 malware samples ( or features ) differs for already known 
a single master . Using this control , the master can then training ( source ) and yet unseen testing ( target ) data . This 
coordinate the attack against a given network resource . can happen as a result of target evolving after the initial 
DoS attacks are relatively easy to detect when they are classifier or detector has been trained . In supervised learn 

brute - force ( e.g. volumetric ) , but , especially when highly ing , this problem is solved by domain adaptation . 
distributed , they may be difficult to distinguish from a 20 As further mentioned above , in statistical machine learn 
flash - crowd ( e.g. , an overload of the system due to many ing , real - valued features extracted from data are used to 
legitimate users accessing it at the same time ) . This fact , in construct representations that enable training data - driven 
conjunction with the increasing complexity of performed classifiers . For example , when classifying network traffic , 
attacks , makes the use of “ classic ” ( usually threshold - based ) the features can be extracted from individual flows or from 
techniques useless for detecting them . However , machine 25 groups of flows as determined by communication of a user 
learning techniques may still be able to detect such attacks , to a domain in a predefined time window . Data - driven 
before the network or service becomes unavailable . For classifiers are traditionally based on a manually predefined 
example , some machine learning approaches may analyze representation ( i.e. , feature vectors representing legitimate 
changes in the overall statistical behavior of the network and malicious communication ) . Since the accuracy of the 
traffic ( e.g. , the traffic distribution among flow flattens when 30 classifiers directly depends on the feature vectors , manually 
a DDoS attack based on a number of microflows happens ) . predefining the representation is not optimal . 
Other approaches may attempt to statistically characterizing The techniques herein , therefore , refine learning data 
the normal behaviors of network flows or TCP connections , representations for classifiers in order to provide an optimal 
in order to detect significant deviations . Classification representation and decision for classifiers , and particularly 
approaches try to extract features of network flows and 35 for network traffic classifiers . In many supervised classifi 
traffic that are characteristic of normal traffic or malicious cation tasks , the feature values obtained from the data are 
traffic , constructing from these features a classifier that is first aggregated into histogram bins uniformly distributed 
able to differentiate between the two classes ( normal and across the feature value ranges . The proposed techniques 
malicious ) . herein improve the data representation by simultaneously 

Refined Learning Data Representation for Classifi- 40 finding the bins in an optimal way while learning a corre 
sponding set of weights to construct a linear classifier 

Many current network security devices classify large ( SVM ) . Said differently , to optimize the parameters of the 
amounts of the malicious network traffic and report the representation learned from training data , the techniques 
results in many individually - identified incidents , some of herein propose combining the process of learning the rep 
which are false alerts . On the other hand , a lot of malicious 45 resentation with the process of learning the classifier , such 
traffic remains undetected due to the increasing variability of that the resulting representation ensures easier separation of 
malware attacks . As a result , security analysts might miss malicious and legitimate communication and at the same 
severe complex attacks because the incidents are not cor time controls the complexity of the classifier . Several other 
rectly prioritized or reported . extensions , as described below ( e.g. , considering pairs of 

The network traffic can be classified at different levels of 50 feature values or arbitrary feature groups ) , enhance the 
detail . Approaches based on packet inspection and signature techniques herein , as well . 
matching rely on a database of known malware samples . Notably , the act of learning representations automatically 
These techniques are able to achieve results with high from input data has drawn a lot of attention in other 
precision ( low number of false alerts ) , but their detection application domains since they have been shown to provide 
ability is limited only to the known samples and patterns 55 better results than hand - engineered features . In network 
included in the database ( limited recall ) . Moreover , due to security , in particular , this brings new challenges and oppor 
the continuous improvements of network bandwidth , ana tunities to fight against resilient and ever - changing malware . 
lyzing individual packets is becoming intractable on high Note also , however , that although specific embodiments are 
speed network links . It is more efficient to classify network described herein , namely the optimal representation and 
traffic based on flows representing groups of packets ( e.g. , 60 decision for network traffic classifiers , the techniques are 
NetFlow or proxy logs ) . While this approach has typically equally applicable to non - network - based classifiers for 
lower precision , it uses statistical modeling and behavioral learning machines . 
analysis to find new and previously unseen malicious threats Specifically , according to one or more embodiments of the 
( higher recall ) . disclosure as described in detail below , a learning machine 

