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time , image resolution , and image contrast , which in turn 
drives up costs of MRI imaging . The vast majority of 
installed MRI scanners operate using at least at 1.5 or 3 tesla 
( T ) , which refers to the field strength of the main magnetic 
field BO of the scanner . A rough cost estimate for a clinical 
MRI scanner is on the order of one million dollars per tesla , 
which does not even factor in the substantial operation , 
service , and maintenance costs involved in operating such 
MRI scanners . Additionally , conventional high - field MRI 
systems typically require large superconducting magnets 
and associated electronics to generate a strong uniform static 
magnetic field ( BO ) in which a subject ( e.g. , a patient ) is 
imaged . Superconducting magnets further require cryogenic 
equipment to keep the conductors in a superconducting 
state . The size of such systems is considerable with a typical 
MRI installment including multiple rooms for the magnetic 
components , electronics , thermal management system , and 
control console areas , including a specially shielded room to 
isolate the magnetic components of the MRI system . The 
size and expense of MRI systems generally limits their 
usage to facilities , such as hospitals and academic research 
centers , which have sufficient space and resources to pur 
chase and maintain them . The high cost and substantial 
space requirements of high - field MRI systems results in 
limited availability of MRI scanners . As such , there are 
frequently clinical situations in which an MRI scan would be 
beneficial , but is impractical or impossible due to the above 
described limitations and as described in further detail 
below . 

BACKGROUND 

SUMMARY 

[ 0002 ] Magnetic resonance imaging ( MRI ) provides an 
important imaging modality for numerous applications and 
is widely utilized in clinical and research settings to produce 
images of the inside of the human body . MRI is based on 
detecting magnetic resonance ( MR ) signals , which are elec 
tromagnetic waves emitted by atoms in response to state 
changes resulting from applied electromagnetic fields . For 
example , nuclear magnetic resonance ( NMR ) techniques 
involve detecting MR signals emitted from the nuclei of 
excited atoms upon the re - alignment or relaxation of the 
nuclear spin of atoms in an object being imaged ( e.g. , atoms 
in the tissue of the human body ) . Detected MR signals may 
be processed to produce images , which in the context of 
medical applications , allows for the investigation of internal 
structures and / or biological processes within the body for 
diagnostic , therapeutic and / or research purposes . 
[ 0003 ] MRI provides an attractive imaging modality for 
biological imaging due to its ability to produce non - invasive 
images having relatively high resolution and contrast with 
out the safety concerns of other modalities ( e.g. , without 
needing to expose the subject to ionizing radiation , such as 
X - rays , or introducing radioactive material into the body ) . 
Additionally , MRI is particularly well suited to provide soft 
tissue contrast , which can be exploited to image subject 
matter that other imaging modalities are incapable of satis 
factorily imaging . Moreover , MR techniques are capable of 
capturing information about structures and / or biological 
processes that other modalities are incapable of acquiring . 
However , there are a number of drawbacks to conventional 
MRI techniques that , for a given imaging application , may 
include the relatively high cost of the equipment , limited 
availability ( e.g. , difficulty and expense in gaining access to 
clinical MRI scanners ) , and the length of the image acqui 

[ 0005 ] Some embodiments are directed to a method com 
prising : generating a magnetic resonance ( MR ) image from 
input MR spatial frequency data using a neural network 
model that comprises : a first neural network sub - model 
configured to process spatial frequency domain data ; and a 
second neural network sub - model configured to process 
image domain data . 
[ 0006 ] Some embodiments are directly to a system , com 
prising least one computer hardware processor ; and at 
least one non - transitory computer - readable storage medium 
storing processor - executable instructions that when 
executed by the at least one computer hardware processor , 
cause the at least one computer hardware processor to 
perform : generating a magnetic resonance ( MR ) image from 
MR spatial frequency data using a neural network model . 
The neural network includes that comprises : a first neural 
network portion configured to process data in a spatial 
frequency domain ; and a second neural network portion 
configured to process data in an image domain . 
[ 0007 ] Some embodiments are directed to at least one 
non - transitory computer - readable storage medium storing 
processor - executable instructions that , when executed by at 
least one computer hardware processor , cause the at least 
one computer hardware processor to perform : generating a 
magnetic resonance ( MR ) image from MR spatial frequency 
data using a neural network model . The neural network 
model comprises a first neural network portion configured to 
process data in a spatial frequency domain ; and a second 
neural network portion configured to process data in an 
image domain . 
[ 0008 ] Some embodiments are directed to a method , com 
prising : generating a magnetic resonance ( MR ) image from 
input MR spatial frequency data using a neural network 

sition process . 
[ 0004 ] To increase imaging quality , the trend in clinical 
and research MRI has been to increase the field strength of 
MRI scanners to improve one or more specifications of scan 
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model that comprises a neural network sub - model config 
ured to process spatial frequency domain data and having a 
locally connected neural network layer . 
[ 0009 ] Some embodiments are directed to a system com 
prising : at least one processor ; at least one non - transitory 
computer - readable storage medium storing processor - ex 
ecutable instructions that , when executed , cause the at least 
one processor to perform : generating a magnetic resonance 
( MR ) image from input MR spatial frequency data using a 
neural network model that comprises a neural network 
sub - model configured to process spatial frequency domain 
data and having a locally connected neural network layer . 
[ 0010 ] At least one non - transitory computer - readable stor 
age medium storing processor - executable instructions that , 
when executed , cause the at least one processor to perform : 
generating a magnetic resonance ( MR ) image from input 
MR spatial frequency data using a neural network model 
that comprises a neural network sub - model configured to 
process spatial frequency domain data and having a locally 
connected neural network layer . 
[ 0011 ] Some embodiments provide for at least one non 
transitory computer - readable storage medium storing pro 
cessor - executable instructions that , when executed by at 
least one computer hardware processor , cause the at least 
one computer hardware processor to perform a method 
comprising : generating a magnetic resonance ( MR ) image 
from input MR spatial frequency data using a neural net 
work model comprising one or more neural network blocks 
including a first neural network block , wherein the first 
neural network block is configured to perform data consis 
tency processing using a non - uniform Fourier transforma 
tion for transforming image domain data to spatial frequency 
domain data . 
[ 0012 ] Some embodiments provide for a magnetic reso 
nance imaging ( MRI ) system , comprising : a magnetics 
system comprising : a B , magnet configured to provide a B. 
field for the MRI system ; gradient coils configured to 
provide gradient fields for the MRI system ; and at least one 
RF coil configured to detect magnetic resonance ( MR ) 
signals ; a controller configured to : control the magnetics 
system to acquire MR spatial frequency data ; generate an 
MR image from MR spatial frequency data using a neural 
network model that comprises : a first neural network portion 
configured to process data in a spatial frequency domain ; 
and a second neural network portion configured to process 
data in an image domain . 
[ 0013 ] Some embodiments a magnetic resonance imaging 
( MRI ) system , comprising : a magnetics system comprising : 
a B , magnet configured to provide a B , field for the MRI 
system ; gradient coils configured to provide gradient fields 
for the MRI system ; and at least one RF coil configured to 
detect magnetic resonance ( MR ) signals ; a controller con 
figured to : control the magnetics system to acquire MR 
spatial frequency data ; generate an MR image from input 
MR spatial frequency data using a neural network model 
that comprises a neural network sub - model configured to 
process spatial frequency domain data and having a locally 
connected neural network layer . 
[ 0014 ] Some embodiments provide for a method , com 
prising : generating a magnetic resonance ( MR ) image from 
input MR spatial frequency data using a neural network 
model comprising one or more neural network blocks 
including a first neural network block , wherein the first 
neural network block is configured to perform data consis 

tency processing using a non - uniform Fourier transforma 
tion for transforming image domain data to spatial frequency 
domain data . 
[ 0015 ] Some embodiments provide for a system , compris 
ing : at least one computer hardware processor ; and at least 
one non - transitory computer - readable storage medium stor 
ing processor - executable instructions that , when executed 
by the at least one computer hardware processor , cause the 
at least one computer hardware processor to perform a 
method comprising : generating a magnetic resonance ( MR ) 
image from input MR spatial frequency data using a neural 
network model comprising one or more neural network 
blocks including a first neural network block , wherein the 
first neural network block is configured to perform data 
consistency processing using a non - uniform Fourier trans 
formation for transforming image domain data to spatial 
frequency domain data . 
[ 0016 ] Some embodiments provide for a magnetic reso 
nance imaging ( MRI ) system , comprising : a magnetics 
system comprising : a B , magnet configured to provide a B. 
field for the MRI system ; gradient coils configured to 
provide gradient fields for the MRI system ; and at least one 
RF coil configured to detect magnetic resonance ( MR ) 
signals ; a controller configured to : control the magnetics 
system to acquire MR spatial frequency data using a non 
Cartesian sampling trajectory ; and generate an MR image 
from the acquired MR spatial frequency data using a neural 
network model comprising one or more neural network 
blocks including a first neural network block , wherein the 
first neural network block is configured to perform data 
consistency processing using a non - uniform Fourier trans 
formation . 
[ 0017 ] The foregoing is a non - limiting summary of the 
invention , which is defined by the attached claims . 

BRIEF DESCRIPTION OF THE DRAWINGS 
[ 0018 ] Various aspects and embodiments of the disclosed 
technology will be described with reference to the following 
figures . It should be appreciated that the figures are not 
necessarily drawn to scale . 
[ 0019 ] FIG . 1A illustrates the architecture of an example 
neural network model for generating a magnetic resonance 
( MR ) image from input MR spatial frequency data , in 
accordance with some embodiments of the technology 
described herein . 
[ 0020 ] FIG . 1B illustrates the architecture of another 
example neural network model for generating an MR image 
from input MR spatial frequency data , in accordance with 
some embodiments of the technology described herein . 
[ 0021 ] FIG . 1C illustrates the architecture of yet another 
example neural network model for generating an MR image 
from input MR spatial frequency data , in accordance with 
some embodiments of the technology described herein . 
[ 0022 ] FIG . 2A is a flowchart of an illustrative process 200 
for generating an MR image from input MR spatial fre 
quency data using a neural network model , in accordance 
with some embodiments of the technology described herein . 
[ 0023 ] FIG . 2B is a flowchart of an illustrative process for 
processing MR spatial frequency data in the spatial fre 
quency domain , which may be part of the illustrative process 
200 , to obtain output spatial frequency data , in accordance 
with some embodiments of the technology described herein . 
[ 0024 ] FIG . 2C is a flowchart of an illustrative process for 
processing spatial frequency domain data , which may be 
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part of the illustrative process 200 , to generate an MR image , 
in accordance with some embodiments of the technology 
described herein . 
[ 0025 ] FIG . 2D is a flowchart of another illustrative pro 
cess for processing image domain data , which may be part 
of the illustrative process 200 , to generate an MR image , in 
accordance with some embodiments of the technology 
described herein . 
[ 0026 ] FIG . 3 illustrates the performance of the techniques 
described herein for generating an MR image from input 
MR spatial frequency data using a neural network model 
having a locally - connected layer for operating on data in the 
spatial frequency domain , in accordance with some embodi 
ments of the technology described herein . 
[ 0027 ] FIG . 4 illustrates the performance of the techniques 
described herein for generating an MR image from input 
MR spatial frequency data using different embodiments of 
the neural network model described herein . 
[ 0028 ] FIG . 5A illustrates the architecture of another 
example neural network model for generating a magnetic 
resonance ( MR ) image from input MR spatial frequency 
data , in accordance with some embodiments of the technol 
ogy described herein . 
[ 0029 ] FIG . 5B illustrates the architecture of another 
example neural network model for generating a magnetic 
resonance ( MR ) image from input MR spatial frequency 
data , in accordance with some embodiments of the technol 
ogy described herein . 
[ 0030 ] FIG . 5C illustrates the architecture of another 
example neural network model for generating a magnetic 
resonance ( MR ) image from input MR spatial frequency 
data , in accordance with some embodiments of the technol 
ogy described herein . 
[ 0031 ] FIGS . 6A - 6C illustrate the distribution of weights 
of a fully - connected network layer in a neural network 
sub - model configured to process spatial frequency domain 
data , in accordance with some embodiments of the technol 
ogy described herein . 
[ 0032 ] FIG . 7 illustrates results of generating MR images , 
from under - sampled spatial frequency domain data sampled 
using a non - Cartesian sampling trajectory , using the tech 
niques described herein and a zero - padded inverse Fourier 
transform , in accordance with some embodiments of the 
technology described herein . 
[ 0033 ] FIG . 8 illustrates aspects of training a neural net 
work model for generating MR images from under - sampled 
spatial frequency domain data , in accordance with some 
embodiments of the technology described herein . 
[ 0034 ] FIG . 9A illustrates aspects of generating synthetic 
complex - valued images for training a neural network model 
for generating MR images from under - sampled spatial fre 
quency domain data , in accordance with some embodiments 
of the technology described herein . 
[ 0035 ] FIG . 9B illustrates a loss function , having spatial 
frequency and image domain components , which may be 
used for training a neural network model for generating MR 
images from under - sampled spatial frequency domain data , 
in accordance with some embodiments of the technology 
described herein . 
[ 0036 ] FIGS . 10A - 10H illustrate reconstructed MR 
images using a zero - padded inverse discrete Fourier trans 
form ( DFT ) and using neural network models , trained with 
and without transfer learning , in accordance with some 
embodiments of the technology described herein . 

[ 0037 ] FIG . 11 illustrates performance of some of the 
neural network models for generating MR images from 
under - sampled spatial frequency domain data , in accordance 
with some embodiments of the technology described herein . 
[ 0038 ] FIG . 12 further illustrates performance of some of 
the neural network models for generating MR images from 
under - sampled spatial frequency domain data , in accordance 
with some embodiments of the technology described herein . 
[ 0039 ] FIG . 13A is a diagram of an illustrative architecture 
of an example neural network model for generating MR 
images from input MR spatial frequency data , in accordance 
with some embodiments of the technology described herein . 
[ 0040 ] FIG . 13B is a diagram of one type of architecture 
of a block of the neural network model of FIG . 13A , in 
accordance with some embodiments of the technology 
described herein . 
[ 0041 ] FIG . 13C is a diagram of an illustrative architecture 
of a data consistency block , which may be part of the block 
shown in FIG . 13B , in accordance with some embodiments 
of the technology described herein . 
[ 0042 ] FIG . 13D is a diagram of an illustrative architec 
ture of a convolutional neural network block , which may be 
part of the block shown in FIG . 13B , in accordance with 
some embodiments of the technology described herein . 
[ 0043 ] FIG . 13E is a diagram of another type of architec 
ture of a block of the neural network model of FIG . 13A , in 
accordance with some embodiments of the technology 
described herein . 
[ 0044 ] FIG . 14 is a flowchart of an illustrative process 
1400 for using a neural network model to generate an MR 
image from input MR spatial frequency data obtained using 
non - Cartesian sampling , in accordance with some embodi 
ments of the technology described herein . 
[ 0045 ] FIG . 15A illustrates T1 - weighted MR images 
reconstructed by using conventional neural network models 
and neural network models , in accordance with some 
embodiments of the technology described herein . 
[ 0046 ] FIG . 15B illustrates T2 - weighted MR images 
reconstructed by using conventional neural network models 
and neural network models , in accordance with some 
embodiments of the technology described herein . 
[ 0047 ] FIG . 15C illustrates reconstructed MR images at 
different stages of processing by neural network models , in 
accordance with some embodiments of the technology 
described herein . 
[ 0048 ] FIG . 16 is a schematic illustration of a low - field 
MRI system , in accordance with some embodiments of the 
technology described herein . 
[ 0049 ] FIGS . 17A and 17B illustrate bi - planar permanent 
magnet configurations for a B , magnet , in accordance with 
some embodiments of the technology described herein . 
[ 0050 ] FIGS . 18A and 18B illustrate views of a portable 
MRI system , in accordance with some embodiments of the 
technology described herein . 
[ 0051 ] FIG . 18C illustrates a portable MRI system per 
forming a scan of the head , in accordance with some 
embodiments of the technology described herein . 
[ 0052 ] FIG . 18D illustrates a portable MRI system per 
forming a scan of the knee , in accordance with some 
embodiments of the technology described herein . 
[ 0053 ] FIG . 19 is a diagram of an illustrative computer 
system on which embodiments described herein may be 
implemented . 
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DETAILED DESCRIPTION 

[ 0054 ] Conventional magnetic resonance imaging tech 
niques require a time - consuming MRI scan for a patient in 
a tight chamber in order to obtain high - resolution cross 
sectional images of the patient's anatomy . Long scan dura 
tion limits the number of patients that can be scanned with 
MR scanners , causes patient discomfort , and increases the 
cost of scanning . The inventors have developed techniques 
for generating medically - relevant , clinically - accepted MRI 
images from shorter - duration MRI scans , thereby improving 
conventional MRI technology . 
[ 0055 ] The duration of an MRI scan is proportional to the 
number of data points acquired in the spatial frequency 
domain ( sometimes termed " k - space " ) . Accordingly , one 
way of reducing the duration of the scan is to acquire fewer 
data points . For example , fewer samples may be acquired in 
the frequency encoding direction , the phase encoding direc 
tion , or both the frequency and phase encoding directions . 
However , when fewer data points are obtained than what is 
required by the spatial Nyquist criteria ( this is often termed 
“ under - sampling ” k - space ) , the MR image generated from 
the collected data points by an inverse Fourier transform 
contains artifacts due to aliasing . As a result , although 
scanning time is reduced by under - sampling in the spatial 
frequency domain , the resulting MRI images have poor 
quality and may be unusable , as the introduced artifacts may 
severely degrade image quality , fidelity , and interpretability . 
[ 0056 ] Conventional techniques for reconstructing MR 
images from under - sampled k - space data also suffer from 
drawbacks . For example , compressed sensing techniques 
have been applied to the problem of generating an MR 
image from under - sampled spatial frequency data by using 
a randomized k - space under - sampling trajectory that creates 
incoherent aliasing , which in turn is eliminated using an 
iterative image reconstruction process . However , the itera 
tive reconstruction techniques require a large amount of 
computational resources , do not work well without exten 
sive empirical parameter tuning , and often result in a lower 
resolution MR image with lost details . 
[ 0057 ] Deep learning techniques have also been used for 
reconstructing MR images from under - sampled k - space 
data . The neural network parameters underlying such tech 
niques may be estimated using fully - sampled data ( data 
collected by sampling spatial frequency space so that the 
Nyquist criterion is not violated ) and , although training such 
models may be time - consuming , the trained models may be 
applied in real - time during acquisition because the neural 
network - based approach to image reconstruction is signifi 
cantly more computationally efficient than the iterative 
reconstruction techniques utilized in the compressive sens 
ing context . 
[ 0058 ] The inventors have recognized that conventional 
deep learning MR image reconstruction techniques may be 
improved upon . For example , conventional deep learning 
MR image reconstruction techniques operate either purely in 
the image domain or in the spatial frequency domain and , as 
such , fail to take into account correlation structure both in 
the spatial frequency domain and in the image domain . As 
another example , none of the conventional deep learning 
MR image reconstruction techniques ( nor the compressed 
sensing techniques described above ) work with non - Carte 
sian ( e.g. , radial , spiral , rosette , variable density , Lissajou , 
etc. ) sampling trajectories , which are commonly used to 
accelerate MRI acquisition and are also robust to motion by 

