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ROBUST REPRESENTATION OF NETWORK 
TRAFFC FOR DETECTING MALWARE 

VARATIONS 

CROSS REFERENCE TO RELATED 
APPLICATION 

0001. This application claims priority to U.S. Provisional 
Patent Application No. 62/211,363, filed Aug. 28, 2015, the 
entirety of which is incorporated herein by reference. 

TECHNICAL FIELD 

0002 The present disclosure relates to malware detec 
tion. 

BACKGROUND 

0003 All corporate networks are infected by malware. As 
the variability of malware samples has been rapidly increas 
ing over the last years, existing signature-based security 
devices, firewalls, oranti-virus solutions provide only partial 
protection against these threats. 
0004. The ability to detect new variants and modifica 
tions of existing malware is becoming very important. 
Machine learning is beginning to be successfully applied to 
complement signature-based devices. However, machine 
learning methods require a large amount of labeled data for 
training, which limits their applicability due to high costs 
associated with labeling. Moreover, a malware detector is 
trained at a certain point in time, but malware evolves over 
time to evade detection. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0005 FIG. 1 is a diagram of a network environment in 
which the malware detection techniques presented herein 
may be used, according to an example embodiment. 
0006 FIG. 2 is a diagram depicting a process for gener 
ating a representation of network traffic for detecting mal 
ware variations, according to an example embodiment. 
0007 FIG. 3 is a diagram illustrating decomposition of a 
Uniform Resource Locator (URL) into logical parts accord 
ing to an example embodiment. 
0008 FIG. 4 is a diagram depicting elements of a repre 
sentation generator and operations performed by these ele 
ments according to an example embodiment. 
0009 FIG. 5 is a flow chart depicting operations per 
formed by a networking device according to an example 
embodiment. 

0010 FIG. 6 is a diagram of a network environment in 
which the malware detection techniques presented herein 
may be used, according to another example embodiment. 
0011 FIGS. 7A and 7B are diagrams illustrating analysis 
of false negatives (number of missed malware samples) and 
true positives (number of detected malware samples) based 
on histograms computed directly from feature vectors, and 
self-similarity histograms produced by the process depicted 
in FIG. 2 according to an example embodiment. 
0012 FIG. 8 is a diagram illustrating clustering results, 
where input bags are used with the representation generated 
according to the process of FIG. 2 according to an example 
embodiment. 
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DESCRIPTION OF EXAMPLE EMBODIMENTS 

Overview 

0013 Techniques are presented herein to generate a 
robust representation of network traffic that is invariant 
against changes of malware behavior over time and that can 
be utilized to identify malware network communications 
between a computing device and a server. The techniques 
are used to generate a cumulative feature vector. The cumu 
lative feature vector is invariant under shifting and Scaling of 
feature values extracted from the network traffic records and 
under permutation and size changes of groups of network 
traffic records. 

0014 Network traffic records are divided to create at least 
one group of network traffic records, the at least one group 
including network traffic records associated with network 
communications between the computing device and the 
server for a predetermined period of time. A set of feature 
vectors is generated, each feature vector of the set of feature 
vectors representing one of the network traffic records of the 
network communications included in the at least one group 
of network traffic records. Each feature vector includes a 
predefined set of features extracted from one of the network 
traffic records. A self-similarity matrix is computed for each 
feature of the predefined set of features using all feature 
vectors generated for the at least one group. Each self 
similarity matrix is a representation of one feature of the 
predefined set of features that is invariant to an increase or 
a decrease of values of the one feature across all of the 
feature vectors generated for the at least one group of 
network traffic records. Each self-similarity matrix is trans 
formed into a corresponding histogram to form a set of 
histograms, each histogram being a representation of the one 
feature that is invariant to a number of network traffic 
records in the at least one group of network traffic records. 
The cumulative feature vector is a cumulative representation 
of the predefined set of features of all network traffic records 
included in the at least one group of network traffic records 
and is generated based on the set of histograms. 

EXAMPLE EMBODIMENTS 

00.15 Presented herein are techniques to solve the prob 
lem of detecting variants of malicious behavior from net 
work traffic records (e.g. proxy logs or NetFlow records) 
associated with network communications between any given 
computing device in a network to be protected and a device 
(e.g., a server) outside the network that is to be protected. A 
representation of malware samples is provided that is invari 
ant against variations and temporal changes. This means that 
new and unseen malware variants are represented with 
similar feature vectors as existing known malware, which 
greatly facilitates detecting new or modified malicious 
behaviors. Representing network traffic according to these 
techniques leads to significantly improved efficacy results, 
as described below. 