Statistical features calculated from flows can be used for 65 device ( e.g. , device 200 ) initializes thresholds of a data 
unsupervised anomaly detection , or in supervised classifi representation of one or more data features , the thresholds 
cation to train data - driven classifiers of malicious traffic . specifying a first number of pre - defined bins ( e.g. , uniform 
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and equidistant bins ) . Next , adjacent bins of the pre - defined Notably , such binary representation is useful for training 
bins having substantially similar weights may be recipro linear classifiers such as Support Vector Machines ( SVMs ) 
cally merged , the merging resulting in a second number of since the transformed feature vectors are in a higher dimen 
refined bins that is less than the first number . Notably , while sional space , easier separable by a linear decision rule than 
merging , the device also learns weights of a linear decision 5 the original feature vectors . Formally , assume a decision rule 
rule associated with the one or more data features . Accord is defined as : 
ingly , a data - driven representation for a data - driven classi 
fier may be established based on the refined bins and learned h : R " > { + 1 , -1 } 
weights . based on thresholding a linear score Illustratively , the techniques described herein may be 10 
performed by hardware , software , and / or firmware , such as h ( x ) = sgn ( f ( x ; w , 0 ) + wo ) in accordance with the “ learning machine ” process 248 , where which may contain computer executable instructions 
executed by the processor 220 to perform functions relating 
to the techniques described herein , e.g. , in conjunction with 15 Eq . 9 other suitable modules and / or processes for machine learn f ( x ; w , O ) = w ; Wij ( x ; ® ) ing ( e.g. , training , testing , classifying , etc. ) . For example , 
the techniques herein may be treated as extensions to 
conventional learning machine processes , and as such , may 
be processed by similar components understood in the art 20 In other words , the techniques herein aim at designing a 
that execute those processes , accordingly . classifier as : 

Operationally , classifiers derive their decision function 
based on features extracted from data . When the classifiers R nxmy Rn + ly Rn ( b + 1 ) ̂  { - 1 , + 1 } 
are trained , it is often beneficial to convert the features to a working on top of the histogram representation , that is sparse binary representation by defining a set of feature 25 
ranges ( e.g. , histogram bins ) and binary variables that indi 
cate in what range ( bin ) the original feature value falls . In h ( x ; w , wo , 0 ) Eq . 11 
particular , classification performance heavily depends on the 
number of bins b and their edges o defining the width of the 
histogram bins . Incorrectly chosen parameters b and 6 leads 30 sign ( @ ( x , w ) ) + wo ) = sign ( xi , bi , j – 1 , 6 ;. j W : .j + wo 
to suboptimal efficacy results , particularly when manually 
predefined . To define the parameters optimally , the tech 
niques herein learn these parameters automatically from the The classifier above in Eq . 11 ( and alternatively Eq . 9 ) is 
training data in such a way to maximize the classification linear in the parameters ( w ; w . ) but non - linear in 0 and x . 
separability between positive and negative samples . 35 The techniques herein illustrate a procedure for how to learn 
When creating histograms , input instances are vectors parameters ( w ; w . ) and implicitly also via a convex opti 

which are transformed into a concatenated histogram . To mization . 
keep the notation simple and concise , the disclosure herein Traditionally , the thresholds are determined by uniformly 
denotes the input instances ( input real - valued features , e.g. , dividing the range of acceptable feature responses . Although 
extracted from flows ) simply as : 40 the uniform binning works in most cases , it is clear that such 

choice is not optimal , as illustrated in FIG . 3. In particular , x = ( x1 , • . . Eq . 1 
current systems use either statistical moments ( mean and 

which is a sequence of n vectors each of dimension m . variance ) or predefined number of equidistant bins to rep 
The original features are converted ( binarized ) to a sparse resent feature distributions . These techniques can inaccu representation : 45 rately represent the data which negatively influences the 
OR " > { 0,1 } , classifier accuracy . Incorrect choice of bins 320 implies that 

the histogram bars 330 do not match the original feature such that distribution 310 , as illustrated on the right - hand side of the 
figure . 