the subject . By contrast , the inventors have developed novel 
deep learning techniques for generating high - quality MR 
images from under - sampled spatial frequency data that : ( 1 ) 
operate both in the spatial frequency domain and in the 
image domain ; and ( 2 ) enable reconstruction of MR images 
from non - Cartesian sampling trajectories . As described 
herein , the deep learning techniques developed by the inven 
tors improve upon conventional MR image reconstruction 
techniques ( including both compressed sensing and deep 
learning techniques ) and improve MR scanning technology 
by reducing the duration of scans while generating high 
quality MR images . 
[ 0059 ] Some embodiments described herein address all of 
the above - described issues that the inventors have recog 
nized with conventional techniques for generating MR 
images from under - sampled spatial frequency domain data . 
However , not every embodiment described below addresses 
every one of these issues , and some embodiments may not 
address any of them . As such , it should be appreciated that 
embodiments of the technology provided herein are not 
limited to addressing all or any of the above - described issues 
of conventional techniques for generating MR images from 
under - sampled spatial frequency domain data . 
[ 0060 ] Accordingly , some embodiments provide for a 
method of generating an MR image from under - sampled 
spatial frequency domain data , the method comprising gen 
erating a magnetic resonance ( MR ) image from input MR 
spatial frequency data using a neural network model that 
comprises : ( 1 ) a first neural network sub - model configured 
to process spatial frequency domain data ; and ( 2 ) a second 
neural network sub - model configured to process image 
domain data . In this way , the techniques described herein 
operate both in the spatial - frequency and image domains . 
[ 0061 ] In some embodiments , the first neural network 
sub - model is applied prior to the second neural network 
sub - model . In this way , a neural network is applied to 
spatial - frequency domain data , prior to transforming the 
spatial - frequency domain data to the image domain , to take 
advantage of the correlation structure in the spatial fre 
quency domain data . Accordingly , in some embodiments , 
generating the MR image may include : ( 1 ) processing the 
input MR spatial frequency data using the first neural 
network sub - model to obtain output MR spatial frequency 
data ; ( 2 ) transforming the output MR spatial frequency data 
to the image domain to obtain input image - domain data ; and 
( 3 ) processing the input image - domain data using the second 
neural network sub - model to obtain the MR image . 
[ 0062 ] In some embodiments , the first neural network 
sub - model may include one or more convolutional layers . In 
some embodiments , one or more ( e.g. , all ) of the convolu 
tional layers may have a stride greater than one , which may 
provide for down - sampling of the spatial - frequency data . In 
some embodiments , the first neural network sub - model may 
include one or more transposed convolutional layers , which 
may provide for up - sampling of the spatial frequency data . 
Additionally or alternatively , the first neural network sub 
model may include at least one locally - connected layer , at 
least one data consistency layer , and / or at least one complex 
conjugate symmetry layer . In some embodiments , the 
locally - connected layer may include a respective set of 
parameter values for each data point in the MR spatial 
frequency data . 
[ 0063 ] In some embodiments , the first neural network 
sub - model includes at least one convolutional layer , a 
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locally - connected layer , and at least one transposed convo 
lutional layer , and processing the input MR spatial fre 
quency data using the first neural network sub - model may 
include : ( 1 ) applying the at least one convolutional layer to 
the input MR spatial frequency data ; ( 2 ) applying the 
locally - connected layer to data obtained using output of the 
at least one convolutional layer ; and ( 3 ) applying the at least 
one transposed convolutional layer to data obtained using 
output of the locally - connected layer . In such embodiments , 
the first neural network sub - model may be thought of as 
having a “ U ” structure consisting of a down - sampling path 
( the left arm of the “ U ” —implemented using a series of 
convolutional layers one or more of which have a stride 
greater than one ) , a locally - connected layer ( the bottom of 
the “ U ” ) , and an up - sampling path ( the right arm of the 
“ U ” —implemented using a series of transposed convolu 
tional layers ) . 
[ 0064 ] In some embodiments , using a transposed convo 
lutional layer ( which is sometimes termed a fractionally 
sliding convolutional layer or a deconvolutional layer ) may 
lead to checkerboard artifacts in the upsampled output . To 
address this issue , in some embodiments , upsampling may 
be performed by a convolutional layer in which the kernel 
size is divisible by the stride length , which may be thought 
of a “ sub - pixel convolutional layer . Alternatively , in other 
embodiments , upsampling to a higher resolution may be 
performed without relying purely on a convolutional layer to 
do so . For example , the upsampling may be performed by 
resizing the input image ( e.g. , using interpolation such as 
bilinear interpolation or nearest - neighbor interpolation ) and 
following this operation by a convolutional layer . It should 
be appreciated that such an approach may be used in any of 
the embodiments described herein instead of and / or in 
conjunction with a transposed convolutional layer . 
[ 0065 ] In some embodiments , the first neural network 
sub - model further takes into account the complex - conjugate 
symmetry of the spatial frequency data by including a 
complex - conjugate symmetry layer . In some such embodi 
ments , the complex - conjugate symmetry layer may be 
applied at the output of the transposed convolutional layers 
so that processing the input MR spatial frequency data using 
the first neural network sub - model includes applying the 
complex - conjugate symmetry layer to data obtained using 
output of the at least one transposed convolutional layer . 
[ 0066 ] In some embodiments , the first neural network 
sub - model further includes a data consistency layer to 
ensure that the application of first neural network sub - model 
to the spatial frequency data does not alter the values of the 
spatial frequency data obtained by the MR scanner . In this 
way , the data consistency layer forces the first neural net 
work sub - model to interpolate missing data from the under 
sampled spatial frequency data without perturbing the 
under - sampled spatial frequency data itself . In some 
embodiments , the data consistency layer may be applied to 
the output of the complex - conjugate symmetry layer . 
[ 0067 ] In some embodiments , the first neural network 
sub - model includes a residual connection . In some embodi 
ments , the first neural network sub - model includes one or 
more non - linear activation layers . In some embodiments , the 
first neural network sub - model includes a rectified linear 
unit activation layer . In some embodiments , the first neural 
network sub - model includes a leaky rectified linear unit 
activation layer . 

[ 0068 ] The inventors have also recognized that improved 
MR image reconstruction may be achieved by generating 
MR images directly from spatial frequency data samples , 
without gridding the spatial frequency data , as is often done 
in conventional MR image reconstruction techniques . In 
gridding , the obtained spatial frequency data points are 
mapped to a two - dimensional ( 2D ) Cartesian grid ( e.g. , the 
value at each grid point is interpolated from data points 
within a threshold distance ) and a 2D discrete Fourier 
transform ( DFT ) is used to reconstruct the image from the 
grid values . However , such local interpolation introduces 
reconstruction errors . 
[ 0069 ] The inventors have developed multiple deep - learn 
ing techniques for reconstructing MR images from data 
obtained using non - Cartesian sampling trajectories . Some of 
the techniques involve using a non - uniform Fourier trans 
formation ( e.g. , a non - uniform fast Fourier transformation 
NuFFT ) at each of multiple blocks part of a neural network 
model in order to promote data consistency with the ( ungrid 
ded ) spatial frequency data obtained by an MRI system . 
Such data consistency processing may be performed in a 
number of different ways , though each may make use of the 
non - uniform Fourier transformation ( e.g. , as represented by 
the forward operator A described herein ) , and the input MR 
spatial frequency data y . For example , in some embodi 
ments , a non - uniform Fourier transformation may be used in 
a neural network model block to transform image domain 
data , which represents the MR reconstruction in the block , 
to spatial frequency data so that the MR reconstruction in the 
block may be compared with the spatial frequency data 
obtained by the MRI system . A neural network model 
implementing this approach may be termed the non - uniform 
variational network ( NVN ) and is described herein including 
with reference to FIGS . 13A - 13D . 
[ 0070 ] As another example , in some embodiments , the 
non - uniform Fourier transformation may be applied to the 
spatial frequency data , and the result may be provided as 
input to each of one or more neural network blocks of a 
neural network model for reconstructing MR images from 
spatial frequency data . These innovations provide for a 
state - of - the art deep learning technique for reconstructing 
MR images from spatial frequency data obtained using a 
non - Cartesian sampling trajectory . A neural network model 
implementing this approach may be termed the generalized 
non - uniform variational network ( GNVN ) and is described 
herein including with reference to FIGS . 13A , 13D , and 
13E . 
[ 0071 ] Accordingly , some embodiments provide a method 
for generating a magnetic resonance ( MR ) image from input 
MR spatial frequency data using a neural network model 
comprising one or more neural network blocks including a 
first neural network block , wherein the first neural network 
block is configured to perform data consistency processing 
using a non - uniform Fourier transformation ( e.g. , a non 
uniform fast Fourier transform - NuFFT ) for transforming 
image domain data to spatial frequency domain data . The 
MR spatial frequency data may have been obtained using a 
non - Cartesian sampling trajectory , examples of which are 
provided herein . In some embodiments , the neural network 
model may include multiple blocks each of which is con 
figured to perform data consistency processing using the 
non - uniform Fourier transformation . 
[ 0072 ] In some embodiments , the method for generating 
the MR image from input MR spatial frequency data 
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includes : obtaining the input MR spatial frequency data ; 
generating an initial image from the input MR spatial 
frequency data using the non - uniform Fourier transforma 
tion ; and applying the neural network model to the initial 
image at least in part by using the first neural network block 
to perform data consistency processing using the non 
uniform Fourier transformation . 
[ 0073 ] In some embodiments , the data consistency pro 
cessing may involve applying a data consistency block to the 
data , which may apply a non - uniform Fourier transforma 
tion to the data to transform it from the image domain to the 
spatial frequency domain where it may be compared against 
the input MR spatial frequency data . In other embodiments , 
the data consistency processing may involve applying an 
adjoint non - uniform Fourier transformation to the input MR 
spatial frequency data and providing the result as the input 
to each of one or more neural network blocks ( e.g. , as input 
to each of one or more convolutional neural network blocks 
part of the overall neural network model ) . 
[ 0074 ] In some embodiments , the first neural network block is configured to perform data consistency processing 
using the non - uniform Fourier transformation at least in part 
by performing the non - uniform Fourier transformation on 
data by applying a gridding interpolation transformation , a 
fast Fourier transformation , and a de - apodization transfor 
mation to the data . In this way , the non - uniform Fourier 
transformation A is represented as a composition of three 
transformations a gridding interpolation transformation G , 
a fast Fourier transformation F , and a de - apodization trans 
formation D such that A - GF , D , and applying A to the data 
may be performed by applying the transformation D , F , and 
G , to the data in that order ( e.g. , as shown in FIG . 13C ) . The 
gridding interpolation transformation may be determined 
based on the non - Cartesian sampling trajectory used to 
obtain the initial MR input data . In some embodiments , 
applying the gridding interpolation transformation to the 
data may be performed using sparse graphical processing 
unit ( GPU ) matrix multiplication . Example realizations of 
these constituent transformations are described herein . 
[ 0075 ] In some embodiments , the neural network model to 
reconstruct MR images from spatial frequency data may 
include multiple neural network blocks each of which 
includes : ( 1 ) a data consistency block configured to perform 
the data consistency processing ; and ( 2 ) a convolutional 
neural network block comprising one or more convolutional 
layers ( e.g. , having one or more convolutional and / or trans 
pose convolutional layers , having a U - net structure , etc. ) . 
Such a neural network model may be termed herein as a 
non - uniform variational network ( NVN ) . 
[ 0076 ] In some embodiments , the data consistency block 
is configured to apply the non - uniform Fourier transforma 
tion to a first image , provided as input to the data consistency 
block , to obtain first MR spatial frequency data ; and apply 
an adjoint non - uniform Fourier transformation to a differ 
ence between the first MR spatial frequency data and the 
input MR spatial frequency data . In some embodiments , 
applying the non - uniform Fourier transformation to the first 
image domain data comprises : applying , to the first image 
domain data , a de - apodization transformation followed by a 
Fourier transformation , and followed by a gridding interpo 
lation transformation . 
[ 0077 ] In some embodiments , applying the first neural 
network block to image domain data , the applying compris 
ing : applying the data consistency block to image domain 

data to obtain first output ; applying the plurality of convo 
lutional layers to the image domain data to obtain second 
output ; and determining a linear combination of the first and 
second output . 
[ 0078 ] In some embodiments , the neural network model to 
reconstruct MR images from spatial frequency data may 
include multiple neural network blocks each of which 
includes a plurality of convolutional layers configured to 
receive as input : ( 1 ) image domain data ( e.g. , representing 
the networks current reconstruction of the MR data ) ; and ( 2 ) 
output obtained by applying an adjoint non - uniform Fourier 
transformation to the input MR spatial frequency data . Such 
a neural network model may be termed herein as a non 
uniform variational network ( GNVN ) . In some embodi 
ments , the plurality of convolutional layers is further con 
figured to receive as input : output obtained by applying the 
non - uniform Fourier transformation and the adjoint non 
uniform Fourier transformation to the image domain data . 
[ 0079 ] Another approach developed by the inventors for 
reconstructing an MR image from input MR spatial fre 
quency data , but without the use of gridding , is to use at least 
one fully connected layer in the spatial frequency domain . 
Accordingly , in some embodiments , the first neural network 
sub - model may include at least one fully connected layer 
that is to be applied directly to the spatial frequency data 
points obtained by the scanner . The data points are not 
mapped to a grid ( through gridding and / or any other type of 
local interpolation ) prior to the application of the at least one 
fully connected layer . In some embodiments , the data points 
may be irregularly spaced prior to application of the at least 
one fully connected layer . 
[ 0080 ] In some of the embodiments in which the first 
neural network sub - model includes a fully - connected layer , 
the fully connected layer is applied to the real part of the 
spatial frequency domain data , and the same fully - connected 
layer is applied to the imaginary part of the spatial frequency 
domain data . In other words , the data is channelized and the 
same fully connected layer is applied to both the real and 
imaginary data channels . 
[ 0081 ] Alternatively , in some of the embodiments in 
which the first neural network sub - model includes a fully 
connected layer , the first neural network sub - model includes 
a first fully - connected layer for applying to the real part of 
the spatial frequency domain data and a second fully 
connected layer for applying to the imaginary part of the 
spatial frequency domain data . In some embodiments , the 
first and second fully - connected layers share at least some 
parameter values ( e.g. , weights ) . In some embodiments , the 
output of the first and second fully - connected layers is 
transformed using a Fourier transformation ( e.g. , a two 
dimensional inverse discrete Fourier transformation ) to 
obtain image - domain data . In turn , the image - domain data 
may be provided as input to the second neural network 
sub - model . 
[ 0082 ] The mention of a 2D Fourier transformation in the 
preceding paragraph should not be taken to imply that the 
techniques described herein are limited to operating on 
two - dimensional data ( e.g. , on spatial frequency domain 
and / or image domain data corresponding to a 2D MR image 
of a brain “ slice ” ) . In some embodiments , the techniques 
described herein may be applied to 3D data ( e.g. , spatial 
frequency domain and / or image domain data corresponding 
to a stack of 2D MR images of different respective brain 
slices ) . 



US 2020/0033431 A1 Jan. 30 , 2020 
7 

[ 0083 ] In some embodiments , batch normalization may be 
applied to the output of fully - connected layer ( s ) prior to 
using the Fourier transformation to obtain image - domain 
data . 
[ 0084 ] In some embodiments , the second neural network 
sub - model comprises at least one convolutional layer and at 
least one transposed convolutional layer . In some embodi 
ments , the second neural network sub - model comprises a 
series of blocks comprising respective sets of neural network 
layers , each of the plurality of blocks comprising at least one 
convolutional layer and at least one transposed convolu 
tional layer . In some embodiments , each of the plurality of 
blocks further comprises : a Fourier transformation layer , a 
data consistency layer , and an inverse Fourier transforma 
tion layer . 
[ 0085 ] In some embodiments , the neural network model 
used for generating MR images from under - sampled spatial 
frequency data may be trained using a loss function com 
prising a spatial frequency domain loss function and an 
image domain loss function . In some embodiments , the loss 
function is a weighted sum of the spatial frequency domain 
loss function and the image domain loss function . In some 
embodiments , the spatial frequency domain loss function 
includes mean - squared error . 
[ 0086 ] In some embodiments , the techniques described 
herein may be used for generating MR images from under 
sampled spatial frequency data may be adapted for applica 
tion to spatial frequency data collected using a low - field 
MRI system , including , by way of example and not limita 
tion , any of the low - field MR systems described herein and 
in U.S. Patent Application Publication No. “ 2018/0164390 ” , 
titled “ ELECTROMAGNETIC SHIELDING FOR MAG 
NETIC RESONANCE IMAGING METHODS AND 
APPARATUS , ” which is incorporated by reference herein in 
its entirety . 
[ 0087 ] As used herein , “ high - field ” refers generally to 
MRI systems presently in use in a clinical setting and , more 
particularly , to MRI systems operating with a main magnetic 
field ( i.e. , a B. field ) at or above 1.5 T , though clinical 
systems opera between 0.5 T and 1.5 T are often also 
characterized as “ high - field . ” Field strengths between 
approximately 0.2 T and 0.5 T have been characterized as 
“ mid - field ” and , as field strengths in the high - field regime 
have continued to increase , field strengths in the range 
between 0.5 T and 1 T have also been characterized as 
mid - field . By contrast , " low - field ” refers generally to MRI 
systems operating with a B , field of less than or equal to 
approximately 0.2 T , though systems having a B , field of 
between 0.2 T and approximately 0.3 T have sometimes 
been characterized as low - field as a consequence of 
increased field strengths at the high end of the high - field 
regime . Within the low - field regime , low - field MRI systems 
operating with a B , field of less than 0.1 T are referred to 
herein as “ very low - field ” and low - field MRI systems oper 
ating with a B , field of less than 10 mT are referred to herein 
as " ultra - low field . ” 
[ 0088 ] In order to train the neural network models 
described herein to generate MR images from ( e.g. , under 
sampled ) spatial frequency data obtained by a low - field MRI 
system , training data obtained using the low - field MRI 
system is needed . However , there are few low - field MRI 
scanners on the market and little low - field MRI data avail 
able for training such neural network models . To address this 
limitation , the inventors have developed a novel two - stage 