0016. In the context of malware, a representation that is 
invariant against shifting, Scaling, permutation, and size 
means that any change in the number of flows of an attack 
(size invariance) or in the ordering of flows (permutation 
invariance) will not avoid detection. Shift and scale invari 
ance ensures that any internal variations of malware behav 
ior described by a predefined set of features will not change 
the representation as well. 
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0017 FIG. 1 is a block diagram of a network environ 
ment 100 in which the malware detection techniques pre 
sented herein may be employed. Network environment 100, 
includes networking device 110 which may be a server 
computer, firewall, network intrusion device, etc. Network 
ing device 110 includes network interface unit 114 (e.g., a 
network port of a network interface card) which connects 
networking device 110 with network 140 (e.g., the Internet), 
a control processor 116 (or multiple processors) and a 
memory 120. Memory 120 stores instructions for, among 
other functions, control logic 122, representation generation 
logic 124 and classifier logic 126. Network security device 
130 (e.g., a firewall) or any other network device connected 
to network 140 may generate network traffic records 128 
(e.g. proxy logs or NetFlow records) that are sent to net 
working device 110 and stored in memory 120. 
0018. The memory 120 may be read only memory 
(ROM), random access memory (RAM), magnetic disk 
storage media devices, optical storage media devices, flash 
memory devices, electrical, optical, or other physical/tan 
gible memory storage devices. Thus, in general, the memory 
120 may comprise one or more tangible (non-transitory) 
computer readable storage media (e.g., a memory device) 
encoded with Software comprising computer executable 
instructions and when the software is executed (by the 
processor 116) it is operable to perform the operations 
described herein. The networking device 110 performs the 
operations described below in connection with FIGS. 2-4 
when executing the software stored in memory 120. 
0019 FIG. 1 shows computing device 150 on which 
malware 152 resides and is executed, and which is con 
nected to network 140 via network interface unit 154. FIG. 
1 also shows computing device 160 which is connected to 
network 140 via network interface unit 164 and which is not 
infected by malware. Computing devices 150 and 160 may 
be, for example, part of an enterprise network (not shown), 
and the enterprise network may include, but is not limited to, 
a plurality of computing devices, servers and other network 
ing devices that may be infected by malware. This malware 
may change its behavior over time resulting in varying 
network traffic records produced by the malware. 
0020. In addition, several other network elements may be 
connected to network 140. Such as for example, safe net 
work server 170 and unsafe network server 180. FIG. 1 
further shows malware network communication 156 
between infected computing device 150 and unsafe network 
server 180 and network communication 166 between com 
puting device 160 and safe network server 170. 
0021 Reference is now made to FIGS. 2 and 3 (with 
continued reference to FIG. 1). FIG. 2 is a diagram depicting 
a process performed by networking device 110 for generat 
ing a representation of network traffic for detecting malware 
variations through execution of representation generation 
logic 124. FIG. 2 shows network traffic records stored in 
memory 120 of networking device 110. As discussed above, 
network traffic records may be generated by network Secu 
rity device 130 or by any other networking device. Network 
traffic records are associated with flows 205(1) to 205(N). 
Each flow represents one communication between a com 
puting device and a server. A flow is a group of packets 
which have the same source and destination address, the 
same source and destination port, and which use the same 
protocol. For example, a group of packets exchanged 
between computing device 150 and unsafe network server 
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180 representing malware network communication 156 may 
constitute flows 205(1)-205(N). Port numbers may be 
changed during the communication which results in more 
flows. Network traffic is bidirectional. Thus, network traffic 
records such as proxy logs contain data for both directions 
of a communication of a given flow. 
0022. A flow may consist of the following flow fields: 
user name, Source address (e.g., a source Internet protocol 
(IP) address), source port, destination port, protocol, number 
of bytes transferred from a client device (e.g., computing 
devices 150 and 160) to a server (e.g., safe network server 
170 and unsafe network server 180) and from the server to 
the client device, flow duration, timestamp, user agent, 
URL, referrer, Multipurpose Internet Mail Extensions 
(MIME) type, and Hypertext Transfer Protocol (HTTP) 
Status. The most informative flow field is the URL field 300 
shown in FIG. 3. As shown in FIG. 3, URL field 300 
includes seven logical parts, namely protocol 301, second 
level domain 303, top-level domain 305, path 307, file name 
309, query 311, and fragment 313. 
0023 Returning back to FIG. 2, network traffic records 
are grouped or divided into “bags” or buckets. Each “bag' 
contains network traffic records with the same user name (or 
with the same source address) and with the same hostname 
of the server (second-level domain in the URL field of the 
flow fields) for a given period of time. Thus, each bag 
represents communication of a user with a particular 
domain. There is no limit on the size of each bag, i.e., the 
number of network traffic records in each bag. However, to 
compute a meaningful histogram as discussed below, at least 
5 network traffic records are included in the bag. 
0024. In the example shown in FIG. 2, a plurality of 
network traffic records belonging to flows 205(1) to 205(N) 
is grouped together to form bag 210. At processing stage 1 
shown in FIG. 2, from the flow fields of flows 205(1) to 
205(N), feature values 215 for a predefined set of flow-based 
features 220(1)-220(M) are extracted for each network traf 
fic record in bag 210. The predefined set of flow-based 
features 220C1) to 220CM) includes features describing URL 
structures (such as URL length, decomposition, or character 
distribution), the number of bytes transferred from the server 
to the client device and vice versa, the user agent, the HTTP 
status, the MIME type, and the port, etc. An example list of 
extracted features is shown in Table 1. Features from the 
right column of Table 1 are applied on all URL parts. 