This techniques herein propose to jointly find the sepa 1 if x ; € [ 0 ; –1 , 0 ' ; ) Dij ( x ; 0 ) ration of data into bins and an optimal set of weights used 
otherwise in a linear decision rule . In particular , the general concept for 

constructing an optimal data - driven representation is to 
initially use a large number of thresholds specifying uniform where 55 bins . The bins are then merged in an optimization process 

O = 0.- , ... , 031 , ... , 0 . " , ... , 0 , " ) ER nb that simultaneously learns the weights of a linear decision 
is a set of thresholds . rule . The weights and the resulting bins therefore yield a 

Said differently , the input instance x is represented via a linear SVM with optimal binning strategy . 
For instance , the result of the techniques herein is gen 

60 erally shown in FIG . 4 , illustrating that there is no need to 
pre - specify the final number of bins . That is , as mentioned , 

defined as a concatenation of the normalized histograms of and with reference to component 420 , the original distribu 
all vectors in that sequence , that is , tion is first divided into a large number of small initial bins . 

Then adjacent bins can be merged together when they obtain 
O = P ( x ; 0 ) = ( Q ( x1,01 ) , ... , 0 ( Xn ; On ) ) , 65 similar weight as determined by the optimization algorithm 

where ( 01 , ... , On ) denotes bin edges of all normalized ( e.g. , when weights are equal and adjacent , have a similar 
histograms stacked to a single vector . value , a similar sign ( e.g. , “ + ” = malware , “ _ ” = legitimate 
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traffic ) ) . The resulting representation 430 is data - driven and can be significantly reduced ( depending on y ) and they have 
optimal with regard to the training data and the classifier different widths unlike the original bins . Having the new 
model . bins defined , the techniques herein can learn a new set of 

In particular , the techniques herein construct thresholds weights by the standard SVM algorithm : 
uniformly with a high number of bins b and then reduce the 5 
bins by merging when possible . Given training examples of : 

{ ( x1,1 ) , ... , ( XmYm ) } E ( R " x { -1 , + 1 } } ” , Eq . 18 
5l | wll ? + max { 0 , 1 – y ' ( @ ( x * ; @ “ ) , w ) } learning of weights is formulated as a convex problem : WERN , WO ER 

Eq . 12 
min o ” ) , wat m 

10 

Eq . 13 n b - 1 

WERN - b i = 1 j = 1 

15 

. -- ** m 
i = 1 j = 1 

20 

a 
žll will ? 

Eq . 15 

b - 1 

WERb.p. WO ER i = 1 j = 1 

Notably , the techniques herein may be extended from 
min . Allw | l2 + y lwi ; – Wicj + 1 ) ] + Alwi considering individual features to using feature pairs . This 

generalization exploits correlation between feature values 
when building the representation . In another extension , the 

max_ { 0,1 – y : Ew ; ?ij ( x ; @ ) techniques herein can be applied to real - valued ( non - bina 
rized ) features . New feature values on the optimal represen 
tation are extracted by averaging subsets of the original 
features . 

where the value of y ( Y > 0 ) implicitly controls the number of Note further that the techniques could also add the qua 
bins . dratic regularizer 

Obtaining the same neighboring weights w . , Wi ( +1 ) is like 
merging the bin j and the bin j + 1 of the i - th feature to a single 
bin : 

[ 0 ; -1 , 00 ; +1 ) Eq . 14 25 

Said differently , assume the system herein is given a 
training set of examples : to the objective of Eq . 16 , and learn the weights and the 

representation in a single stage . However , this would require 
{ ( x + , y ! ) , . . . , ( x " , \ " ) } E ( K nxmx { + 1 , -1 } } " . tuning two regularization parameters ( a and y ) simultane 

The techniques herein fix the representation o such that the 30 ously , which would be order of magnitude more expensive 
number of bins b is sufficiently large and the bin edges 0 are than tuning them separately in the two stage approach . 
equally spaced . We find the weights ( w ; w . ) by solving : To compare an existing architecture to the proposed 

architecture defined herein , FIGS . 5A - 5B illustrate the archi 
tecture of a typical system using a data - driven classifier , and 