training technique for training a neural network model for 
generating MR images from spatial frequency data obtained 
by a low - field MRI system . In the first stage , the neural 
network model ( e.g. , any of the neural network models 
described herein having a first and a second neural network 
sub - model ) is trained using a set of images obtained using a 
“ high - field ” or a “ mid - field " MR system and , subsequently , 
be adapted by using a set of images obtained using a 
low - field MRI system . 
[ 0089 ] Following below are more detailed descriptions of 
various concepts related to , and embodiments of , methods 
and apparatus for generating MR images from spatial fre 
quency domain data . It should be appreciated that various 
aspects described herein may be implemented in any of 
numerous ways . Examples of specific implementations are 
provided herein for illustrative purposes only . In addition , 
the various aspects described in the embodiments below 
may be used alone or in any combination , and are not limited 
to the combinations explicitly described herein . 
[ 0090 ] FIG . 1A illustrates the architecture of an example 
neural network model for generating a magnetic resonance 
( MR ) image from input MR spatial frequency data , in 
accordance with some embodiments of the technology 
described herein . As shown in FIG . 1A , the neural network 
model 100 comprises first neural network sub - model 102 
configured to process spatial frequency domain data , inverse 
fast Fourier transform ( IFFT ) layer 112 configured to trans 
form spatial frequency domain data to image domain data , 
and second neural network sub - model 120 configured to 
process image domain data . After initial spatial frequency 
MR data is obtained using an MR scanner ( e.g. , using any 
of the low - field MR scanners described herein or any other 
suitable type of MR scanner ) , the initial spatial frequency 
MR data may be processed using the first neural network 
sub - model 102 to obtain output MR spatial frequency data 
111. The MR spatial frequency data 111 is then transformed 
by IFFT layer 112 to obtain input image - domain data 113 , 
which is processed by second neural network sub - model 120 
to obtain an MR image 127 . 
[ 0091 ] As shown in FIG . 1A , the first neural network 
sub - model 102 includes one or more convolutional layers 
104 , a locally - connected layer 106 , one or more transposed 
convolutional layers 108 , a residual connection 109 , com 
plex - conjugate symmetry layer 105 and a data consistency 
layer 110 . 
[ 0092 ] When the first neural network sub - model 102 is 
applied to initial MR spatial frequency data , the initial MR 
spatial frequency data is first processed by one or more 
convolutional layers 104 , then by locally - connected layer 
106 , then by transposed convolutional layers 108. In some 
embodiments the convolutional layer ( s ) 104 may be used to 
downsample the data and the transposed convolutional lay 
ers may be used to upsample the data . In such embodiments , 
these three processing steps may be considered as providing 
a “ U ” shaped neural network architecture , with the convo 
lutional layer ( s ) 104 providing a down - sampling path ( left 
arm of the “ U ” ) , the locally - connected layer 106 being at the 
bottom of the “ U ” , and the transposed convolutional layers 
108 providing an up - sampling path ( right arm of the " U " ) . 
[ 0093 ] In the illustrated embodiment of FIG . 1A , the 
convolutional layer ( s ) 104 include m , convolutional layers . 
In some embodiments , m0 may be 1 , 2 , 3 , 4 , 5 , or any 
number of layers between 1 and 20 layers . In some embodi 
ments , one or more of the m0 convolutional layers may have 
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a stride greater than or equal to one . In some embodiments , 
one or more of the m0 convolutional layers has a stride 
greater than one , which provides for down - sampling or 
pooling the data through processing by such layers . 
[ 0094 ] In the illustrated embodiment of FIG . 1A , the 
transposed convolutional layer ( s ) 108 include m , transposed 
convolutional layers . In the illustrated embodiment of FIG . 
1A , the number of convolutional layer ( s ) 104 and the 
number of transposed convolutional layer ( s ) 108 is the 
same , but the number of convolutional and transposed 
convolutional layers may be different in other embodiments . 
[ 0095 ] In some embodiments , the locally - connected layer 
106 is provided to exploit local correlation with K - space . In 
some embodiments , the locally - connected layer 106 is not a 
convolutional layer ( where the same set of weights is 
applied across different portions of the data ) , but instead has 
a respective set of weights for each data point in the spatial 
frequency domain data . In the illustrated embodiment of 
FIG . 1A , the locally - connected layer is placed between the 
down - sampling and up - samplings paths at the bottom of the 
“ U ” structure so that it would have fewer parameters ( since 
the resolution of the data is the lowest at this point ) , which 
reduces the number of parameters that have to be learned 
during training 
[ 0096 ] In some embodiments , the locally - connected layer 
may account for energy density variations in the spatial 
frequency domain ( e.g. , the center region in the spatial 
frequency domain has a higher energy density than the 
peripheral region ) . In the illustrative embodiment of FIG . 
1A , the locally - connected layer 106 operates in the spatial 
frequency domain and works to interpolate the missing data 
( due to under - sampling ) directly in the spatial frequency 
domain . In practice , the locally - connected layer , which has 
far fewer parameters than a fully - connected layer , but more 
parameters than convolutional layer , provides a good bal 
ance between training time and capability to interpolate the 
missing data points using the local contextual correlation of 
the spatial frequency domain data . 
[ 0097 ] It should be appreciated that using a locally - con 
nected layer to account for energy density variations in the 
spatial frequency domain is a novel approach developed by 
the inventors . Previous approaches split the spatial - fre 
quency domain into three square regions , and the data in 
each of the three regions was input into a separate model 
consisting of a stack of convolutional layers ( so three 
separate models for three different square regions ) . By 
contrast , using a locally - connected layer does not involve 
partitioning k space into three square regions , and instead 
involves assigning independent weights for each sign pixel , 
which accounts for the various energy density in a more 
general and flexible manner than previous approaches , 
resulting in a performance improvement . 
[ 0098 ] FIG . 3 illustrates the performance improvement 
obtained by generating an MR image from input MR spatial 
frequency data using a neural network model having a 
locally - connected layer . As can be seen in middle column of 
FIG . 3 , the MR image generated from a convolutional layer 
model without a locally - connected layer generates artifacts 
( artificial streaks ) that deteriorate the image quality . By 
contrast , as shown in the right column of FIG . 3 , using a 
neural network model having a sub - model with a locally 
connected layer ( e.g. , locally connected layer 106 ) elimi 

nates such artifacts and produces an image closer to the 
original image ( left column of FIG . 3 ) in terms of mean 
squared error . 
[ 0099 ] Returning back to FIG . 1A , after data is processed 
by the layers 104 , 106 , and 108 , the data is provided to a 
complex - conjugate symmetry layer 105 , also termed the 
k - space symmetry layer , whose output is provided as input 
to data consistency layer 110. The output of the data 
consistency layer 110 , which is also the output of the first 
neural network sub - model , is then provided as input to IFFT 
layer 112 
[ 0100 ] In some embodiments , the complex - conjugate 
symmetry layer 105 performs interpolation based on the 
complex - conjugate symmetry in the spatial frequency 
domain ( whereby S ( x , y ) = S ' ( - x , -y ) with ( x , y ) being coor 
dinates of a data point and S ' representing the complex 
conjugation of S ) . In some embodiments , applying the 
complex - conjugate symmetry layer 105 to spatial frequency 
domain data involves symmetrically mapping any missing 
points from existing samples . For example , if a value were 
obtained for point ( x , y ) , but no corresponding value were 
obtained for point ( -x , -y ) , the complex - conjugate symme 
try layer may be used to provide the value for point ( -x , -y ) 
as the complex - conjugate of the obtained value for the point 
( x , y ) . Using the complex - conjugate symmetry layer 105 
accelerates the convergence of training the neural network 
model and improves the quality of images produces by the 
neural network model , as illustrated in the right panel of 
FIG . 4. Indeed , as shown in the right panel of FIG . 4 , using 
the complex - conjugate symmetry layer allows fewer train 
ing epochs to be used when training the neural network 
model while obtaining improved model performance , which 
is measured in this illustrative example by relative pixel 
intensity variation in the center region of the images 
between the model reconstructed image and the fully 
sampled image . 
[ 0101 ] In some embodiments , the data consistency layer 
110 may be used to ensure that the application of first neural 
network sub - model to the spatial frequency data does not 
alter the values of the spatial frequency data obtained by the 
MR scanner . To the extent any such value was modified by 
other layers in the first neural network sub - model ( e.g. , by 
convolutional layer ( s ) 104 , locally connected layer 106 , and 
transposed convolutional layer ( s ) 108 ) , the modified values 
are replaced by the original values . In this way , the data 
consistency layer forces the first neural network sub - model 
to interpolate missing data from the under - sampled spatial 
frequency data without perturbing the under - sampled spatial 
frequency data itself . 
[ 0102 ] In some embodiments , any of the neural network 
layers may include an activation function , which may be 
non - linear . In some embodiments , the activation function 
may be a rectified linear unit ( ReLU ) activation function , a 
leaky ReLU activation function , a hyperbolic tangent , a 
sigmoid , or any other suitable activation function , as aspects 
of the technology described herein are not limited in this 
respect . For example , one or more of the convolutional 
layer ( s ) 104 may include an activation function . 
[ 0103 ] After the spatial frequency data is processed by the 
data consistency layer 110 , the data is provided as input to 
the IFFT layer 112 , which transforms the spatial frequency 
data to the image domain — the output is initial image 
domain data 113. The transformation may be performed 
using a discrete Fourier transform , which may be imple 
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[ 0109 ] As shown in the illustrative embodiment of FIG . 
1A , after the convolutional layers of convolutional block 
122 are applied , the data may be transformed into the spatial 
frequency domain so that the complex - conjugate symmetry 
and the data consistency blocks may be applied , after which 
the data is transformed back into the image domain , and one 
or more other convolutional blocks may be applied . 
[ 0110 ] In the embodiment illustrated in FIG . 1A , each of 
the convolutional blocks 122 , 124 , and 126 includes com 
plex - conjugate symmetry and data consistency blocks . 
However , in other embodiments , one or more ( or all ) of the 
convolutional blocks part of second neural network sub 
model 120 may not have either one or both of these blocks , 
as aspects of the technology described herein are not limited 
in this respect . 
[ 0111 ] FIG . 1B illustrates the architecture of another 
example neural network model 140 for generating MR 
images from input MR spatial frequency data , in accordance 
with some embodiments of the technology described herein . 
Neural network model 140 has a first neural network sub 
model 142 with a convolutional layer 146 instead of a 
locally - connected layer ( e.g. , in contrast with first neural 
network sub - model 102 of model 100 that has a locally 
connected layer 106 ) . Such an embodiment may be advan 
tageous as the convolutional layer 142 has fewer parameters 
to learn during training than the locally - connected layer 106 . 
In other respects , neural network models 140 and 100 are the 
same . 

mented using a fast Fourier transformation , in some embodi 
ments . The initial image domain data 113 , output by the 
IFFT layer 112 , is provided as input to the second neural 
sub - model 120 . 
[ 0104 ] As shown in FIG . 1A the second neural network 
sub - model 120 includes multiple convolutional blocks 122 , 
124 , and 126. Convolutional block 122 may include one or 
more convolutional layers 128 , an FFT layer 130 , a com 
plex - conjugate symmetry layer 105 , a data consistency 
layer , an IFFT layer 134 and a residual connection . Each of 
the blocks 122 , 124 , and 126 may have the same neural 
network architecture ( e.g. , these blocks may have the same 
types of layers arranged in the same sequence ) , though the 
various parameter values for the layers may vary ( e.g. , the 
weights of the convolutional layers in block 122 may be 
different from that of block 124 ) . Although in the illustrative 
embodiment of FIG . 1A , the second neural network sub 
model 120 includes three convolutional blocks , this is by 
way of example , as in other embodiments the second neural 
network sub - model 120 may include any suitable number of 
convolutional blocks ( e.g. , 1 , 2 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 
13 , 14 , or 15 ) , as aspects of the technology described herein 
are not limited in this respect . 
[ 0105 ] When the second neural network sub - model 120 is 
applied to initial image domain data 113 obtained at the 
output of the IFFT block 112 , the convolutional blocks 122 , 
124 , and 126 are applied to initial image domain data 113 in 
that order . The application of convolutional block 122 is 
described next , and it should be appreciated that the con 
volutional blocks 124 and 126 may be applied in a similar 
way to the image domain data provided as input to them . 
[ 0106 ] As shown in FIG . 1A , convolutional block 122 
includes at least one convolutional layer 128 , followed by an 
FFT layer 130 , a complex - conjugate symmetry layer 105 , 
data consistency layer 132 , and IFFT layer 134 . 
[ 0107 ] In some embodiments , convolutional block 128 
includes one or more convolutional layers with stride greater 
than 1 ( e.g. , 2 or greater ) to downsample the image , followed 
by one or more transposed convolutional layers with stride 
greater than 1 ( e.g. , 2 or greater ) , which upsample the image 
to its original size . This structure of down - sampling fol 
lowed by up - sampling allows operations to be performed at 
different resolutions , which helps the neural network model 
to capture both local and global features . In turn , this helps 
to eliminate image artifacts that may result from under 
sampling in the spatial frequency domain . In this illustrative 
embodiment , the convolutional layers do not include skip 
connections , which may consume a substantial amount of 
memory . For example , in some embodiments , convolutional 
block 128 has five layers with the number of filters being 16 , 
32 , 64 , 32 , and 2 , respectively . In some embodiments , each 
of the filters may be a 3x3 filter with a Leaky ReLU 
activation , though in other embodiments different size filters 
and / or different activation functions may be used . 
[ 0108 ] The impact of variable resolution layers is shown 
in FIG . 4 , left panel . Indeed , as shown in the left panel of 
FIG . 4 , using the variable resolution layers allows fewer 
training epochs to be used when training the neural network 
model while obtaining improved model performance , which 
is measured in this illustrative example by relative pixel 
intensity variation in the center region of the images 
between the model reconstructed image and the fully 
sampled image . 

[ 0112 ] FIG . 1C illustrates the architecture of yet another 
example neural network model 150 for generating MR 
images from input MR spatial frequency data , in accordance 
with some embodiments of the technology described herein . 
Neural network model 150 has a first neural network sub 
model 152 , with convolutional block 154 and transposed 
convolutional block 158. However , unlike corresponding 
convolutional block 104 and transposed convolutional block 
108 of neural network model 100 , the convolutional blocks 
154 and 158 contain convolutional ( and transposed convo 
lutional ) layers using a stride of 1. As a result , the first neural 
network sub - model 152 does not perform up - sampling or 
down - sampling . Such an architecture may be advantageous 
when there is a large volume of training data available . 
[ 0113 ] FIG . 2A is a flowchart of an illustrative process 200 
for generating an MR image from input MR spatial fre 
quency data using a neural network model , in accordance 
with some embodiments of the technology described herein . 
Process 200 may be implemented using any suitable neural 
network architecture described herein including any of the 
neural network architectures described with reference to 
FIGS . 1A - 1C and 5A - 5C . Process 200 may be executed 
using any suitable computing device ( s ) , as aspects of the 
technology described herein are not limited in this respect . 
For example , in some embodiments , process 200 may be 
executed by a computing device communicatively coupled 
to or part of an MR imaging system . 
[ 0114 ] Process 200 begins at act 202 , where spatial fre 
quency domain data is obtained . In some embodiments , the 
spatial frequency domain data may be obtained by using an 
MR scanner including any of the MR scanners described 
herein . In other embodiments , the spatial frequency domain 
data may have been obtained by an MR scanner prior to the 
execution of process 200 , stored , and the stored data may be 
accessed during act 202 . 
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[ 0115 ] In some embodiments , the spatial frequency 
domain data may be under - sampled relative to the Nyquist 
sampling criterion . For example , in some embodiments , the 
spatial frequency domain data may include less than 90 % ( or 
less than 80 % , or less than 75 % , or less than 70 % , or less 
than 65 % , or less than 60 % , or less than 55 % , or less than 
50 % , or less than 40 % , or less than 35 % , or any percentage 
between 25 and 100 ) of the number of data samples required 
by the Nyquist criterion . 
( 0116 ] The spatial frequency domain data obtained at act 
202 may be ( or may have been ) obtained by an MR scanner 
using any suitable pulse sequence and sampling scheme . For 
example , in some embodiments , the spatial frequency 
domain data may be gathered using a Cartesian sampling 
scheme . In other embodiments , the spatial frequency domain 
data may be gathered using a non - Cartesian sampling 
scheme ( e.g. , radial , spiral , rosette , Lissajou , etc. ) . 
[ 0117 ] Next , process 200 proceeds to act 204 , where the 
MR spatial frequency data obtained at act 202 is processed 
using a first neural network sub - model ( e.g. , sub - model 102 
described with reference to FIG . 1A , sub - model 142 
described with reference to FIG . 1B , sub - model 152 
described with reference to FIG . 1C , sub - model 502 
described with reference to FIG . 5A , sub - model 522 
described with reference to FIG . 5B , and sub - model 532 
described with reference to FIG . 5C ) . Illustrative examples 
of how act 204 may be implemented are described with 
reference to FIGS . 2B and 2C . 
[ 0118 ] Next , process 200 proceeds to act 206 , where the 
spatial frequency domain data obtained at the completion of 
act 204 is transformed to obtain initial image domain data 
( e.g. , using a Fourier transformation ) . 
[ 0119 ] Next , process 200 proceeds to act 208 , where initial 
the image domain data obtained at the completion of act 206 
is processed a second neural network sub - model ( e.g. , 
sub - model 120 described with reference to FIG . 1A , sub 
model 510 described with reference to FIG . 5A ) to generate 
an MR image . An illustrative example of how act 208 may 
be implemented is described with reference to FIG . 2D . 
[ 0120 ] FIG . 2B is a flowchart of an illustrative process for 
processing MR spatial frequency data in the spatial fre 
quency domain , which may be part of the illustrative process 
200 , to obtain output spatial frequency data , in accordance 
with some embodiments of the technology described herein . 
In particular , FIG . 2B shows an illustrative embodiment for 
implementing act 204 of process 200 . 
[ 0121 ] As shown in FIG . 2B , act 204 may be implemented 
using acts 212-218 . At act 212 , one or more convolutional 
layers may be applied to the spatial frequency domain data 
obtained at act 202. In some embodiments , the convolutional 
layer ( s ) applied at act 212 may be part of block 104 
described with reference to FIG . 1A or block 154 described 
with reference to FIG . 1C . In some embodiments , the 
convolutional layer ( s ) may include any suitable number of 
layers including any number of layers in the range of 1-20 
layers . In some embodiments , the convolutional layer ( s ) 
may be implemented using a stride greater than one ( e.g. , 2 ) 
to downsample the data . In other embodiments , the convo 
lutional layer ( s ) may be implemented using a stride of 1 . 
[ 0122 ] Next , at act 214 , a locally connected layer is 
applied to spatial frequency domain data obtained at the 
completion of act 212. In some embodiments , the local 
convolutional layer may be the local convolutional layer 106 
described with reference to FIG . 1A . In some embodiments , 

the locally - connected layer has a respective set of weights 
for each data point in the spatial frequency domain data . 
[ 0123 ] Next , at act 216 , one or more transposed convolu 
tional layers are applied to spatial frequency domain data 
obtained at the completion of act 214. In some embodi 
ments , the transposed convolutional layer ( s ) may be the 
transposed convolutional layer ( s ) part of block 108 
described with reference to FIG . 1A or block 158 described 
with reference to FIG . 1C . In some embodiments , the 
transposed convolutional layer ( s ) may upsample the data . 
[ 0124 ] Next , at act 218 , a complex conjugate symmetry 
layer is applied to the spatial frequency domain data output 
at the completion of act 216. In some embodiments , the 
complex conjugate symmetry layer may be the complex 
conjugate symmetry layer 105 described with reference to 
FIG . 1A . As described herein , applying the complex - conju 
gate symmetry layer 105 to spatial frequency domain data 
may involve symmetrically mapping any missing points 
from existing samples . For example , if a value were 
obtained for point ( x , y ) , but no corresponding value were 
obtained for point ( -x , -y ) , the complex - conjugate symme 
try layer may be used to provide the value for point ( -x , -y ) 
as the complex - conjugate of the obtained value for the point 
( x , y ) . 
[ 0125 ] Next , at act 220 , a data consistency layer is applied 
to the spatial frequency domain data output at the comple 
tion of act 218. In some embodiments , the data consistency 
layer may be the data consistency layer 110 described with 
reference to FIG . 1A . As described herein , the data consis 
tency layer may be used to ensure that the application of first 
neural network sub - model to the spatial frequency data does 
not alter the values of the spatial frequency data obtained by 
the MR scanner . 
[ 0126 ] FIG . 2C is a flowchart of an illustrative process for 
processing spatial frequency data , which may be part of the 
illustrative process 200 , to generate an MR image , in accor 
dance with some embodiments of the technology described 
herein . In particular , FIG . 2C shows another illustrative 
embodiment for implementing act 204 of process 200 . 
[ 0127 ] As shown in FIG . 2C , act 204 may be implemented 
using acts 222 and 224. At act 222 , one or more fully 
connected layers are applied to the spatial frequency data 
obtained at act 202. In some embodiments , the fully con 
nected layer ( s ) applied at act 222 may be fully connected 
layer 502 described with reference to FIG . 5A . As described 
herein , the fully connected layer represents a learned map 
ping from non - Cartesian to Cartesian coordinates from data , 
which allows MR images to be reconstructed from non 
Cartesian samples without relying on conventional gridding 
or other interpolation schemes , which are not data depen 
dent . 
[ 0128 ] In some embodiments , at act 222 , the spatial fre 
quency data obtained at act 202 is split into real and 
imaginary portions and the same fully connected layer is 
applied to each of the two portions . Equivalently , one may 
consider these data as being provided to a fully connected 
layer with shared weights for the real and imaginary chan 
nels . Such a weight sharing scheme ensures that the same 
interpolation operation is applied to both the real and 
imaginary channels , which preserves the underlying spatial 
frequency domain symmetry throughout the process . In 
addition , sharing the weights between the real and imaginary 
portions reduces the number of trainable parameters in the 
model by a factor of two . However , in other embodiments , 



US 2020/0033431 A1 Jan. 30 , 2020 
11 

the spatial frequency data may be fed to a fully connected 
layer with partial or no weight sharing between the real and 
imaginary channels . 
[ 0129 ] Next , at act 224 , batch normalization is applied so 
that the subsequent layer receives input having a substan 
tially O mean and a substantially unit ( or any other suitable 
constant ) variance . 
[ 0130 ] It should be appreciated that the process of FIG . 2C 
is illustrative and that there are variations . For example , in 
some embodiments , the batch normalization may be omit 
ted . 
[ 0131 ] FIG . 2D is a flowchart of another illustrative pro 
cess for processing image - domain data , which may be part 
of the illustrative process 200 , to generate an MR image , in 
accordance with some embodiments of the technology 
described herein . In particular , FIG . 2D shows an illustrative 
embodiment for implementing act 208 of process 200 . 
[ 0132 ] As shown in FIG . 2D , act 208 may be implemented 
using acts 230-236 and decision block 238. In particular , at 
act 230 , one or more convolutional layers are applied to 
image domain data obtained at act 206 by transforming 
spatial frequency domain data to the image domain . In some 
embodiments , the convolutional layer ( s ) applied at act 230 
may be part of block 128 shown in FIG . 1A or block 512 
shown in FIG . 5A . In some embodiments , the convolutional 
layer ( s ) may include any suitable number of layers including 
any number of layers in the range of 1-20 layers . In some 
embodiments , the convolutional layer ( s ) may be imple 
mented using a stride greater than one ( e.g. , 2 ) to down 
sample the data . In other embodiments , the convolutional 
layer ( s ) may be implemented using a stride of 1 . 
[ 0133 ] Next , at act 232 , one or more transposed convolu 
tional layers may be applied to the image - domain data 
output at the completion of act 230. In some embodiments , 
the transposed convolutional layer ( s ) applied at act 232 may 
be part of transpose block 128 shown in FIG . 1A or block 
512 shown in FIG . 5A . In some embodiments , the convo 
lutional layer ( s ) may include any suitable number of layers 
including any number of layers in the range of 1-20 layers . 
In some embodiments , the transposed convolutional layer ( s ) 
may be implemented to upsample the data ( e.g. , using a 
fractional stride ) . 
[ 0134 ] Next , at act 234 , a complex - conjugate symmetry 
layer may be applied to the data . As the complex - conjugate 
symmetry layer is applied in the spatial frequency domain , 
the image domain data output at the completion of act 232 
is transformed to the spatial frequency domain prior to the 
application of the complex - conjugate symmetry layer . In 
some embodiments , the complex conjugate symmetry layer 
may be the complex - conjugate symmetry layer 105 
described with reference to FIG . 1A . 
[ 0135 ] Next , at act 236 , a data consistency layer may be 
applied to the data . In some embodiments , the data consis 
tency layer may be applied to spatial frequency domain data 
output at completion of act 234. In other embodiments , if act 
234 were omitted , the image domain data output at the 
completion of act 232 may be transformed to the spatial 
frequency domain and the data consistency layer may be 
applied thereto . In some embodiments , the data consistency 
layer may be the data consistency layer 110 described with 
reference to FIG . 1A . 
[ 0136 ] Next , at decision block 238 , a determination is 
made as to whether one or more additional image - domain 
processing blocks are to be applied . When it is determined 

that no further blocks are to be applied , the process com 
pletes . Otherwise , the process returns to act 230 , via the 
“ YES ” branch , and acts 230-236 and decision block 238 are 
repeated . For example , as shown in FIG . 1A , after block 122 
is applied to the image domain data , it may be determined 
that block 124 is to be applied to the data . 
[ 0137 ] It should be appreciated that the process of FIG . 2D 
is illustrative and that there are variations . For example , in 
some embodiments , the image - domain data may be pro 
cessed purely in the image domain without application of the 
complex - conjugate symmetry layer and the data consistency 
layer . 
[ 0138 ] FIG . 5A illustrates the architecture of another 
example neural network model 500 for generating a mag 
netic resonance ( MR ) image from input MR spatial fre 
quency data , in accordance with some embodiments of the 
technology described herein . 
[ 0139 ] As shown in FIG . 5A , the neural network model 
500 comprises first neural network sub - model 502 config 
ured to process spatial frequency domain data , inverse fast 
Fourier transform ( IFFT ) layer 508 configured to transform 
spatial frequency domain data to image domain data , and 
second neural network sub - model 510 configured to process 
image domain data . After initial spatial frequency MR data 
is obtained using an MR scanner ( e.g. , using any of the 
low - field MR scanners described herein or any other suitable 
type of MR scanner ) , the initial spatial frequency MR data 
may be processed using the first neural network sub - model 
502 to obtain output MR spatial frequency data 511. The MR 
spatial frequency data 511 is then transformed by IFFT layer 
508 to obtain initial image - domain data 513 , which is 
processed by second neural network sub - model 510 to 
obtain an MR image 518 . 
[ 0140 ] As shown in FIG . 5A , the initial spatial frequency 
domain MR data is split into a real portion 504 ( e.g. , 
magnitudes of the complex - valued data ) and imaginary 
portion 506 ( e.g. , phases of the complex - valued data ) . The 
first neural network sub - model 502 includes a fully con 
nected layer that operates on the real portion 504 and 
imaginary portion 506. In the embodiment shown in FIG . 
5A , the fully connected layer shares weights between the 
real and imaginary channels . As such , the fully connected 
layer applies the same operations to both the real and 
imaginary channels , which preserves the underlying spatial 
frequency domain symmetry throughout the process . In 
addition , sharing the weights between the real and imaginary 
portions reduces the number of trainable parameters in the 
model by a factor of two . However , in other embodiments 
( e.g. , the embodiment of FIG . 5C ) , the spatial frequency data 
may be fed to a fully connected layer with partial or no 
weight sharing between the real and imaginary channels . 
[ 0141 ] In some embodiments , when the neural network 
model including the fully - connected layer is trained using 
input MR images generated using the same sample trajec 
tory , the fully - connected layer learns a data - dependent map 
ping from non - Cartesian to Cartesian coordinates , which can 
be used to perform a data - dependent gridding of non 
Cartesian spatial - frequency data that may be generated by an 
MR scanner operating in accordance with a non - Cartesian 
sequence . This is illustrated further in FIGS . 6A - 6C . 
[ 0142 ] FIG . 6A shows an illustrative embodiment in 
which each data point in the spatial frequency domain has a 
corresponding 128x128 weight matrix having a weight for 
each location in a 128x128 output k - space , creating a 
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non - local interpolation . The distribution of weights for three 
spatial frequency domain data points ( # 300 , # 2800 , and 
# 5000 ) is shown in FIG . 6B . The 2D distributions of these 
same three data points are shown in FIG . 6C , with zoomed 
in views to show the details of the weight distribution . 
[ 0143 ] As shown in the 1D and 2D weight distributions of 
FIGS . 6B - 6C , when plotting a two - dimensional weight map 
of a particular spatial frequency domain data point , it is 
predominantly the weights in a local neighborhood of the 
data point that have non - negligible values , with other 
weights having values close to zero . The weight distribution 
indicates that the mapping performed by the fully - connected 
layer performs a local interpolation . It should be noted that 
the first neural network sub - model 502 does not include a 
data consistency layer , which allows the first neural network 
sub - model 502 to process non - Cartesian samples . 
[ 0144 ] Returning to FIG . 5A , after the spatial frequency 
data is processed by the first neural network model 502 , the 
data is provided as input to the IFFT layer 508 , which 
transforms the spatial frequency data to the image domain 
the output is initial image domain data 513. The transfor 
mation may be performed using a discrete Fourier trans 
form , which may be implemented using a fast Fourier 
transformation , in some embodiments . The initial image 
domain data 513 , output by the IFFT layer 508 , is provided 
as input to the second neural sub - model 510 . 
[ 0145 ] As shown in FIG . 5A the second neural network 
sub - model 510 includes multiple convolutional blocks 512 , 
514 , and 516. Convolutional block 512 may include one or 
more convolutional layers and a residual connection . Each 
of the convolutional blocks 512 , 514 , and 516 may have the 
same neural network architecture ( e.g. , these blocks may 
have the same types of layers arranged in the same 
sequence ) , though the various parameter values for the 
layers may vary ( e.g. , the weights of the convolutional layers 
in block 512 may be different from that of block 514 ) . 
Although in the illustrative embodiment of FIG . 5A the 
second neural network sub - model 510 includes three con 
volutional blocks , this is by way of example , as in other 
embodiments the second neural network sub - model 510 may 
include any suitable number of convolutional blocks ( e.g. , 1 , 
2 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , or 15 ) , as aspects of the 
technology described herein are not limited in this respect . 
[ 0146 ] When the second neural network sub - model 510 is 
applied to initial image domain data 513 obtained at the 
output of the IFFT block 508 , the convolutional blocks 512 , 
514 , and 516 are applied to initial image domain data 513 in 
that order . The application of convolutional block 512 is 
described next , and it should be appreciated that the con 
volutional blocks 514 and 516 may be applied in a similar 
way to the image domain data provided as input to them 
( after being output from the preceding block ) . 
[ 0147 ] In some embodiments , convolutional block 512 
includes one or more convolutional layers with stride greater 
than 1 ( e.g. , 2 or greater ) to downsample the image , followed 
by one or more transposed convolutional layers with stride 
greater than 1 ( e.g. , 2 or greater ) , which upsample the image 
to its original size . This structure of down - sampling fol 
lowed by up - sampling allows operations to be performed at 
different resolutions , which helps the neural network model 
to capture both local and global features . In turn , this helps 
to eliminate image artifacts that may result from under 
sampling in the spatial frequency domain . 

[ 0148 ] For example , in some embodiments , convolutional 
block 512 may include two sequential convolutional layers 
( having 32 3x3 and 64 3x3 filters in the two respective 
layers , with stride 2 ) , followed by two transposed convolu 
tional layers ( 128 3x3 and 64 3x3 filters in the two respec 
tive layers , with stride 2 ) , followed by a final convolutional 
layer ( 2 3x3 filters with stride 1 ) . A non - linear activation 
( e.g. , a ReLU or a Leaky ReLU activation ) may be applied 
in each of the first four layers , except for the final convo 
lutional layer . Though , it should be appreciated that in other 
embodiments , different size filters and / or different activation 
functions may be used , as aspects of the technology 
described herein are not limited in this respect . 
[ 0149 ] FIG . 5B illustrates the architecture of another 
example neural network model 520 for generating a mag 
netic resonance ( MR ) image from input MR spatial fre 
quency data , in accordance with some embodiments of the 
technology described herein . Neural network 520 has a first 
neural network sub - model 522 with a batch normalization 
layer 507 following application of the fully connected layer 
and prior to the output of data from the first neural network 
sub - model 522 to the IFFT layer 508. Introducing a batch 
normalization layer at this juncture improves the perfor 
mance of the neural network and may reduce the time 
required for training . In other respects , neural network 
models 520 and 500 are the same . 

[ 0150 ] FIG . 5C illustrates the architecture of another 
example neural network model 530 for generating a mag 
netic resonance ( MR ) image from input MR spatial fre 
quency data , in accordance with some embodiments of the 
technology described herein . Neural network 530 has a first 
neural network sub - model 532 which includes a fully con 
nected layer that does not use weight sharing between the 
real and imaginary portions of the obtained MR data . In 
other respects , neural network models 530 and 500 are the 
same . 

[ 0151 ] The inventors have developed a novel non - Carte 
sian sampling trajectory to accelerate acquisition of spatial 
domain data , while retaining as much information as pos 
sible . The sampling trajectory consists of unstructured tri 
angular and tetrahedral meshes to evenly under - sample the 
entire spatial frequency domain , and a fully sampling grid in 
the k - space center generated by a Gaussian kernel , as full 
coverage of the k - space center is important for reconstruc 
tions of images with low signal - to - noise ratio ( SNR ) . This 
sampling trajectory samples 33 % of the spatial frequency 
domain samples need to satisfy the Nyquist criterion ( though 
as described above a sampling trajectory may be used with 
any other percentage described herein , including for 
example any percentage in the range of 25-100 , such as 
35 % , 40 % , 45 % , 50 % , 55 % , 60 % , 65 % , 70 % , 75 % , 80 % , 
etc. ) . K - space . FIG . 7 illustrates the novel non - Cartesian 
sampling trajectory ( panel 702 ) , the image reconstructed 
from samples obtained using the trajectory of panel 702 and 
a zero - padded inverse fast Fourier transform ( panel 704 ) , the 
image reconstructed from samples obtained using the tra 
jectory of panel 702 and the neural network model described 
with reference to FIG . 5B ( panel 706 ) , and the original MR 
image . As can be seen from panels 704 and 706 , the MR 
image obtained using a zero - padded IFFT is blurred and has 
artifacts , while the MR image obtained using the neural 
network model of FIG . 5B does not suffer from these 
drawbacks . 
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[ 0152 ] The inventors have developed specialized tech 
niques for training the neural network models described 
herein . The training procedure involves generating complex 
image data , under - sampling the complex image data , and 
using pairs of under - sampled and fully sampled complex 
image data to train the neural network model using any 
suitable training techniques ( e.g. , stochastic gradient descent 
and back - propagation ) . In order to generate complex image 
data , magnitude images were used to synthesize the phase 
information , as described below . 
[ 0153 ] FIG . 8 illustrates aspects of training a neural net 
work model for generating MR images from under - sampled 
spatial frequency domain data , in accordance with some 
embodiments of the technology described herein . As shown 
in FIG . 8 , the training process involves using input magni 
tude images to synthesize the phase information . The mag 
nitude and phase information that constitute the complex 
image data which can be retrospectively under - sampled in 
the spatial frequency domain using Cartesian or a non 
Cartesian ( e.g. , radial . etc. ) sampling trajectory . The under 
sampled data will be used as the input to the neural network 
model being trained , while the full - sampled image will be 
the output of the model . 
[ 0154 ] Although there are many publicly available MR 
image datasets available , they typically only include mag 
nitude images . To simulate complex data as acquired by an 
MR scanner , the inventors have developed a technique for 
generating phase information to append to the magnitude 
images . Accordingly , in some embodiments , phase informa 
tion is generated using a weighted sum of spherical har 
monic basis functions . The combination of these functions 
can characterize magnetic field variation derived from inho 
mogeneity of the Bo , magnetic field drifting with tempera 
ture , gradient eddy currents , spatially - varying RF coil sen 
sitivity fields , inaccuracies in gradient fields in sequences 
and / or other effects that may contribute to phase variation . 
The process of generating phase information using spherical 
harmonics is illustrated in FIG . 9A . 
[ 0155 ] In some embodiments , to simulate non - Cartesian 
under - sampling , a non - uniform FFT ( NuFFT ) was used to 
transform MR images to the spatial - frequency domain 
where a non - Cartesian under - sampling mask was applied . In 
turn , the under - sampled spatial frequency data can be con 
verted to the image domain using an inverse ( also called 
backward ) NuFFT , which can be provided as input to the 
image - domain sub - models . In this way , the use of NuFFT , 
enables performing non - uniform K - space sampling , which 
highly resembles the non - Cartesian sampling in practice . 
[ 0156 ] In some embodiments , the available training data 
was augmented by applying affine transformations to indi 
vidual slices to create images with different orientation and 
size , adding noise to create images with different SNR , 
introducing motion artifacts , incorporating phase and / or 
signal modulation for more complex sequences like echo 
trains , and / or modeling the dephasing of the signal to adapt 
the model to a sequence like diffusion weighted imaging . 
[ 0157 ] As the neural network models described herein 
operate both in the spatial frequency domain and in the 
image domain , the inventors have developed a new loss 
function to facilitate training such a mixed - domain neural 
network model . The new loss function accelerated the 
process of training the neural network models described 
herein ( e.g. , by reducing the number of training epochs 
needed to achieve a given level of performance ) . 

[ 0158 ] In some embodiments , the loss function includes a 
first loss function to capture error in the spatial frequency 
domain and a second loss function to capture error in the 
image domain . For example , as shown in FIG.9B , the output 
of the first neural network sub - model ( labeled as “ Subnet 1 
k - Space " ) may be compared to ground truth in the spatial 
frequency domain to obtain a first measure of error ( e.g. , 
mean squared error , labeled “ MSE Loss 1 ” ) in the spatial 
frequency domain , and the output of the second neural 
network sub - model ( labeled as “ Subnet 2 Image domain ” ) 
may be compared to ground truth in the image domain to 
obtain a second measure of error ( e.g. , mean squared error , 
labeled “ MSE Loss 2 ' ' ) in the image domain . The first and 
second measures of error may be combined ( e.g. , via a 
weighted combination ) to produce an overall measure of 
error , which is to be minimized during the training process . 
For example , in the illustrative example of FIG . 9 , the two 
loss functions were combined using a weight of à < 1 such 
that the overall loss function was given by Loss1 + 2 * Loss2 . 
[ 0159 ] As described herein , in order to train the neural 
network models developed by the inventors to generate MR 
images from under - sampled spatial frequency data obtained 
by a low - field MRI system , training data obtained using the 
low - field MRI system is needed . However , there may not be 
a sufficient volume of such data to learn all the parameters 
of the models described herein . 
[ 0160 ] Accordingly , in some embodiments , a neural net 
work model is first trained using images obtained using one 
or more “ high - field ” and / or a “ mid - field ” MR systems and 
then transfer learning is used to adapt the trained neural 
network model to the “ low - field " context by using one or 
more MR images obtained using a low - field MRI system . 
[ 0161 ] FIGS . 10A - 10H illustrates MR images generated 
using a zero - padded inverse DFT and using neural network 
models , trained with and without transfer learning , in accor 
dance with some embodiments of the technology described 
herein . The results show that using transfer learning ( 100 
epochs in this illustrative example ) improves performance of 
the model on low - field MR images . In particular , FIG . 
10A - 10D show reconstructed MR images obtained , respec 
tively , using a zero - padded inverse FFT , the neural network 
model of FIG . 5B trained without transfer learning , the 
neural network of FIG . 5B trained with transfer learning , as 
well as the fully sampled data . The FIGS . 10E - 10G show the 
absolute difference between the reconstructed MR images 
and the fully sampled MR images , while FIG . 10H shows 
the under - sampling mask . 
[ 0162 ] FIG . 11 illustrates performance of some of the 
neural network models for generating MR images from 
under - sampled spatial frequency domain data , in accordance 
with some embodiments of the technology described herein . 
In particular , the second row of FIG . 11 shows the perfor 
mance of the neural network model 100 described with 
reference to FIG . 1A , and the third row of FIG . 11 shows the 
performance of the neural network model 520 described 
with reference to FIG . 5B . For both models , FIG . 11 shows 
the performance of the respective first and second sub 
models ( sub - models 102 and 120 , and sub - models 522 and 
510 ) . The first row of FIG . 11 shows the under - sampled and 
fully - sampled images ( both magnitude and phase ) . As may 
be seen from FIG . 11 , the output of the first sub - model of the 
neural network model 100 ( first two columns in the middle 
row ) has improved quality with fewer artifacts , which is also 
indicated by the increased peak SNR ( PSNR ) . The output of 
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the second sub - model of the neural network model 100 ( last 
two columns in the middle row ) shows that the second 
sub - model further improves the reconstruction by increasing 
the contrast of the magnitude image and generating a 
smoother phase map , which is closer to that of the fully 
sampled image . For the neural network model 520 , the 
second sub - model contributes less to the improvement as 
reflected by PSNR than the first sub - model . The situation is 
reversed for the first neural network sub - model . 
[ 0163 ] FIG . 12 further illustrates performance of some of 
the neural network models for generating MR images from 
under - sampled spatial frequency domain data , in accordance 
with some embodiments of the technology described herein . 
In particular , FIG . 12 illustrates the performance of some of 
the neural networks developed herein relative to other 
techniques on images under - sampled down to 33 % of the 
number of samples required by the Nyquist sampling rate . 
The performance of the neural network models 100 and 520 
( shown in fourth and fifth columns of FIG . 12 ) was com 
pared to that of compressed sensing ( implemented using the 
ADMM regularizer , with regularization parameter = 5e - 3 , 
and shown in the second column of FIG . 12 ) and neural 
network model 100 without the first sub - model ( shown in 
the third column of FIG . 12 ) . Normalized mean squared 
error and peak - SNR were measured to quantify the differ 
ence of output images . As shown in the FIG . 12 , under 
sampling introduces blurring and inhomogeneous artifacts . 
The compressed sensing approach removes the artifacts , but 
over - smooths the image , and alters the phase image . The 
model 100 without its first sub - model failed to recover the 
image . By contrast , the neural network models 100 and 520 , 
output MR images that are much closer in both magnitude 
and phase to the fully sampled image , as reflected by higher 
PSNR and lower normalized MSE than competing methods . 
[ 0164 ] As discussed herein , the inventors have developed 
neural network models for reconstructing MR images from 
spatial frequency data obtained using non - Cartesian sam 
pling trajectories . 
[ 0165 ] FIG . 13A is a diagram of an illustrative architecture 
of an example neural network model 1310 for generating 
MR images from input MR spatial frequency data , in 
accordance with some embodiments of the technology 
described herein . As shown in FIG . 13A , neural network 
model 1310 reconstructs output MR image 1315 from input 
MR spatial frequency data 1305 by processing the input MR 
spatial frequency data in stages . First , the input MR spatial 
frequency data 1305 is processed using initial processing 
block 1312 to produce an initial image 1314 , and then the 
initial image 1314 is processed by a series of neural network 
blocks 1316-1 , 1316-2 , . . , 1316 - n . 
[ 0166 ] In some embodiments , one or more of the blocks 
1316-1 , 1316-2 , ... , 1316 - n may operator in the image 
domain . In some embodiments , one or more of the blocks 
1316-1 , 1316-2 , ... , 1316 - n may transform the input data 
to a different domain , including but not limited to the spatial 
frequency domain , perform processing ( e.g. , reconstruction 
processing ) in the different domain , and subsequently trans 
form back to the image domain . 
[ 0167 ] In some embodiments , the initializer block trans 
forms the input MR spatial frequency data to the image 
domain to generate an initial image for subsequent process 
ing by the neural network model 1310. The initializer block 
may be implemented in any suitable way . For example , in 
some embodiments , the initializer block may apply the 