Eq . 16 35 the architecture of the proposed full - data - driven classifica min Ylwij – Wi.j + 1 | + tion architecture , respectively . In particular , in the system 
500a as shown in FIG . 5A , the feature extraction 510 
transforms the traffic 520 into predefined feature vectors 530 

max { 0,1 - y " ( $ ( x ; 0 ) , w ) } | based on training flows 540. During training , a data - driven 
40 classifier 550 trains a prediction model 560 from the training 

feature vectors 530. After deployment , the system classifies 
In this alternative example , the objective is a sum of two the incoming testing vectors 535 ( based on testing flows 

convex terms . The second term is the standard hinge - loss 545 ) to find malware 580. Even though the classifier is 
surrogate of the training classification error . The first term is trained from the data automatically , the efficacy is negatively 
a regularization encouraging weights of neighboring bins to 45 influenced by the fact that the representation was manually 
be similar . If it happens that the j - th and j + 1 bin of the i - th predefined . Conversely , in the system 500b in FIG . 5B , 
histogram have the same weight , that is , when Wij = W ; using the proposed full - data - driven classification architec 
then these bins can be effectively merged to a single bin ture , the parameters of the representation 590 are learned 
because : from the training data automatically , which leads to higher 

50 efficacy and more detected malware samples . 
Wij ! ( x ;; 0 1,3–1,0.j ) + W ; j + 10 ( xz ; 0 ; j0i.j + 1 ) = 2 wp ( x ; 0 ij - 1,0i , The following example illustrates an experimental evalu 

j + 1 ) Eq . 17 ation . In particular , using synthetic data , a two - dimensional 
The trade - off constant y > 0 can be used to control the ( 2D ) point ( x , y ) is described by five real - valued features ( x , 

number of merged bins . A large value of y will result in y , x , y² , xy ) . Each feature is split to b = 100 bins . As the 
massive merging and consequently in a small number of 55 parameter y changes ( indicating the granularity of the rep 
resulting bins . Hence the objective of the problem in Eq . 16 resentation ) , the optimization forces the nearby bins to 
is to minimize the training error and to simultaneously assume similar values . This is seen in FIGS . 6A - 6M , where 
control the number of resulting bins . The number of bins on the right : nearby bins are filled as y increases . On the left , 
influences the expressive power of the classifier and thus the optimal decision boundary is shown using the learned 
also the generalization of the classifier . ( The optimal setting 60 weights and the representation . FIGS . 6A - 6M thus illustrate 
of à is found by tuning its value on a validation set . ) the effect of y parameter on the resulting representation and 
Once the problem in Eq . 16 is solved , the techniques the decision boundary of the classifier , particularly as y 

herein may thus use the resulting weights w * to construct a ranges from 0.000 through various values up to 0.030 ( i.e. , 
new set of bin edges * such that the original bins are as y increases , the bins get smoother , increasing robustness 
merged if the neighboring weights have the same sign , i.e. , 65 of the classifier ) . 
if wiwi 1,1 + 1 * > 0 . This implies that the new bin edges 6 * are The parameter y indicates the expressiveness and com 
a subset of the original bin edges 0 , however , their number plexity of the representation . As such it directly influences 

m 

Vi , j + 1 - W , 
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the training error [ trn err ] and testing error [ tst err ] . With shown in FIG . 9 are merely examples for illustration , and 
higher values of y , the representation achieves better gen certain other steps may be included or excluded as desired . 
eralization ( using a simpler representation ) , as illustrated in Further , while a particular order of the steps is shown , this 
FIG . 7. That is , FIG . 7 illustrates the effect of the y parameter ordering is merely illustrative , and any suitable arrangement 
on the training and testing error , where higher values of y 5 of the steps may be utilized without departing from the scope 
achieve better generalization . of the embodiments herein . 