adjoint non - uniform Fourier transformation to the input MR 
spatial frequency data to obtain the initial image . As another 
example , in some embodiments , the initializer block may 
apply the gridding reconstruction to the input MR spatial 
frequency data to obtain the initial image . 
[ 0168 ] Illustrative architectures of neural network blocks 
1316 are shown in FIG . 13B ( corresponding to a non 
uniform variational network ) and FIG . 13E ( corresponding 
to a generalized non - uniform variational network ) . Accord 
ingly , in some embodiments , at least one , at least some , or 
all of the blocks 1316-1 , 1316-2 , 1316 - n may have an 
architecture as shown for illustrative block 1316 - i in FIG . 
13B . As shown in FIG . 13 - B , neural network block 1316 - i 
includes a data consistency block 1320 , and a convolutional 
neural network block 1350 , both of which are applied to the 
input x? , labeled as 1321. The input x ; may represent the MR 
image reconstruction generated by neural network 1310 at 
the completion of the ( i - 1 ) st neural network block . In this 
example , the output 1335 of the block 1316 - i is obtained by 
applying the data consistency block 1320 to the input x? , to 
obtain a first result , applying the convolutional neural net 
work block 1350 to X? , to obtain a second result , and 
subtracting from x ; a linear combination of the first result 
and the second result , where the linear combination is 
calculated using the block - specific weight i . 
[ 0169 ] The data consistency block 1320 may be imple 
mented in any of numerous ways . In some embodiments , the 
data consistency block 1320 may perform data consistency 
processing by transforming the input image represented by 
X ; to the spatial frequency domain using a non - uniform 
Fourier transformation , comparing the result with the initial 
MR spatial frequency data 1305 , and transforming the 
difference between the two back to the image domain using 
an adjoint of the non - uniform Fourier transformation . 
[ 0170 ] An illustrative implementation of data consistency 
block 1320 is shown in FIG . 13C . In the illustrative imple 
mentation of FIG . 13C , the image domain input 1322 ( which 
may be the intermediate reconstruction X , 1321 ) , is trans 
formed to the spatial frequency domain through a series of 
three transformations 1324 , 1326 , and 1328 , whose compo 
sition is used to implement a non - uniform fast Fourier 
transformation from the image domain to the spatial fre 
quency domain . In particular , the transformation 1324 is a 
de - apodization and zero - padding transformation D , the 
transformation 1326 is an oversampled FFT transformation 
Fs , and the transformation 1328 is the gridding interpolation 
transformation G. As described herein , the non - uniform fast 
Fourier transformation A is represented by the composition 
of these transformations according to : A = D F , G. Example 
realizations of these constituent transformations 
described herein . 
[ 0171 ] After the image domain input 1322 is transformed 
to the spatial frequency domain , it is compared with the 
initial MR spatial frequency data 1305 , and the difference 
between the two is transformed back to the image domain 
using the transformations 1330 , 1332 , and 1334 , in that 
order . The transformation 1330 is the adjoint of the gridding 
interpolation transformation 1328. The transformation 1332 
is the adjoint of the oversampled FFT transformation 1326 . 
The transformation 1334 is the adjoint of the deapodization 
transformation 1324. In this way , the composition of the 
transformations 1330 , 1332 , 1334 , which may be written as 
G F # D # = AH , represents the adjoint Ap of the non - uniform 
Fourier transformation A. 

are 
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[ 0178 ] The spatial frequency domain CNN 1368 may be 
any suitable type of convolutional neural network . For 
example , the CNN 1368 may be a five layer convolutional 
neural network with residual connection . However , in other 
embodiments , the spatial frequency domain network 1368 
may be any other type of neural network ( e.g. , a fully 
convolutional neural network , a recurrent neural network , 
and / or any other suitable type of neural network ) , as aspects 
of the technology described herein are not limited in this 
respect . 
[ 0179 ] A discussion of further aspects and details of neural 
network models for MR image reconstruction from non 
Cartesian data , such as the neural network models illustrated 
in FIGS . 13A - 13E , follows next . First , some notation is 
introduced . Let xECN denote a complex - valued MR image 
to be reconstructed , represented as a vector with N = N , N , 
where N , and N , are width and height of the image . Let yé 
CM ( M << N ) represent the undersampled k - space measure 
ments from which the complex - valued MR image x is to be 
reconstructed . Reconstruct x from y may be formulated as an 
unconstrained optimization problem according to : 

2 ( Eq . 1 ) argmin || Ax – yll? + R ( x ) , 

[ 0172 ] The convolutional neural network block 1350 may 
be implemented in any of numerous ways . In some embodi 
ments , the block 1350 may have multiple convolutional 
layers , including one or more convolutional layers and one 
or more transpose convolutional layers . In some embodi 
ments , the block 1350 may have a U - net structure , whereby 
multiple convolutional layers downsample the data and 
subsequent transpose convolutional layers upsample the 
data , for example , as shown in the illustrative U - net archi 
tecture of FIG . 13D for the block 1350 . 
[ 0173 ] As shown in FIG . 13D , input to the convolutional 
network block 1350 is processing by a downsampling path 
followed an upsampling path . In the downsampling path , the 
input is processed by repeated application of two convolu 
tions with 3x3 kernels , each followed by application of a 
non - linearity ( e.g. , a rectified linear unit or ReLU ) , an 
average 2x2 pooling operation with stride 2 for downsam 
pling . At each downsampling step the number of feature 
channels is doubled from 64 to 128 to 256. In the upsam 
pling path , the data is processed be repeated upsampling of 
the feature map using an average unpooling step that halves 
the number of feature channels , a concatenation with the 
corresponding feature map from the downsampling path , 
and two 3x3 convolutions , each followed by application of 
a non - linearity ( e.g. , a ReLU ) . 
[ 0174 ] FIG . 13E is a diagram of another type of architec 
ture of a block of the neural network model of FIG . 13A , in 
accordance with some embodiments of the technology 
described herein . A neural network model with blocks 
having the architecture like the one shown in FIG . 13E may 
be termed a " generalized non - uniform variational network ” 
or “ GNVN ” . It is “ generalized ” in the sense that , while data 
consistency blocks are not used directly , feature similar to 
the image features generated by such blocks may be useful 
to incorporate into a neural network model . 
[ 0175 ] As shown in FIG . 13E , the ith GNVN block 1360 - i 
takes as input : ( 1 ) the image domain data X? , labeled as 1362 ; 
and ( 2 ) the initial MR spatial frequency data 1364. The input 
X ; may represent the MR image reconstruction generated by 
neural network 1310 at the completion of the ( i - 1 ) " GNVN 
block ( 1360- ( i - 1 ) ) . These inputs to the block 1360 - i are then 
used to generate inputs to the convolutional neural network 
block 1372 part of block 1360 - i . In turn , from these inputs , 
the CNN block 1372 generates the next MR image recon 
struction denoted by Xi + 1 : 
[ 0176 ] In the embodiment of FIG . 13E , the inputs 1362 
and 1364 are used to generate three inputs to the CNN block 
1372 : ( 1 ) the reconstruction x ; itself is provided as input to 
the CNN block ; ( 2 ) the result of applying , to the reconstruc 
tion X? , the non - uniform Fourier transformation 1366 fol 
lowed by a spatial frequency domain convolutional neural 
network 1368 , followed by the adjoint non - uniform Fourier 
transformation 1370 ; and ( 3 ) the result of applying , to the 
initial MR spatial frequency data 1364 , the spatial frequency 
domain convolutional neural network 1368 followed by an 
adjoint non - uniform Fourier transform 1370 . 
( 0177 ] In some embodiments , the non - uniform Fourier 
transformation 1366 may be the transformation A expressed 
as a composition of three transformations : the de - apodiza 
tion transformation D , an oversampled Fourier transforma 
tion Fs , and a local gridding interpolation transformation G 
such that A = D F , G. Example realizations of these constitu 
ent transformations are described herein . 

where the operator A is non - uniform Fourier sampling 
operator , R expresses regularisation terms on x , and a is a 
hyper - parameter associated to the noise level . In the case 
when the k - space measurements y are obtained using a 
Cartesian sampling trajectory , the operator A may expressed 
according to : A = MF where M is a sampling mask , and F is 
discrete Fourier transform . In the case of a non - Cartesian 
sampling trajectory , the measurements no longer fall on a 
uniform k - space grid and the sampling operator A is now 
given by a non - uniform discrete Fourier transform of type I : 

Ny ( Eq . 2 ) 
m y ( ky , ky ) ) = ximezni kx + -ky 

{ = 0 m = 0 y 

where ( kq , k . ) ER 2 ( rather than ( k , k , EZ ? ) . An efficient 
implementation of the above forward model may be imple 
mented using the so - called non - uniform Fast Fourier Trans 
form ( NUFFT ) . The idea is to approximate Eq . 2 by the 
following decomposition : A = GF , D , where G is a gridding 
interpolation kernel , F , is fast Fourier transform ( FFT ) with 
an oversampling factor of s , and D is a de - apodization 
weights . This decomposition is described in further detail 
below . 
[ 0180 ] In contrast , the inversion of A is considerably more 
involved . For the ( approximately ) fully - sampled case , one 
can consider direct inversion ( 0 ( N ? ) ) or a more computa 
tionally efficient gridding reconstruction , which has the form 
Xgridding = A + Wy , where W is a diagonal matrix used for the 
density compensation of non - uniformly spaced measure 
ments . For the undersampled case , the inversion is ill - posed , 
and Eq . 1 should be solved by iterative algorithms . 
[ 0181 ] The inventors have developed a new deep learning 
algorithm to approximate the solution to the optimization 
problem of Eq . 1. The approach begins by considering a 
gradient descent algorithm , which provides a locally optimal 
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solution to Eq . 1 , specified by the following equations for 
initialization and subsequent iterations : 

Xo = finit ( A , y ) ; ( Eq . 3 ) 

X ; + 1 = x ; -Q ; VAX ) x = x ;? ( Eq . 4 ) 

where finit is an initializer , a is a step size and Vf is the 
gradient of the objective functional , which is given by : 

VAX ) = MAH ( Ax - y ) + VxR ( x ) . ( Eq . 5 ) 

[ 0182 ] In some embodiments , the initializer may be 
selected as the adjoint finit ( A , y ) = AHy reconstruction or the 
gridding reconstruction finid ( A , y ) = AH Wy . The deep learning 
approach to solving Eq . 1 involves unrolling the sequential 
updates of Eq . 4 into a feed - forward model , and approxi 
mating the gradient term VR by a series of trainable 
convolutional ( or other types of neural network ) layers and 
non - linearities . This approach results in an end - to - end train 
able network with Ni , blocks given by : 

indexed . Generally , the input MR spatial frequency data y 
may include k - space samples spaced on a regular - grid or 
irregularly spaced . Regularly spaced points are sometimes 
termed Cartesian data points . Irregularly spaced points are 
sometimes termed non - Cartesian ( data ) points . 
[ 0185 ] The interpolation transformation G operates to 
interpolate non - Cartesian sensor data y onto a regular 
k - space grid . When the transformation is represented as a 
matrix G , each row in the matrix corresponds to a specific 
regular grid point in k - space , and the entry j in the row i ( i.e. , 
the entry GO expresses how much weight is associated 
between ith regular grid and jth k - space sample . 
[ 0186 ] In some embodiments , the interpolation matrix 
entries may be computed any one of the following four 
functions : 

[ 0187 ] Two term cosine 

2? 
a + ( 1 – a ) cos CH W 

Xo = finit - cnn ( A , y | 0o ) ( Eq . 6 ) 

Xi + 1 = x ; – A ; A " ( Ax ; – y ) - fenn ( x ; | 0 ; ) ( Eq . 7 ) [ 0188 ] Three - term cosine : 
DC CNN - i 

27 
a + Bcos 

47 
+ ( 1 -a - - Bcos W 

[ 0189 ] Gaussian : 

expl - 263 ) 
[ 0190 ] Kaiser - Bessel : 

# 1o [ BV7 – ( 24 / W32 ] 

where the learnable parameters are { 0. , . Onio à1 , ... 
à N ; } . Note that the step size a ; is absorbed in the learnable parameters . In this way , a general non - convex regularization 
functional is used ( e.g. , instead of a Fields - of - Experts 
model ) , and regularization functional can be approximated 
by convolutional neural networks . Indeed , the neural net 
work model illustrated in FIGS . 13A - 13D is implemented in 
accordance with Equations 6 and 7. For example , an imple 
mentation of the data consistency term DC - i is shown in 
FIG . 13C and an implementation of the CNN - i term is 
shown in FIG . 13D . 
[ 0183 ] The inventors have recognized that the computa 
tional complexity of such an approach is a function of how 
the forward operator AEC MXN is implemented because A is 
large complex - valued matrix that can occupy a lot of 
memory to store . As described herein , in contrast to the 
Cartesian case , A is expressed as GF , D . For 2D cases , this 
can be a large matrix , which consumes a large portion of 
GPU memory ( e.g. , for N = 1922 and M = 10,000 ( i.e. , ~ 3xac 
celeration ) , storing the complex - valued matrix alone already 
takes 3 GB of memory ) . To overcome this challenge , the 
inventors have implemented the gridding interpolation 
transformation Gias a sparse GPU matrix multiplication . F , 
is an FFT , where an efficient GPU implementation is avail 
able . Finally , D is a diagonal matrix , which can be imple 
mented as a Hadamard product of matrices . The adjoint can 
similarly be implemented as A " D'FG " , where is a 
complex - conjugate transpose . 
[ 0184 ] Further details of the decomposition of the forward 
operator A = GF , D are described next . First , some prelimi 
naries . The spatial frequency domain ( sometimes referred to 
as k - space ) may be indexed using two - dimensional or three 
dimensional coordinates ( e.g. ( kx , k , ) or ( kxk ,, k_ ) ) . In this 
way , each entry of the vector y representing input MR spatial 
frequency data represents a value associated to a specific 
coordinate in k - space . A regular grid in k - space refers to a 
regularly - spaced grid of points k - space such that there is a 
fixed distance A between each k - space coordinate that can be 

where u is a distance between ith regular grid point and jth 
non - Cartesian data coordinate . The parameters a , b , W , o 
are free design parameters to be specified by user , and I , is 
the zeroth - order modified Bessel function of the first kind . 
However , it should be appreciated than any other function 
may be used for computing the interpolation matrix entries 
instead of or in addition to the example four functions listed 
above . 
[ 0191 ] In some embodiments , the entries of the interpo 
lation weight matrix may be computing using an optimiza 
tion approach . For example , the entries may be computed by 
solving a min - max optimization problem , as shown in 
Equations 16 and 21 of Fessler , J. A. , Sutton B. P .: Non 
uniform fast Fourier transforms using min - max interpola 
tion . IEEE Transactions of Signal Processing 51 ( 2 ) , 560-574 
( 2003 ) , which is incorporated by reference herein in its 
entirety . In some embodiments , the Fourier transformation F 
may be represented by an oversampled Fourier matrix F 
which is a dense matrix in which each entry is a complex 
exponential of the form ey for y which depends on the index . 
The role of this matrix is to perform Fourier transform . In 
some embodiments , F , may be implemented using the fast 
Fourier transform with oversampling factor s . For example , 

S 
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if the image to be reconstructed x is NxN pixels , then 
oversampling FFT is performed for image size sNxsN . 
[ 0192 ] In some embodiments , the de - apodization transfor 
mation may be represented by a matrix D that will weigh 
each pixel in the image by a corresponding weight to reduce 
the interpolation error of approximating A with the given 
decomposition . In some embodiments , this may be imple 
mented via a pixel - wise weighting of the intermediate 
reconstruction in the image domain . For example , the pixel 
wise weighting may be implemented using a spatially 
varying low - order smooth polynomial . In some embodi 
ments , the matrix D may be set as discussed in Section IV - C 
of Fessler , J. A. , Sutton B. P .: Non - uniform fast Fourier 
transforms using min - max interpolation . IEEE Transactions 
of Signal Processing 51 ( 2 ) , 560-574 ( 2003 ) . 
[ 0193 ] The inventors have also appreciated that the net 
work of FIGS . 13A - 13D forces a bottleneck at the end of 
each iteration . However , an alternative view is that the 
network simply benefits from the image features given by 
data consistency ( DC - i ) blocks . This observation motivates 
a generalized approach where , instead of using a data 
consistency block , each CNN - i block in the model of FIGS . 
13A - 13D is provided a concatenation of the following 
inputs : the intermediate reconstruction Xi , the self - adjoint 
A Ax ;, and the adjoint of the input Aºy . Furthermore , one 
can also consider applying 1D - convolution in raw sensory 
domain using f , fsensor - cnn ( .10 ) to exploit the information 
along the sampling trajectory and remove unnecessary infor 
mation ( e.g. isolatable artifacts or noise ) . The resulting 
network , shown in FIGS . 13A , 13D , and 13E , is given by : 

Xo = finit - cnn ( 4.f sensor - enn ( v10 . ) 100 , WX ; +1 
fenn ( X ; , Aufsensor - enn ( Ax ; lo :) » X010 ;. ) , 

where the learnable parameters are { Po , .. PN ;, 0o , .. 
On , } . As described herein , this type of neural network model 
is termed Generalized Non - uniform Variational Network 
( GNVN ) . 
[ 0194 ] The inventors have recognized that some embodi 
ments of neural network architectures described herein may 
be considered as embodiments of a neural network model 
that may be expressed according to the following : 

Xrec = frec ( A , yle ) ( Eq . 8 ) , 

[ 0195 ] This general type of neural network model may 
accepts as input any input that is a combination of the 
forward operator A and raw spatial frequency domain data y , 
as well as additional learnable parameters 0 , which can be an 
arbitrary dimension . The parameters & may be adjusted 
during training process . 
[ 0196 ] The input to the neural network of Eq . 8 may be 
data obtained by one or multiple RF coils of an MRI system , 
as aspects of the technology described herein are not limited 
to reconstructing images from data collected by a single RF 
coil . In addition , the input data y may have been obtained 
using multiple contrasts and / or different sets of acquisition 
parameters ( e.g. , by varying repetition time ( TR ) , echo time 
( TE ) , flip angle 0 , etc. ) . In some embodiments , input into the 
network may be , but is not limited to , the raw data y . 
Additionally or alternatively , the input to the network may 
be the adjoint reconstruction AHy where ( . ) is the conjugate 
transpose of the matrix . 
[ 0197 ] In some embodiments , where the data y includes 
data collected by multiple RF coils , these data y may be split 
into Ncoil separate data sets , denoted y ( i ) for i = 1 , ... , Ncoil 

N. can be any number ( e.g. , any number in the range of 
2-20 such , for example , 8 or 9 or 10 ) . In some such 
embodiments , the neural network input may be the adjoint 
reconstruction of each coil images x , ( * ) = AHy ( i ) , and x , fi ) for 
i = 1 , ... , Ncoil can be stacked together and form the input 
to the network ( e.g. , to the convolutional layers part of the 
network ) . 
[ 0198 ] In some embodiments , the raw data y may include 
multiple measurements obtained by each of one or more RF 
coils . For example , if the data is measured multiple times , 

times , then these data , or the adjoint reconstruction 
of these data , or any other function of these data measure 
ments and the forward operator A , may form an input to the 
neural network . For example , multiple measurements may 
be obtained for signal averaging and / or as part of acquiring 
images with different contrast . 
[ 0199 ] In some embodiments , as described above , the 
input to the neural network of Eq . 8 may be also be any 
function based on A and / or y . For example , in some embodi 
ments , the gridding reconstruction may be an input to the 
network . Gridding reconstruction may have the form of 
Xo = AHWy , where W is called sample density compensation 
weights , which is a matrix that scales each element in the 
vector y . 
[ 0200 ] Any of numerous techniques may be used to com 
pute the sample density compensation weights W. For 
example , in some embodiments , the weights W may be 
computed according to : W = A A1 , where 1 is a vector of 
ones . As another example , the weights W may be any 
suitable user - defined function . As yet another example , the 
weights W may be learned and adjusted during neural 
network training , in which case the weights may be referred 
to as learned sample density compensation weights . In some 
embodiments , the input to the network may be a combina 
tion of y and the weights W , whether learned or fixed 
learnable , without the use of the forward operator A. 
[ 0201 ] It should also be appreciated that the neural net 
work need not operate on the raw data y , and in some 
embodiments these data may be pre - processed . For example , 
in some embodiments these data may be pre - processed to 
perform operations such as interference removal , denoising , 
filtering , smoothing , image prewhitening , etc. More gener 
ally , the network has the form f ( y , A , 0 ) . 
[ 0202 ] With regard to the neural network weights 0 , these 
weights may be initialized in any suitable way as part of the 
training procedure . For example , the weights may be ini 
tialized randomly ( e.g. , using He initialization following 
Equation 12 in He , K. , et al .: Deep residual learning for 
image recognition . Proceedings of the IEEE conference on 
computer vision and pattern recognition ( CVPR ) . pp . 1026 
1034 ( 2015 ) ) . As another example , the network weights may 
be initialized according to a setting provided by a user . As 
another example , the network weights may include the 
learned sampling density weights ( e.g. , the learned sampling 
density weights may be a subset of the network weights , the 
network weights may be initialized using the learned sam 
pling density weights , and all the weights may subsequently 
be adjusted during training ) . 
[ 0203 ] With regard to the output Xree of the neural network 
in Eq . 8 , the output may include one or more images per 
respective RF coil . For example , if the input data contains 
data from each of N coil RF coils , the output may include one 
MR image for each such RF coil or multiple MR images for 
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each such coil ( e.g. , when each coil performs multiple 
acquisitions , for example , using different contrasts ) . 
[ 0204 ] In some embodiments , multiple neural networks of 
the type specified in Eq . 8 may be employed and the output 
of these networks may be combined such that the multiple 
neural networks are utilized as an ensemble . The combina 
tion may be performed using any suitable type of aggrega 
tion rule including , but not limited to , average , weighted 
averaging , averaging with outlier rejection , and selection of 
the " best " reconstruction according to a user - defined crite 
rion ( e.g. , manual inspection , automated selection based on 
a quantitative metric such as the signal to noise ratio , a 
perceptual metric , and / or any other suitable metric ) . Alter 
natively , in some embodiments , multiple instances of Xrec 
from individual neural networks may be stacked together , 
and be considered as the output of the network . 
[ 0205 ] As described above , there are numerous possible 
embodiments of the neural network formulation of Eq . 8 
including , but not limited to , the embodiments described 
herein such as : ( 1 ) the non - uniform variational network 
( NVN ) as described herein including with reference to 
FIGS . 13A - D ; ( 2 ) the generalized non - uniform variational 
network ( GNVN ) as described herein with reference to 
FIGS . 13A , 13D , and 13E ; ( 3 ) the Deep K - space Interpo 
lation Reconstruction ( DKIR ) network as described herein 
including with reference to FIGS . 1A - C ; and ( 4 ) the Deep 
non - local reconstruction ( DNR ) network as described herein 
including with reference to FIGS . 5A - 5C . 
[ 0206 ] It should be noted that while some of the above 
described networks architectures include convolutional neu 
ral network blocks , other types of blocks may be used in 
addition to or instead of the convolutional neural network 
blocks including , for example , residual network , densely 
connected networks , or squeeze and excitation networks . 
[ 0207 ] In some embodiments , any one of the networks 
described above may be trained using mean - squared error . 
For example , in some embodiments , each of the reconstruc 
tion blocks in the NVN ( e.g. , blocks 1316 - i ) or GNVN ( e.g. , 
blocks 1360 - i ) architectures may be trained using the mean 
squared - error criterion according to : 

performed by a computing device co - located ( e.g. , in the 
same room as ) with an MRI system that obtained the input 
MR spatial frequency data by imaging a subject . As another 
example , in some embodiments , the process 1400 may 
performed by one or more processors located remotely from 
the MRI system ( e.g. , as part of a cloud computing envi 
ronment ) that obtained the input spatial frequency data by 
imaging a subject . 
[ 0211 ] Process 1400 begins at act 1402 , where input MR 
spatial frequency data is obtained . In some embodiments , 
the input MR spatial frequency data had been previously 
obtained by an MRI system and stored for subsequent 
analysis , so that it is accessed at act 1402. In other embodi 
ments , the input MR spatial frequency data may be obtained 
by an MRI system ( including any of the MRI systems 
described herein ) as part of process 1400. Regardless of 
when an MRI system performed the imaging to obtain the 
input MR spatial frequency data , the data may have been 
obtained using a non - Cartesian sampling trajectory , 
examples of which are provided herein . 
( 0212 ] Next , process 1400 proceeds to act 1404 , where the 
input MR spatial frequency data may be pre - processed to 
obtain an initial image reconstruction . For example , in some 
embodiments , the input MR spatial frequency data may be 
transformed to the image domain by using a non - uniform 
Fourier transformation . For example , the input MR spatial 
frequency data y may be transformed to the image domain 
using the adjoint operator AH described herein ( e.g. , by 
computing A y ) . As another example , the input MR spatial 
frequency data may be transformed to the image domain 
using a gridding reconstruction such as AHWy , where the 
matrix W is a sampling density compensation matrix that 
could be : the matrix A A1 , where 1 is a vector of one's , a 
user - specified matrix , a matrix learned during training , and / 
or any suitable combination thereof . In the illustrative 
example of FIG . 13A , the pre - processing may be performed 
by the initial processing block 1312 . 
[ 0213 ] In some embodiments , the initializer block trans 
forms the input MR spatial frequency data to the image 
domain to generate an initial image for subsequent process 
ing by the neural network model 1310. The initializer block 
may be implemented in any suitable way . For example , in 
some embodiments , the initializer block may apply the 
adjoint non - uniform Fourier transformation to the input MR 
spatial frequency data to obtain the initial image . As another 
example , in some embodiments , the initializer block may 
apply the gridding reconstruction to the input MR spatial 
frequency data to obtain the initial image . 
[ 0214 ] Next , process 1400 proceeds to act 1406 , where a 
block of a neural network model is applied to the initial 
image obtained at act 1404 ( or to the current image data 
when act 1406 is being executed on a return path from 
decision block 1408 after one or more neural network blocks 
have already been applied to the initial image ) . In some 
embodiments , the block of the neural network model may 
configured to perform data consistency processing by using 
a non - uniform Fourier transformation to take into account 
the initial MR spatial frequency data obtained at act 1402 . 
This may be done in any suitable way . For example , in some 
embodiments , the data consistency processing may be per 
formed by a data consistency block such as block 1316 - i 
described with reference to FIG . 13B . In such a block , data 
consistency processing involves transforming intermediate 
reconstructions transformed to the spatial frequency domain 

LO ) = E || x – Xreella 
( y , x ) ED 

avg 

be 

[ 0208 ] In some embodiments , a reconstruction block can 
reconstruct each coil - weighted images xc separately or 
jointly . It can also attempt to reconstruct each signal navg = 1 , 

N jointly or separately . 
[ 0209 ] FIG . 14 is a flowchart of an illustrative process 
1400 for using a neural network model to generate an MR 
image from input MR spatial frequency data obtained using 
non - Cartesian sampling , in accordance with some embodi 
ments of the technology described herein . In some embodi 
ments , process 1400 may be performed using a non - uniform 
variational network ( e.g. , the neural network described with 
reference to FIGS . 13A - D ) , a generalized non - uniform 
variation network ( e.g. , the neural network described with 
reference to FIGS . 13A , 13D , and 13E ) , or any other suitable 
type of neural network model . 
[ 0210 ] In some embodiments , the illustrative process 1400 
may be performed using any suitable computing device . For 
example , in some embodiments , the process 1400 may be 



US 2020/0033431 A1 Jan. 30 , 2020 
19 

using a non - uniform Fourier transformation and comparing 
the result to the input MR spatial frequency data . As another 
example , in some embodiments , the data consistency pro 
cessing may be performed by transforming the input MR 
spatial frequency data to the image domain using the non 
uniform Fourier transformation and providing the result as 
input to one or more convolutional blocks as is done , for 
example , in neural network block 1360 - i described with 
reference to FIG . 13E . 
[ 0215 ] Next , process 1400 proceeds to decision block 
1408 where it is determined whether another neural network 
block is to be applied . If it is determined that another block 
is to be applied , process 1400 returns to act 1406 , where 
another neural network block is applied to the image data 
generated at the completion of the last iteration of block 
1406. Otherwise , this image data is output as the final 
reconstructed MR image at act 1410 . 
[ 0216 ] The inventors have evaluated the performance of 
the neural network architectures described herein including 
with reference to FIGS . 13A - E and 14 on real - world MR 
images . The details of these experiments are described next . 
[ 0217 ] As part of the experiments , 640 randomly selected 
T1 - weighted and T2 - weighted brain images were obtained 
from Human Connectome Project ( https : ///www.humancon nectome.org/study/hcp-young-adult/document/1200-sub 
jects - data - release ) . Six hundred of the images were used for 
training the neural network , while 40 of the images were 
used for evaluating the performance of the trained neural 
network . To perform a realistic simulation , a number of 
pre - processing steps were performed . First , since only mag 
nitude images were provided from the Human Connectome 
Project , complex - valued images were created by adding 
phase information to the magnitude data using two - dimen 

[ 0218 ] In these experiments , single coil reconstruction is 
evaluated in order to study the behavior of non - uniform MR 
data reconstruction . The MR data was under - sampled using 
2D non - uniform variable density , where the sampling den 
sity decays from the k - space center at quadratic speed . For 
each matrix size , the sampling trajectory with the target 
acceleration factor RE { 2,4 } was generated . For evaluation , 
we measured mean squared error ( MSE ) , structural similar 
ity index measurement ( SSIM ) , and peak signal - to - noise 
ratio ( PSNR ) . 
[ 0219 ] The techniques developed herein were developed 
with a number of conventional techniques that have been 
applied to non - uniform MR data including : ( 1 ) AUTOMAP 
( Zhu B. , et al .: Image reconstruction by domain - transform 
manifold learning . Nature 555 ( 7697 ) , 487 ( 2018 ) ) ; ( 2 ) 
image domain U - net ( Han , Y. , et al .: Deep learning with 
domain adaptation for acceleration projection - reconstruc 
tion MR . Magnetic resonance in medicine 80 ( 3 ) , 118-1205 
( 2018 ) ) ; and ( 3 ) k - space domain U - net . Id . All deep learning 
methods were trained using MSE . Due to its high GPU 
memory requirements , AUTOMAP was trained only for the 
matrix size of 64x64 . For the NVN approach having the 
architecture shown in FIGS . 13A - D , a U - net with 3 levels of 
downsampling ( see e.g. , FIG . 13D ) for each convolutional 
sub - block . Niq = 5 blocks was used for the number of blocks , 
and the adjoint Ahy was used for finit . For the GNVN 
approach , a 5 - layer convolutional neural network was used 
fsensor - cnn . Each network was trained for 8,000 epochs using 
Adam optimizer with a = 10-4 , B2 = 0.9 , B2 = 0.999 . All meth 
ods were implemented in TensorFlow . 
[ 0220 ] Results of the evaluations are summarized in Table 
1 below . The NVN and GNVN approaches developed by the 
inventors consistently outperformed the baseline approaches 
for both acceleration factors . AUTOMAP and k - space U - net 
both underperformed compared to other methods . 

TABLE 1 

Quantitative result for acceleration factor ( R ) 2 and 4. For each metric , mean and standard 
deviation is computed . For mean squared error ( MSE ) , the values are scaled by 103 . 

R = 2 
SSIM 

R = 4 
SSIM Methods MSE PSNR MSE PSNR 

64 x 64 AUTOMAP 
64 x 64 U - net 
64 x 64 U - net ( k ) 
64 x 64 NVN 
64 x 64 GNVN 
128 x 128 U - net 
128 x 128 U - net ( k ) 
128 x 128 NVN 
128 x 128 GNVN 
192 x 192 U - net 
192 x 192 U - net ( k ) 
192 x 192 NVN 
192 x 192 GNVN 

2.40 ( 42.14 ) 
1.53 ( 18.13 ) 
1.91 ( 7.40 ) 
1.22 ( 12.51 ) 
1.22 ( 16.88 ) 
0.75 ( 3.73 ) 
1.02 ( 1.26 ) 
0.57 ( 0.86 ) 
0.58 ( 1.99 ) 
0.47 ( 1.55 ) 
0.77 ( 0.81 ) 
0.40 ( 0.60 ) 
0.40 ( 0.77 ) 

0.87 ( 0.14 ) 
0.92 ( 0.11 ) 
0.86 ( 0.13 ) 
0.93 ( 0.11 ) 
0.93 ( 0.09 ) 
0.94 ( 0.09 ) 
0.89 ( 0.10 ) 
0.95 ( 0.06 ) 
0.95 ( 0.07 ) 
0.96 ( 0.05 ) 
0.89 ( 0.10 ) 
0.96 ( 0.06 ) 
0.96 ( 0.05 ) 

29.87 ( 3.73 ) 
31.44 ( 3.86 ) 
30.07 ( 3.57 ) 
32.33 ( 3.92 ) 
32.54 ( 4.00 ) 
34.06 ( 3.68 ) 
32.51 ( 3.58 ) 
34.68 ( 3.57 ) 
34.83 ( 3.64 ) 
35.68 ( 3.67 ) 
33.83 ( 3.62 ) 
36.11 ( 3.60 ) 
36.15 ( 3.57 ) 

2.59 ( 8.09 ) 0.84 ( 0.14 ) 
2.25 ( 21.87 ) 0.90 ( 0.10 ) 
2.51 ( 6.58 ) 0.81 ( 0.13 ) 
1.38 ( 4.04 ) 0.92 ( 0.09 ) 
1.37 ( 4.58 ) 0.92 ( 0.08 ) 
0.91 ( 4.10 ) 0.94 ( 0.07 ) 
1.54 ( 13.77 ) 0.87 ( 0.11 ) 
0.82 ( 1.07 ) 0.93 ( 0.07 ) 
0.67 ( 0.79 ) 0.95 ( 0.03 ) 
0.67 ( 1.13 ) 0.94 ( 0.07 ) 
1.31 ( 7.53 ) 0.87 ( 0.11 ) 
0.66 ( 1.40 ) 0.91 ( 0.12 ) 
0.52 ( 0.44 ) 0.96 ( 0.03 ) 

28.36 ( 3.51 ) 
29.81 ( 3.74 ) 
28.48 ( 3.34 ) 
30.95 ( 3.62 ) 
31.08 ( 3.66 ) 
32.76 ( 3.50 ) 
31.32 ( 3.48 ) 
32.95 ( 3.54 ) 
33.65 ( 3.47 ) 
33.71 ( 3.23 ) 
31.84 ( 3.35 ) 
34.01 ( 3.43 ) 
34.36 ( 3.07 ) 

sional Fourier bases with randomly sampled low order 
coefficients . Second , the images were multiplied by spatially 
localized complex coil sensitivity profiles , which was 
derived from an analytical model of an MRI RF coil . Finally , 
a realistic amount of noise observable for parallel image 
acquisition was added to the images . For the experiments , 
the images were resampled to a field of view ( FOV ) of 
180x180x180 mm " , with the isotrophic resolution of 3.4x 
3.4x3.4 mm ° , 1.7x1.7x1.7 mm and 1.15x1.15x1.15 mm " , 
resulting in the matrix sizes 643 , 1283 and 1923 , respectively . 

[ 0221 ] As between the NVN and GNVN approaches , 
while the NVN approach showed higher data fidelity ( lower 
mean - squared error ) , the GNVN approach offered better 
values for PSNR and SSIM . The sample reconstructions of 
T1 - weighted image for R = 2 and T2 - weighted image for R = 4 
is shown in FIG . 15A and FIG . 15B respectively . While the 
overall differences between U - net , NVN and GNVN were 
small , the reconstructions from NVN and GNVN resulted in 
lower error , owing to the data consistency processing . 
GNVN resulted in the lowest overall errors and preserved 
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more of the fine details . Nevertheless , a certain level of 
blurriness can be observed in all images , due to the added 
noise . Again , U - net ( k - space ) for single coil resulted in a 
suboptimal reconstruction qualitatively . In FIG . 15C , we 
visualize the output of NVN and GNVN at each block . 
Interestingly , unlike compressed sensing methods , the inter 
mediate image can diverge from the final image . This is 
unsurprising as there was no constraint to enforce such 
behavior . For NVN , most output of each block seems closer 
to the ground truth , presumably because the output of the 
DC - i and CNN - i blocks are explicitly combined . In com 
parison , GNVN showed more interesting features for all the 
intermediate stages , mainly highlighting the high frequency 
information . 

[ 0222 ] In these experiments , the number of parameters 
were 128.1M , 22.0M , 6.6M and 7.3M for AUTOMAP 
( 64x64 ) , U - net , NVN and GNVN respectively . The recon 
struction speed were 5.928 + 0.020 ms , 19.145 + 0.072 ms , 
19.459 + 0.077 ms , 44.934 + 0.088 ms , and 65.520 + 0.100 ms 
for AUTOMAP ( for the image size 643 ) , U - net , U - net 
( k - space ) , NVN and GNVN respectively for the image size 
1923 . 
[ 0223 ] FIG . 16 is a block diagram of exemplary compo 
nents of a MRI system 1600. In the illustrative example of 
FIG . 16 , MRI system 1600 comprises workstation 1604 , 
controller 1606 , pulse sequences store 1608 , power man 
agement system 1610 , and magnetic components 1620. It 
should be appreciated that system 1600 is illustrative and 
that MRI system may have one or more other components 
of any suitable type in addition to or instead of the compo 
nents illustrated in FIG . 16 . 
[ 0224 ] As illustrated in FIG . 16 , magnetic components 
1620 comprises B , magnet 1622 , shim coils 1624 , RF 
transmit and receive coils 1626 , and gradient coils 1628. B. 
magnet 1622 may be used to generate , at least in part , the 
main magnetic field B .. B , magnet 1622 may be any suitable 
type of magnet that can generate a main magnetic field ( e.g. , 
a low - field strength of approximately 0.2 T or less ) , and may 
include one or more B , coils , correction coils , etc. Shim 
coils 1624 may be used to contribute magnetic field ( s ) to 
improve the homogeneity of the B , field generated by 
magnet 1622. Gradient coils 1628 may be arranged to 
provide gradient fields and , for example , may be arranged to 
generate gradients in the magnetic field in three substantially 
orthogonal directions ( X , Y , Z ) to localize where MR signals 
are induced . 
[ 0225 ] RF transmit and receive coils 1626 may comprise 
one or more transmit coils that may be used to generate RF 
pulses to induce a magnetic field B ,. The transmit / receive 
coil ( s ) may be configured to generate any suitable type of RF 
pulses configured to excite an MR response in a subject and 
detect the resulting MR signals emitted . RF transmit and 
receive coils 1626 may include one or multiple transmit 
coils and one or multiple receive coils . The configuration of 
the transmit / receive coils varies with implementation and 
may include a single coil for both transmitting and receiving , 
separate coils for transmitting and receiving , multiple coils 
for transmitting and / or receiving , or any combination to 
achieve single channel or parallel MRI systems . Thus , the 
transmit / receive magnetic component is often referred to as 
Tx / Rx or Tx / Rx coils to generically refer to the various 
configurations for the transmit and receive component of an 
MRI system . 