Illustratively , input network traffic data for the evaluation The techniques described herein , therefore , provide for of the techniques herein may be obtained by creating groups refined learning data representation for classifiers , which of flows ( e.g. , “ bags ” ) consisting of communication from a have general applicability and wide coverage to machine user to a host in a given time window . The bags may be a 10 learning in general , though are also specifically relevant to representation of samples , that is , instead of classifying 
flows individually , flows are grouped into bags , where each network traffic data . In particular , the techniques herein 
bag contains flows that are related to each other ( e.g. , having simultaneously train optimal representation and linear 
the same user and target domain ) . Positive examples were weights in a joint optimization procedure , which uses a 
obtained for various categories of malware , where different 15 parameter to control the expressiveness and generalization 
subsets of malware categories were used for training and of the representation . 
testing in order to show that the detector generalizes across It should be noted that representation learning , in general , 
different malware families . Several different configurations is a widely studied topic ( see , e.g. , Bengio , Yoshua , Aaron 
were tested to highlight the impact of the new technique , Courville , and Pierre Vincent . “ Representation learning : A 
e.g. , 256 bins down to 8 bins , and then the dynamically 20 review and new perspectives ” , Pattern Analysis and 
created bins ( SVM ) as defined herein . Machine Intelligence , IEEE Transactions on 35.8 ( 2013 ) : 

The precision - recall curve is depicted in FIG . 8 to com 1798-1828 ) . However , the techniques herein , notably , pro 
pare the efficacy results of classifiers based on the proposed vide a highly computationally optimization to representation 
representation with predefined number of bins per feature learning . In particular , as described above , the initial fine 
( e.g. , 8 , 16 , 64 , 128 , and 256 bins ) with the same represen- 25 grained discretization with many histogram bins is itera 
tation , but when the parameters are learned from the training tively adjusted herein by optimizing a criterion function . 
data ( using bin optimization described above ) . Most impor When training a decision function , the algorithm herein tantly , when the parameters of the representation are trained optimizes the true objective ( or its surrogate ) which includes to maximize the separability between malicious and legiti the discretization parameters with the parameters of the 
mate samples , the resulting classifier performs in order of a 30 decision function . This is in contrast to previous methods magnitude better than a classifier with manually predefined that rely on two separate steps , discretization and classifier parameters . 

FIG . 9 illustrates an example simplified procedure for learning , which can deviate from the true objective . Addi 
refined learning data representation for classifiers in accor tionally , the parameter learning is transformed herein into a 
dance with one or more embodiments described herein . For 35 convex optimization problem that can be solved effectively , 
example , a non - generic , specifically configured device ( e.g. , while other techniques do not provide a global solution and 
device 200 ) may perform procedure 900 by executing stored resort to a greedy strategy , where the features are processed 
instructions ( e.g. , process 248 ) . The procedure 900 may start sequentially 
at step 905 , and continues to step 910 , where , as described While there have been shown and described illustrative 
in greater detail above , a learning machine device initializes 40 embodiments that provide for refined learning data repre 
thresholds of a data representation of one or more binarized sentation for classifiers , it is to be understood that various 
or real - valued data features , the thresholds specifying a first other adaptations and modifications may be made within the 
number of pre - defined bins ( e.g. , uniform and equidistant spirit and scope of the embodiments herein . For example , 
bins ) . Note that where the features comprise a feature pair , the embodiments have been shown and described herein 
correlation between feature values of the feature pair may be 45 with specific relation to computer networks and network 
used for the data representation , as mentioned above . traffic classification . However , the embodiments in their 

As detailed above , in step 915 adjacent bins of the broader sense are not as limited , and may , in fact , be used 
pre - defined bins that have substantially similar weights are with other types of learning machines and classifiers . In 
reciprocally merged , where the merging resulting in a sec addition , while certain formulas are shown , as well as 
ond number of refined bins that is less than the first number 50 specific inputs to such formulas , other suitable formulas and 
( i.e. , consolidating the bins into a smaller number of bins ) . inputs may be used , accordingly . Also , while the techniques 
Substantially similar weights , as mentioned above , may generally describe a convex programming based technique 
generally comprise one or more of equal weights , similar as a primary example , other techniques may be suitably 
weights , weights having a same sign , etc. applied for the techniques herein to be effective . 