[ 0226 ] Each of magnetics components 1620 may be of any 
suitable type and may be constructed in any suitable way . 
For example , in some embodiments , the B , magnet 1622 
may be an electromagnet or a permanent magnet ( e.g. , as 
described below with reference to FIGS . 17A - B and 18A 
B ) . As another example , in some embodiments , one or more 
magnetics components 1620 ( e.g. , shim coils 1624 and / or 
gradient coils 1628 ) may be fabricated using the laminate 
techniques . 
[ 0227 ] Power management system 1610 includes electron 
ics to provide operating power to one or more components 
of the low - field MRI system 1600. For example , power 
management system 1610 may include one or more power 
supplies , gradient power amplifiers , transmit coil amplifiers , 
and / or any other suitable power electronics needed to pro 
vide suitable operating power to energize and operate com 
ponents of the low - field MRI system 1600 . 
[ 0228 ] As illustrated in FIG . 16 , power management sys 
tem 1610 comprises power supply 1612 , amplifier ( s ) 1614 , 
transmit / receive switch 1616 , and thermal management 
components 1618. Power supply 1612 includes electronics 
to provide operating power to magnetic components 1620 of 
the low - field MRI system 1600. For example , in some 
embodiments , power supply 1612 may include electronics to 
provide operating power to one or more B , coils ( e.g. , B. 
magnet 1622 ) to produce the main magnetic field for the 
low - field MRI system , one or more shim coils 1624 , and / or 
one or more gradient coils 1628. In some embodiments , 
power supply 1612 may be a unipolar , continuous wave 
( CW ) power supply , however , any suitable power supply 
may be used . Transmit / receive switch 1616 may be used to 
select whether RF transmit coils or RF receive coils are 
being operated . 
[ 0229 ] In some embodiments , amplifier ( s ) 1614 may 
include one or more RF receive ( Rx ) pre - amplifiers that 
amplify MR signals detected by one or more RF receive 
coils ( e.g. , coils 1624 ) , one or more RF transmit ( Tx ) 
amplifiers configured to provide power to one or more RF 
transmit coils ( e.g. , coils 1626 ) , one or more gradient power 
amplifiers configured to provide power to one or more 
gradient coils ( e.g. , gradient coils 1628 ) , and / or one or more 
shim amplifiers configured to provide power to one or more 
shim coils ( e.g. , shim coils 1624 ) . 
[ 0230 ] In some embodiments , thermal management com 
ponents 1618 provide cooling for components of low - field 
MRI system 1600 and may be configured to do so by 
facilitating the transfer of thermal energy generated by one 
or more components of the low - field MRI system 1600 away 
from those components . Thermal management components 

lude , without limitation , components to per 
form water - based or air - based cooling , which may be inte 
grated with or arranged in close proximity to MRI compo 
nents that generate heat including , but not limited to , B. 
coils , gradient coils , shim coils , and / or transmit / receive 
coils . Thermal management components 1618 may include 
any suitable heat transfer medium including , but not limited 
to , air and water , to transfer heat away from components of 
the low - field MRI system 1600 . 
[ 0231 ] As illustrated in FIG . 16 , low - field MRI system 
1600 includes controller 1606 ( also referred to as a console ) 
having control electronics to send instructions to and receive 
information from power management system 1610. Control 
ler 1606 may be configured to implement one or more pulse 
sequences , which are used to determine the instructions sent 

1618 may 
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to power management system 1610 to operate the magnetic 
components 1620 in a desired sequence . For example , 
controller 1606 may be configured to control the power 
management system 1610 to operate the magnetic compo 
nents 1620 in accordance with a balanced steady - state free 
precession ( bSSFP ) pulse sequence , a low - field gradient 
echo pulse sequence , a low - field spin echo pulse sequence , 
a low - field inversion recovery pulse sequence , arterial spin 
labeling , diffusion weighted imaging ( DWI ) , and / or any 
other suitable pulse sequence . Controller 1606 may be 
implemented as hardware , software , or any suitable combi 
nation of hardware and software , as aspects of the disclosure 
provided herein are not limited in this respect . 
[ 0232 ] In some embodiments , controller 1606 may be 
configured to implement a pulse sequence by obtaining 
information about the pulse sequence from pulse sequences 
repository 1608 , which stores information for each of one or 
more pulse sequences . Information stored by pulse 
sequences repository 1608 for a particular pulse sequence 
may be any suitable information that allows controller 1606 
to implement the particular pulse sequence . For example , 
information stored in pulse sequences repository 1608 for a 
pulse sequence may include one or more parameters for 
operating magnetics components 1620 in accordance with 
the pulse sequence ( e.g. , parameters for operating the RF 
transmit and receive coils 1626 , parameters for operating 
gradient coils 1628 , etc. ) , one or more parameters for 
operating power management system 1610 in accordance 
with the pulse sequence , one or more programs comprising 
instructions that , when executed by controller 1606 , cause 
controller 1606 to control system 1600 to operate in accor 
dance with the pulse sequence , and / or any other suitable 
information . Information stored in pulse sequences reposi 
tory 1608 may be stored on one or more non - transitory 
storage media . 
[ 0233 ] As illustrated in FIG . 16 , in some embodiments , 
controller 1606 may interact with computing device 1604 
programmed to process received MR data ( which , in some 
embodiments , may be spatial frequency domain MR data ) . 
For example , computing device 1604 may process received 
MR data to generate one or more MR images using any 
suitable image reconstruction process ( es ) including using 
any of the techniques described herein that make use of 
neural network models to generate MR images from spatial 
frequency MR data . For example , computing device 1604 
may perform any of the processes described herein with 
reference to FIGS . 2A , 2B , 2C , 2D , and 14. Controller 1606 
may provide information about one or more pulse sequences 
to computing device 1604 for the processing of data by the 
computing device . For example , controller 1606 may pro 
vide information about one or more pulse sequences to 
computing device 1604 and the computing device may 
perform an image reconstruction process based , at least in 
part , on the provided information . 
[ 0234 ] In some embodiments , computing device 1604 
may be any electronic device or devices configured to 
process acquired MR data and generate one or more images 
of the subject being imaged . In some embodiments , com 
puting device 1604 may include a fixed electronic device 
such as a desktop computer , a server , a rack - mounted 
computer , or any other suitable fixed electronic device that 
may be configured to process MR data and generate one or 
more images of the subject being imaged . Alternatively , 
computing device 1604 may be a portable device such as a 

smart phone , a personal digital assistant , a laptop computer , 
a tablet computer , or any other portable device that may be 
configured to process MR data and generate one or images 
of the subject being imaged . In some embodiments , com 
puting device 1304 may comprise multiple computing 
devices of any suitable type , as the aspects of the technology 
described herein are not limited in this respect . 
[ 0235 ] In some embodiments , a user 1602 may interact 
with computing device 1604 to control aspects of the 
low - field MR system 1600 ( e.g. , program the system 1600 
to operate in accordance with a particular pulse sequence , 
adjust one or more parameters of the system 1600 , etc. ) 
and / or view images obtained by the low - field MR system 
1600. According to some embodiments , computing device 
1604 and controller 1606 form a single controller , while in 
other embodiments , computing device 1604 and controller 
1606 each comprise one or more controllers . It should be 
appreciated that the functionality performed by computing 
device 1604 and controller 1606 may be distributed in any 
way over any combination of one or more controllers , as the 
aspects of the technology described herein are not limited 
for use with any particular implementation or architecture . 
[ 0236 ] FIGS . 17A and 17B illustrate bi - planar permanent 
magnet configurations for a B , magnet , in accordance with 
some embodiments of the technology described herein . FIG . 
17A illustrates a permanent B , magnet 2100 , in accordance 
with some embodiments . In the illustrated embodiment , B. 
magnet 2100 is formed by permanent magnets 2110a and 
2110b arranged in a bi - planar geometry and a yoke 2120 that 
captures electromagnetic flux produced by the permanent 
magnets and transfers the flux to the opposing permanent 
magnet to increase the flux density between permanent 
magnets 2110a and 2110b . Each of permanent magnets 
2110a and 2110b is formed from a plurality of concentric 
permanent magnet rings . In particular , as visible in FIG . 
17A , permanent magnet 2110b comprises an outer ring of 
permanent magnets 2114a , a middle ring of permanent 
magnets 2114b , an inner ring of permanent magnets 2114c , 
and a permanent magnet disk 2114d at the center . Though 
shown with four concentric permanent magnet rings , per 
manent magnet 2110b ( and permanent magnet 2110a ) may 
have any suitable number of permanent magnet rings , as 
aspects of the technology described herein are not limited in 
this respect . Permanent magnet 2110a may be formed sub 
stantially identically to permanent magnet 2110b and , for 
example , comprise the same set of permanent magnet rings 
as permanent magnet 2110b . 
[ 0237 ] The permanent magnet material used may be 
selected depending on the design requirements of the sys 
tem . For example , according to some embodiments , the 
permanent magnets ( or some portion thereof ) may be made 
of NdFeB , which produces a magnetic field with a relatively 
high magnetic field per unit volume of material once mag 
netized . In some embodiments , SmCo material is used to 
form the permanent magnets , or some portion thereof . While 
NdFeB produces higher field strengths ( and in general is less 
expensive than SmCo ) , SmCo exhibits less thermal drift and 
thus provides a more stable magnetic field in the face of 
temperature fluctuations . Other types of permanent magnet 
material ( s ) may be used as well , as the aspects of the 
technology described herein are not limited in this respect . 
In general , the type or types of permanent magnet material 
utilized will depend , at least in part , on the field strength , 
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temperature stability , weight , cost and / or ease of use require 
ments of a given B , magnet implementation . 
[ 0238 ] In some embodiments , the permanent magnet rings 
are sized and arranged to produce a homogenous field of a 
desired strength in the imaging region ( field of view ) 
between permanent magnets 2110a and 2110b . In the exem 
plary embodiment illustrated in FIG . 17A , each permanent 
magnet ring comprises a plurality segments , each segment 
formed using a plurality of permanent magnet blocks 
stacked in the radial direction and positioned adjacent to one 
another about the periphery to form the respective ring . The 
inventors have appreciated that by varying the width ( in the 
direction tangent to the ring ) of each permanent magnet , less 
waste of useful space may be achieved while using less 
material . For example , the space between stacks that does 
not produce useful magnetic fields can be reduced by 
varying the width of the blocks , for example , as function of 
the radial position of the block , allowing for a closer fit to 
reduce wasted space and maximize the amount of magnetic 
field that can be generated in a given space . The dimensions 
of the blocks may also be varied in any desired way to 
facilitate the production of a magnetic field of desired 
strength and homogeneity . For example , in some embodi 
ments , the heights of the blocks different rings may be 
different from one another and / or the heights of one or more 
blocks within a particular ring may be different from one 
another in order to achieve a magnetic field of desired 
strength and homogeneity . 
[ 0239 ] As shown in FIG . 17A , B , magnet 2100 further 
comprises yoke 2120 configured and arranged to capture 
magnetic flux generated by permanent magnets 2110a and 
21106 and direct it to the opposing side of the B , magnet to 
increase the flux density in between permanent magnets 
2110a and 2110b , increasing the field strength within the 
field of view of the B , magnet . By capturing magnetic flux 
and directing it to the region between permanent magnets 
2110a and 2110b , less permanent magnet material can be 
used to achieve a desired field strength , thus reducing the 
size , weight and cost of the B , magnet 2100. Alternatively , 
for given permanent magnets , the field strength can be 
increased , thus improving the SNR of the system without 
having to use increased amounts of permanent magnet 
material . For exemplary B , magnet 2100 , yoke 2120 com 
prises a frame 2122 and plates 2124a and 2124b . Plates 
2124a and 2124b may capture magnetic flux generated by 
permanent magnets 2110a and 2110b and direct it to frame 
2122 to be circulated via the magnetic return path of the 
yoke to increase the flux density in the field of view of the 
B , magnet . Yoke 2120 may be constructed of any desired 
ferromagnetic material , for example , low carbon steel , CoFe 
and / or silicon steel , etc. to provide the desired magnetic 
properties for the yoke . In some embodiments , plates 2124a 
and 2124b ( and / or frame 2122 or portions thereof ) may be 
constructed of silicon steel or the like in areas where the 
gradient coils could most prevalently induce eddy currents . 
[ 0240 ] Exemplary frame 2122 comprises arms 2123a and 
2123b that attach to plates 2124a and 2124b , respectively , 
and supports 2125a and 2125b providing the magnetic 
return path for the flux generated by the permanent magnets . 
The arms are generally designed to reduce the amount of 
material needed to support the permanent magnets while 
providing sufficient cross - section for the return path for the 
magnetic flux generated by the permanent magnets . Frame 
2122 has two supports within a magnetic return path for the 

B , field produced by the B , magnet . Supports 2125a and 
2125b are produced with a gap 2127 formed between , 
providing a measure of stability to the frame and / or lightness 
to the structure while providing sufficient cross - section for 
the magnetic flux generated by the permanent magnets . For 
example , the cross - section needed for the return path of the 
magnetic flux can be divided between the two support 
structures , thus providing a sufficient return path while 
increasing the structural integrity of the frame . 
[ 0241 ] FIG . 17B illustrates a B , magnet 2200 , in accor 
dance with some embodiments . B , magnet 2200 may share 
design components with B , magnet 2100 illustrated in FIG . 
17A . In particular , B , magnet 2200 is formed by permanent 
magnets 2210a and 2210b arranged in a bi - planar geometry 
with a yoke 2220 coupled thereto to capture electromagnetic 
flux produced by the permanent magnets and transfer the 
flux to the opposing permanent magnet to increase the flux 
density between permanent magnets 2210a and 2210b . Each 
of permanent magnets 2210a and 2210b is formed from a 
plurality of concentric permanent magnets , as shown by 
permanent magnet 2210b comprising an outer ring of per 
manent magnets 2214a , a middle ring of permanent magnets 
2214b , an inner ring of permanent magnets 2214c , and a 
permanent magnet disk 2214d at the center . Permanent 
magnet 2210a may comprise the same set of permanent 
magnet elements as permanent magnet 2210b . The perma 
nent magnet material used may be selected depending on the 
design requirements of the system ( e.g. , NdFeB , SmCo , etc. 
depending on the properties desired ) . 
[ 0242 ] The permanent magnet rings are sized and arranged 
to produce a homogenous field of a desired strength in the 
central region ( field of view ) between permanent magnets 
2210a and 2210b . In the exemplary embodiment of FIG . 
17B , each permanent magnet ring comprises a plurality of 
circular arc segments sized and positioned to produce a 
desired B , magnetic field . In a similar manner to yoke 2120 
illustrated in FIG . 17A , yoke 2220 is configured and 
arranged to capture magnetic flux generated by permanent 
magnets 2210a and 2210b and direct it to the opposing side 
of the Bo mag to increase the flux density between 
permanent magnets 2210a and 2210b . Yoke 2220 thereby 
increases the field strength within the field of view of the B. 
magnet with less permanent magnet material , reducing the 
size , weight and cost of the B , magnet . Yoke 2220 also 
comprises a frame 2222 and plates 2224a and 2224b that , in 
a manner similar to that described above in connection with 
yoke 2220 , captures and circulates magnetic flux generated 
by the permanent magnets 2210a and via the magnetic 
return path of the yoke to increase the flux density in the field 
of view of the B , magnet . The structure of yoke 2220 may 
be similar to that described above to provide sufficient 
material to accommodate the magnetic flux generated by the 
permanent magnets and providing sufficient stability , while 
minimizing the amount of material used to , for example , 
reduce the cost and weight of the B , magnet . 
[ 0243 ] Because a permanent B , magnet , once magnetized , 
will produce its own persistent magnetic field , power is not 
required to operate the permanent B , magnet to generate its 
magnetic field . As a result , a significant ( often dominant ) 
contributor to the overall power consumption of an MRI 
system is eliminated through the use of a permanent magnet 
( as opposed to , e.g. , an electro - magnet which requires 
power ) , facilitating the development of an MRI system that 
can be powered using mains electricity ( e.g. , via a standard 
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wall outlet or common large household appliance outlets ) . 
As described above , the inventors have developed low 
power , portable low - field MRI systems that can be deployed 
in virtually any environment and that can be brought to the 
patient who will undergo an imaging procedure . In this way , 
patients in emergency rooms , intensive care units , operating 
rooms and a host of other locations can benefit from MRI in 
circumstances where MRI is conventionally unavailable . 
[ 0244 ] FIGS . 18A and 18B illustrate views of a portable 
MRI system 3800 , in accordance with some embodiments of 
the technology described herein . Portable MRI system 3800 
comprises a B , magnet 3810 formed in part by an upper 
magnet 3810a and a lower magnet 3810b having a yoke 
3820 coupled thereto to increase the flux density within the 
imaging region . The B , magnet 3810 may be housed in 
magnet housing 3812 along with gradient coils 3815 ( e.g. , 
any of the gradient coils described in U.S. application Ser . 
No. 14 / 845,652 , titled “ Low Field Magnetic Resonance 
Imaging Methods and Apparatus ” and filed on Sep. 4 , 2015 , 
which is herein incorporated by reference in its entirety ) . In 
some embodiments , B , magnet 3810 comprises an electro 
magnet . In some embodiments , B , magnet 3810 comprises 
a permanent magnet ( e.g. , any permanent magnet described 
in U.S. application Ser . No. 15 / 640,369 , titled “ LOW 
FIELD MAGNETIC RESONANCE IMAGING METH 
ODS AND APPARATUS , ” filed on Jun . 30 , 2017 , which is 
incorporated by reference herein in its entirety ) . For 
example , in some embodiments , B , magnet 3810 may be the 
permanent magnet 2100 described with reference to FIG . 
17A or the permanent magnet 2200 described with reference 
to FIG . 17B . 

[ 0245 ] Illustrative portable MRI system 3800 further com 
prises a base 3850 housing the electronics that operates the 
MRI system . For example , base 3850 may house electronics 
including , but not limited to , one or more gradient power 
amplifiers , an on - system computer , a power distribution 
unit , one or more power supplies , and / or any other power 
components configured to operate the MRI system using 
mains electricity ( e.g. , via a connection to a standard wall 
outlet and / or a large appliance outlet ) . For example , base 
3870 may house low power components , such as those 
described herein , enabling at least in part the portable MRI 
system to be powered from readily available wall outlets . 
Accordingly , portable MRI system 3800 can be brought to 
the patient and plugged into a wall outlet in his or her 
vicinity . 
[ 0246 ] Portable MRI system 3800 further comprises 
moveable slides 3860 that can be opened and closed and 
positioned in a variety of configurations . Slides 3860 include 
electromagnetic shielding 3865 , which can be made from 
any suitable conductive or magnetic material , to form a 
moveable shield to attenuate electromagnetic noise in the 
operating environment of the portable MRI system to shield 
the imaging region from at least some electromagnetic 
noise . As used herein , the term electromagnetic shielding 
refers to conductive or magnetic material configured to 
attenuate the electromagnetic field in a spectrum of interest 
and positioned or arranged to shield a space , object and / or 
component of interest . In the context of an MRI system , 
electromagnetic shielding may be used to shield electronic 
components ( e.g. , power components , cables , etc. ) of the 
MRI system , to shield the imaging region ( e.g. , the field of 
view ) of the MRI system , or both . 

[ 0247 ] The degree of attenuation achieved from electro 
magnetic shielding depends on a number of factors includ 
ing the type material used , the material thickness , the 
frequency spectrum for which electromagnetic shielding is 
desired or required , the size and shape of apertures in the 
electromagnetic shielding ( e.g. , the size of the spaces in a 
conductive mesh , the size of unshielded portions or gaps in 
the shielding , etc. ) and / or the orientation of apertures rela 
tive to an incident electromagnetic field . Thus , electromag 
netic shielding refers generally to any conductive or mag 
netic barrier that acts to attenuate at least 
electromagnetic radiation and that is positioned to at least 
partially shield a given space , object or component by 
attenuating the at least some electromagnetic radiation . 
[ 0248 ] It should be appreciated that the frequency spec 
trum for which shielding ( attenuation of an electromagnetic 
field ) is desired may differ depending on what is being 
shielded . For example , electromagnetic shielding for certain 
electronic components may be configured to attenuate dif 
ferent frequencies than electromagnetic shielding for the 
imaging region of the MRI system . Regarding the imaging 
region , the spectrum of interest includes frequencies which 
influence , impact and / or degrade the ability of the MRI 
system to excite and detect an MR response . In general , the 
spectrum of interest for the imaging region of an MRI 
system correspond to the frequencies about the nominal 
operating frequency ( i.e. , the Larmor frequency ) at a given 
B , magnetic field strength for which the receive system is 
configured to or capable of detecting . This spectrum is 
referred to herein as the operating spectrum for the MRI 
system . Thus , electromagnetic shielding that provides 
shielding for the operating spectrum refers to conductive or 
magnetic material arranged or positioned to attenuate fre 
quencies at least within the operating spectrum for at least a 
portion of an imaging region of the MRI system . 
[ 0249 ] In portable MRI system 3800 illustrated in FIGS . 
18A and 18B , the moveable shields are thus configurable to 
provide shielding in different arrangements , which can be 
adjusted as needed to accommodate a patient , provide access 
to a patient , and / or in accordance with a given imaging 
protocol . For example , for an imaging procedure such as a 
brain scan , once the patient has been positioned , slides 3960 
can be closed , for example , using handle 3862 to provide 
electromagnetic shielding 3965 around the imaging region 
except for the opening that accommodates the patient's 
upper torso . As another example , for an imaging procedure 
such as a knee scan , slides 3960 may be arranged to have 
openings on both sides to accommodate the patient's leg or 
legs . Accordingly , moveable shields allow the shielding to 
be configured in arrangements suitable for the imaging 
procedure and to facilitate positioning the patient appropri 
ately within the imaging region . 
[ 0250 ] In some embodiments , a noise reduction system 
comprising one or more noise reduction and / or compensa 
tion techniques may be performed to suppress at least some 
of the electromagnetic noise that is not blocked or suffi 
ciently attenuated by shielding 3865. In particular , the 
inventors have developed noise reduction systems config 
ured to suppress , avoid and / or reject electromagnetic noise 
in the operating environment in which the MRI system is 
located . According to some embodiments , these noise sup 
pression techniques work in conjunction with the moveable 
shields to facilitate operation in the various shielding con 
figurations in which the slides may be arranged . For 
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example , when slides 3960 are opened , increased levels of 
electromagnetic noise will likely enter the imaging region 
via the openings . As a result , the noise suppression compo 
nent will detect increased electromagnetic noise levels and 
adapt the noise suppression and / or avoidance response 
accordingly . Due to the dynamic nature of the noise sup 
pression and / or avoidance techniques described herein , the 
noise reduction system is configured to be responsive to 
changing noise conditions , including those resulting from 
different arrangements of the moveable shields . Thus , a 
noise reduction system in accordance with some embodi 
ments may be configured to operate in concert with the 
moveable shields to suppress electromagnetic noise in the 
operating environment of the MRI system in any of the 
shielding configurations that may be utilized , including 
configurations that are substantially without shielding ( e.g. , 
configurations without moveable shields ) . 
[ 0251 ] To ensure that the moveable shields provide shield 
ing regardless of the arrangements in which the slides are 
placed , electrical gaskets may be arranged to provide con 
tinuous shielding along the periphery of the moveable 
shield . For example , as shown in FIG . 18B , electrical 
gaskets 3867a and 3867b may be provided at the interface 
between slides 3860 and magnet housing to maintain to 
provide continuous shielding along this interface . According 
to some embodiments , the electrical gaskets are beryllium 
fingers or beryllium - copper fingers , or the like ( e.g. , alumi 
num gaskets ) , that maintain electrical connection between 
shields 3865 and ground during and after slides 3860 are 
moved to desired positions about the imaging region . 
[ 0252 ] To facilitate transportation , a motorized component 
3880 is provide to allow portable MRI system to be driven 
from location to location , for example , using a control such 
as a joystick or other control mechanism provided on or 
remote from the MRI system . In this manner , portable MRI 
system 3800 can be transported to the patient and maneu 
vered to the bedside to perform imaging . 
[ 0253 ] The portable MRI systems described herein may be 
operated from a portable electronic device , such as a note 
pad , tablet , smartphone , etc. For example , tablet computer 
3875 may be used to operate portable MRI system to run 
desired imaging protocols and to view the resulting images . 
Tablet computer 3875 may be connected to a secure cloud to 
transfer images for data sharing , telemedicine , and / or deep 
learning on the data sets . Any of the techniques of utilizing 
network connectivity described in U.S. application Ser . No. 
14 / 846,158 , titled “ Automatic Configuration of a Low Field 
Magnetic Resonance Imaging System , ” filed Sep. 4 , 2015 , 
which is herein incorporated by reference in its entirety , may 
be utilized in connection with the portable MRI systems 
described herein . 
[ 0254 ] As discussed above , FIG . 18C illustrates a portable 
MRI system 3900 that has been transported to a patient's 
bedside to perform a brain scan . FIG . 18D illustrates por 
table MRI system 3900 that has been transported to a 
patient's bedside to perform a scan of the patient's knee . As 
shown in FIG . 18D , shield 3960 have electrical gaskets 
3867c . 
[ 0255 ] It should be appreciated that the electromagnetic 
shields illustrated in FIGS . 18A - 18D are exemplary and 
providing shielding for an MRI system is not limited to the 
example electromagnetic shielding described herein . Elec 
tromagnetic shielding can be implemented in any suitable 
way using any suitable materials . For example , electromag 

netic shielding may be formed using conductive meshes , 
fabrics , etc. that can provide a moveable “ curtain ” to shield 
the imaging region . Electromagnetic shielding may be 
formed using one or more conductive straps ( e.g. , one or 
more strips of conducting material ) coupled to the MRI 
system as either a fixed , moveable or configurable compo 
nent to shield the imaging region from electromagnetic 
interference , some examples of which are described in 
further detail below . Electromagnetic shielding may be 
provided by embedding materials in doors , slides , or any 
moveable or fixed portion of the housing . Electromagnetic 
shields may be deployed as fixed or moveable components , 
as the aspects are not limited in this respect . 
[ 0256 ] FIG . 19 is a diagram of an illustrative computer 
system on which embodiments described herein may be 
implemented . An illustrative implementation of a computer 
system 1900 that may be used in connection with any of the 
embodiments of the disclosure provided herein is shown in 
FIG . 19. For example , the processes described with refer 
ence to FIGS . 2A - 2D and 14 may be implemented on and / or 
using computer system 1900. As another example , the 
computer system 1900 may be used to train and / or use any 
of the neural network statistical models described herein . 
The computer system 1900 may include one or more pro 
cessors 1910 and one or more articles of manufacture that 
comprise non - transitory computer - readable storage media 
( e.g. , memory 1920 and one or more non - volatile storage 
media 1930 ) . The processor 1910 may control writing data 
to and reading data from the memory 1920 and the non 
volatile storage device 1930 in any suitable manner , as the 
aspects of the disclosure provided herein are not limited in 
this respect . To perform any of the functionality described 
herein , the processor 1910 may execute one or more pro 
cessor - executable instructions stored in one or more non 
transitory computer - readable storage media ( e.g. , the 
memory 1920 ) , which may serve as non - transitory com 
puter - readable storage media storing processor - executable 
instructions for execution by the processor 1910 . 
[ 0257 ] Having thus described several aspects and embodi 
ments of the technology set forth in the disclosure , it is to be 
appreciated that various alterations , modifications , and 
improvements will readily occur to those skilled in the art . 
Such alterations , modifications , and improvements are 
intended to be within the spirit and scope of the technology 
described herein . For example , those of ordinary skill in the 
art will readily envision a variety of other means and / or 
structures for performing the function and / or obtaining the 
results and / or one or more of the advantages described 
herein , and each of such variations and / or modifications is 
deemed to be within the scope of the embodiments described 
herein . Those skilled in the art will recognize , or be able to 
ascertain using no more than routine experimentation , many 
equivalents to the specific embodiments described herein . It 
is , therefore , to be understood that the foregoing embodi 
ments are presented by way of example only and that , within 
the scope of the appended claims and equivalents thereto , 
inventive embodiments may be practiced otherwise than as 
specifically described . In addition , any combination of two 
or more features , systems , articles , materials , kits , and / or 
methods described herein , if such features , systems , articles , 
materials , kits , and / or methods are not mutually inconsis 
tent , is included within the scope of the present disclosure . 
[ 0258 ] The above - described embodiments can be imple 
mented in any of numerous ways . One or more aspects and 
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can 

embodiments of the present disclosure involving the perfor 
mance of processes or methods may utilize program instruc 
tions executable by a device ( e.g. , a computer , a processor , 
or other device ) to perform , or control performance of , the 
processes or methods . In this respect , various inventive 
concepts may be embodied as a computer readable storage 
medium ( or multiple computer readable storage media ) 
( e.g. , a computer memory , one or more floppy discs , com 
pact discs , optical discs , magnetic tapes , flash memories , 
circuit configurations in Field Programmable Gate Arrays or 
other semiconductor devices , or other tangible computer 
storage medium ) encoded with one or more programs that , 
when executed on one or more computers or other proces 
sors , perform methods that implement one or more of the 
various embodiments described above . The computer read 
able medium or media can be transportable , such that the 
program or programs stored thereon can be loaded onto one 
or more different computers or other processors to imple 
ment various ones of the aspects described above . In some 
embodiments , computer readable media may be non - transi 
tory media . 
[ 0259 ] The terms “ program ” or “ software ” are used herein 
in a generic sense to refer to any type of computer code or 
set of computer - executable instructions that be 
employed to program a computer or other processor to 
implement various aspects as described above . Additionally , 
it should be appreciated that according to one aspect , one or 
more computer programs that when executed perform meth 
ods of the present disclosure need not reside on a single 
computer or processor , but may be distributed in a modular 
fashion among a number of different computers or proces 
sors to implement various aspects of the present disclosure . 
[ 0260 ] Computer - executable instructions may be in many 
forms , such as program modules , executed by one or more 
computers or other devices . Generally , program modules 
include routines , programs , objects , components , data struc 
tures , etc. that perform particular tasks or implement par 
ticular abstract data types . Typically the functionality of the 
program modules may be combined or distributed as desired 
in various embodiments . 
[ 0261 ] Also , data structures may be stored in computer 
readable media in any suitable form . For simplicity of 
illustration , data structures may be shown to have fields that 
are related through location in the data structure . Such 
relationships may likewise be achieved by assigning storage 
for the fields with locations in a computer - readable medium 
that convey relationship between the fields . However , any 
suitable mechanism may be used to establish a relationship 
between information in fields of a data structure , including 
through the use of pointers , tags or other mechanisms that 
establish relationship between data elements . 
[ 0262 ] When implemented in software , the software code 
can be executed on any suitable processor or collection of 
processors , whether provided in a single computer or dis 
tributed among multiple computers . 
[ 0263 ] Further , it should be appreciated that a computer 
may be embodied in any of a number of forms , such as a 
rack - mounted computer , a desktop computer , a laptop com 
puter , or a tablet computer , as non - limiting examples . Addi 
tionally , a computer may be embedded in a device not 
generally regarded as a computer but with suitable process 
ing capabilities , including a Personal Digital Assistant 
( PDA ) , a smartphone or any other suitable portable or fixed 
electronic device . 

[ 0264 ] Also , a computer may have one or more input and 
output devices . These devices can be used , among other 
things , to present a user interface . Examples of output 
devices that can be used to provide a user interface include 
printers or display screens for visual presentation of output 
and speakers or other sound generating devices for audible 
presentation of output . Examples of input devices that can be 
used for a user interface include keyboards , and pointing 
devices , such as mice , touch pads , and digitizing tablets . As 
another example , a computer may receive input information 
through speech recognition or in other audible formats . 
[ 0265 ] Such computers may be interconnected by one or 
more networks in any suitable form , including a local area 
network or a wide area network , such as an enterprise 
network , and intelligent network ( IN ) or the Internet . Such 
networks may be based on any suitable technology and may 
operate according to any suitable protocol and may include 
wireless networks , wired networks or fiber optic networks . 
[ 0266 ] Also , as described , some aspects may be embodied 
as one or more methods . The acts performed as part of the 
method may be ordered in any suitable way . Accordingly , 
embodiments may be constructed in which acts are per 
formed in an order different than illustrated , which may 
include performing some acts simultaneously , even though 
shown as sequential acts in illustrative embodiments . 
[ 0267 ] All definitions , as defined and used herein , should 
be understood to control over dictionary definitions , defini 
tions in documents incorporated by reference , and / or ordi 
nary meanings of the defined terms . 
[ 0268 ] The indefinite articles “ a ” and “ an , ” as used herein 
in the specification and in the claims , unless clearly indi 
cated to the contrary , should be understood to mean “ at least 
one . ” 
[ 0269 ] The phrase " and / or , ” as used herein in the speci 
fication and in the claims , should be understood to mean 
“ either or both ” of the elements so conjoined , i.e. , elements 
that are conjunctively present in some cases and disjunc 
tively present in other cases . Multiple elements listed with 
" and / or ” should be construed in the same fashion , i.e. , " one 
or more ” of the elements so conjoined . Other elements may 
optionally be present other than the elements specifically 
identified by the “ and / or ” clause , whether related or unre 
lated to those elements specifically identified . Thus , as a 
non - limiting example , a reference to “ A and / or B ” , when 
used in conjunction with open - ended language such as 
" comprising ” can refer , in one embodiment , to A only 
( optionally including elements other than B ) ; in another 
embodiment , to B only ( optionally including elements other 
than A ) ; in yet another embodiment , to both A and B 
( optionally including other elements ) ; etc. 
[ 0270 ] As used herein in the specification and in the 
claims , the phrase " at least one , ” in reference to a list of one 
or more elements , should be understood to mean at least one 
element selected from any one or more of the elements in the 
list of elements , but not necessarily including at least one of 
each and every element specifically listed within the list of 
elements and not excluding any combinations of elements in 
the list of elements . This definition also allows that elements 
may optionally be present other than the elements specifi 
cally identified within the list of elements to which the 
phrase " at least one ” refers , whether related or unrelated to 
those elements specifically identified . Thus , as a non - limit 
ing example , “ at least one of A and B ” ( or , equivalently , “ at 
least one of Aor B , ” or , equivalently “ at least one of A and / or 
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B ” ) can refer , in one embodiment , to at least one , optionally 
including more than one , A , with no B present ( and option 
ally including elements other than B ) ; in another embodi 
ment , to at least one , optionally including more than one , B , 
with no A present ( and optionally including elements other 
than A ) ; in yet another embodiment , to at least one , option 
ally including more than one , A , and at least one , optionally 
including more than one , B and optionally including other 
elements ) ; etc. 
[ 0271 ] In the claims , as well as in the specification above , 
all transitional phrases such as “ comprising , ” “ including , ” 
" carrying , ” “ having , " " containing , " " involving , " " holding , " 
" composed of , ” and the like are to be understood to be 
open - ended , i.e. , to mean including but not limited to . Only 
the transitional phrases “ consisting of ” and “ consisting 
essentially of ” shall be closed or semi - closed transitional 
phrases , respectively . 
[ 0272 ] The terms “ approximately ” and “ about ” may be 
used to mean within + 20 % of a target value in some 
embodiments , within + 10 % of a target value in some 
embodiments , within + 5 % of a target value in some embodi 
ments , within 12 % of a target value in some embodiments . 
The terms “ approximately ” and “ about " may include the 
target value . 
What is claimed is : 
1. A method , comprising : 
generating a magnetic resonance ( MR ) image from input 
MR spatial frequency data using a neural network 
model comprising one or more neural network blocks 
including a first neural network block , 

wherein the first neural network block is configured to 
perform data consistency processing using a non - uni 
form Fourier transformation for transforming image 
domain data to spatial frequency domain data . 

2. The method of claim 1 , wherein the neural network 
model comprises multiple neural network blocks each of 
which is configured to perform data consistency processing 
using the non - uniform Fourier transformation . 

3. The method of claim 1 , further comprising : 
obtaining the input MR spatial frequency data ; 
generating an initial image from the input MR spatial 

frequency data using the non - uniform Fourier transfor 
mation ; and 

applying the neural network model to the initial image at 
least in part by using the first neural network block to 
perform data consistency processing using the non 
uniform Fourier transformation . 

4. The method of claim 1 , wherein the first neural network 
block is configured to perform data consistency processing 
using the non - uniform Fourier transformation at least in part 
by performing the non - uniform Fourier transformation on 
data by applying a gridding interpolation transformation , a 
fast Fourier transformation , and a de - apodization transfor 
mation to the data . 

5. The method of claim 4 , wherein applying the gridding 
interpolation transformation to the data is performed using 
sparse graphical processing unit ( GPU ) matrix multiplica 
tion . 

6. The method of claim 1 , wherein the first neural network 
block comprises : 

a data consistency block configured to perform the data 
consistency processing ; and 

a plurality of convolutional layers . 

7. The method of claim 6 , wherein the data consistency 
block is configured to : 

apply the non - uniform Fourier transformation to a first 
image , provided as input to the data consistency block , 
to obtain first MR spatial frequency data ; and 

apply an adjoint non - uniform Fourier transformation to a 
difference between the first MR spatial frequency data 
and the input MR spatial frequency data . 

8. The method of claim 7 , wherein applying the non 
uniform Fourier transformation to the first image domain 
data comprises : 

applying , to the first image domain data , a de - apodization 
transformation followed by a Fourier transformation , 
and followed by a gridding interpolation transforma 
tion . 

9. The method of claim 6 , wherein the plurality of 
convolutional layers include one or more convolutional 
layers and one or more transpose convolutional layers . 

10. The method of claim 6 , wherein the plurality of 
convolutional layers have a U - net structure . 

11. The method of claim 6 , further comprising applying 
the first neural network block to image domain data , the 
applying comprising : 

applying the data consistency block to image domain data 
to obtain first output ; 

applying the plurality of convolutional layers to the image 
domain data to obtain second output ; and 

determining a linear combination of the first and second 
output . 

12. The method of claim 1 , wherein the first neural 
network block comprises : 

a plurality of convolutional layers configured to receive as 
input : 
image domain data ; and 
output obtained by applying an adjoint non - uniform 

Fourier transformation to the input MR spatial fre 
quency data . 

13. The method of claim 12 , wherein the plurality of 
convolutional layers is further configured to receive as input : 

output obtained by applying the non - uniform Fourier 
transformation and the adjoint non - uniform Fourier 
transformation to the image domain data . 

14. The method of claim 1 , further comprising applying 
the first neural network block to image domain data , the 
applying comprising : 

applying , to the image domain data , the non - uniform 
Fourier transformation followed by an adjoint non 
uniform Fourier transformation to obtain first output ; 

applying the adjoint non - uniform Fourier transformation 
to the input MR spatial frequency data to obtain second 
output ; and 

providing the image domain data , the first output , and the 
second output as inputs to the plurality of convolutional 
layers . 

15. The method of claim 14 , further comprising : 
applying a convolutional neural network to a result of 

applying the non - uniform Fourier transformation to the 
image domain data to obtain an intermediate output ; 
and 

applying the adjoint non - uniform Fourier transformation 
to the intermediate output to obtain the first output . 
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16. The method of claim 1 , wherein points in the input 
MR spatial frequency data were obtained using a non 
Cartesian sampling trajectory . 

17. The method of claim 16 , wherein the non - uniform 
Fourier transformation is determined at least in part by using 
the non - Cartesian sampling trajectory . 

18. At least one non - transitory computer - readable storage 
medium storing processor - executable instructions that , 
when executed by at least one computer hardware processor , 
cause the at least one computer hardware processor to 
perform a method comprising : 

generating a magnetic resonance ( MR ) image from input 
MR spatial frequency data using a neural network 
model comprising one or more neural network blocks 
including a first neural network block , 

wherein the first neural network block is configured to 
perform data consistency processing using a non - uni 
form Fourier transformation for transforming image 
domain data to spatial frequency domain data . 

19. A magnetic resonance imaging ( MRI ) system , com 
prising : 

a magnetics system comprising : 
a B , magnet configured to provide a B , field for the 
MRI system ; 

gradient coils configured to provide gradient fields for 
the MRI system ; and 

at least one RF coil configured to detect magnetic 
resonance ( MR ) signals ; 

a controller configured to : 
control the magnetics system to acquire MR spatial 

frequency data using a non - Cartesian sampling tra 
jectory ; and 

generate an MR image from the acquired MR spatial 
frequency data using a neural network model com 
prising one or more neural network blocks including 
a first neural network block , 

wherein the first neural network block is configured to 
perform data consistency processing using a non 
uniform Fourier transformation . 

20. The MRI system of claim 19 , wherein the B , magnet 
is a permanent magnet . 