During the merging , in step 920 , the device is also 55 The foregoing description has been directed to specific 
learning weights of a linear decision rule associated with the embodiments . It will be apparent , however , that other varia 
one or more data features . As such , in step 925 , a data - driven tions and modifications may be made to the described 
representation for a data - driven classifier ( e.g. , a linear embodiments , with the attainment of some or all of their 
SVM ) may be established based on the refined bins and the advantages . For instance , it is expressly contemplated that 
learned weights . 60 the components and / or elements described herein can be 
Once established , then in step 930 the device can use the implemented as software being stored on a tangible ( non 

data - driven classifier ( e.g. , on traffic in a computer network ) transitory ) computer - readable medium ( e.g. , disks / CDs / 
and / or can share the data - driven classifier with one or more RAM / EEPROM / etc . ) having program instructions execut 
other devices ( e.g. , to then use the data - driven classifier ) . ing on a computer , hardware , firmware , or a combination 

The illustrative simplified procedure 900 may then end in 65 thereof . Accordingly this description is to be taken only by 
step 935. It should be noted that while certain steps within way of example and not to otherwise limit the scope of the 
procedure 900 may be optional as described above , the steps embodiments herein . Therefore , it is the object of the 
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appended claims to cover all such variations and modifica resulting in a second number of refined bins that is 
tions as come within the true spirit and scope of the less than the first number ; 
embodiments herein . simultaneously learn weights of a linear decision rule 
What is claimed is : associated with the one or more data features while 
1. A method , comprising : merging ; and 
initializing , at a learning machine device , thresholds of a establish a data - driven representation for a data - driven 

classifier based on the refined bins and learned data representation of one or more data features , the 
thresholds specifying a first number of pre - defined weights . 
bins ; 11. The apparatus as in claim 10 , wherein the pre - defined 

reciprocally merging adjacent bins of the pre - defined bins 10 bins are uniform and equidistant . 
having substantially similar weights , the merging 12. The apparatus as in claim 10 , wherein the process 
resulting in a second number of refined bins that is less when executed is further operable to : 

use the data - driven classifier on traffic in a computer than the first number ; network . simultaneously learning weights of a linear decision rule 
associated with the one or more data features while 15 13. The apparatus as in claim 10 , wherein the process 

when executed is further operable to : merging ; and share the data - driven classifier with one or more other establishing a data - driven representation for a data - driven devices . classifier based on the refined bins and learned weights . 
2. The method as in claim 1 , wherein the pre - defined bins 14. The apparatus as in claim 10 , wherein the data - driven 

are uniform and equidistant . classifier is a linear support vector machine ( SVM ) . 
3. The method as in claim 1 , further comprising : 15. The apparatus as in claim 10 , wherein substantially 
using the data - driven classifier on traffic in a computer similar weights comprise one or more of equal weights , 
network . similar weights , and weights having a same sign . 

4. The method as in claim 1 , further comprising : 16. The apparatus as in claim 10 , wherein the one or more 
sharing the data - driven classifier with one or more other 25 features comprise a feature pair , and wherein correlation 

devices . between feature values of the feature pair is used for the data 
5. The method as in claim 1 , wherein the data - driven representation 

classifier is a linear support vector machine ( SVM ) . 17. The apparatus as in claim 10 , wherein the one or more 
features are binarized . 6. The method as in claim 1 , wherein substantially similar 

weights comprise one or more of equal weights , similar 30 18. The apparatus as in claim 10 , wherein the one or more 
features are real - valued . weights , and weights having a same sign . 

7. The method as in claim 1 , wherein the one or more 19. A tangible , non - transitory , computer - readable media 
features comprise a feature pair , and wherein correlation having software encoded thereon , the software when 
between feature values of the feature pair is used for the data executed by a processor operable to : 
representation . initialize thresholds of a data representation of one or 

8. The method as in claim 1 , wherein the one or more more data features , the thresholds specifying a first 
features are binarized . number of pre - defined bins ; 

9. The method as in claim 1 , wherein the one or more reciprocally merge adjacent bins of the pre - defined bins 
features are real - valued . having substantially similar weights , the merging 

10. An apparatus , comprising : resulting in a second number of refined bins that is less 
than the first number ; a processor configured to execute one or more processes ; 

and simultaneously learn weights of a linear decision rule 
associated with the one or more data features while a memory configured to store a process executable by the 

processor , the process when executed operable to : merging ; and 
initialize thresholds of a data representation of one or establish a data - driven representation for a data - driven 
more data features , the thresholds specifying a first classifier based on the refined bins and learned weights . 
number of pre - defined bins ; 20. The computer - readable media as in claim 19 , wherein 

reciprocally merge adjacent bins of the pre - defined bins the pre - defined bins are uniform and equidistant . 
having substantially similar weights , the merging 
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