TABLE 1. 

List of features extracted from proxy logs (flows 

Features applied on all URL 
Features parts + referrer 

Duration length 
HTTP Status digit ratio 

lower case ratio 
upper case ratio 
vowel changes ratio 
down has repetition of & and '= 
starts with number 
number of non-base64 characters 
has a special character 
max length of consonant stream 
max length of vowel stream 
max length of lower case stream 
max length of upper case stream 
max length of digit stream 

is URL encrypted 
is protocol HTTPS 
number of bytes up 
number of bytes 
is URL in ASCII 
client port number 
server port number 
user agent length 
MIME-Type length 
number off in path 
number off in query 
number off in referer 
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TABLE 1-continued 

List of features extracted from proxy logs (flows 

Features applied on all URL 
Features parts + referrer 

ratio of a character with max 
OCCUCCE 

is second-level domain raw|P 

0025. At the end of processing stage 1, bag 210 is 
represented as a set of feature vectors 225(1) to 225(N), 
where there is one vector for each flow. 

0026. At processing stages 2-4, the representation of bag 
210 is transformed into a cumulative feature vector 250, 
wherein such a representation of bag 210 is invariant against 
several malware variations, including: shift, Scale, permu 
tation, and size of the bags. The transformation process 
begins at processing stage 2, in which locally-scaled self 
similarity matrices 230(1) to 230(M) are calculated. 
0027 Cumulative feature vectors are calculated for both 
bags representing training data to train classifier logic 126 
and bags to be classified by classifier logic 126. The prob 
ability distribution of a bag representing training data may 
be different from the probability distribution of the bag to be 
classified. Therefore, the representation of the bags in the 
form of feature vectors needs to be transformed to be 
invariant to this shift. The shift is typically caused by the 
dynamics of the domain or environment. A shift means that 
some original feature values of all network traffic records in 
the bag are increased or decreased by a given amount. Thus, 
transforming the representation of a bag to be invariant 
against shifts ensures that even if some original feature 
values of all network traffic records in a bag are increased or 
decreased by a given amount, the values in the new repre 
sentation remain unchanged. 
0028 Scale variance is caused by some original feature 
values of all network traffic records in the bag being mul 
tiplied by a common factor. Scale invariance guarantees that 
even if some original feature values of all network traffic 
records in a bag are multiplied by a common factor, the 
values in the new representation remain unchanged. 
0029 Shift invariance is ensured by computing a self 
similarity matrix for each feature using all network traffic 
records in a bag. The traditional representation of an i-th bag 
X, that consists of a set of m network traffic records {x1, . 

.., X} is in the form of a matrix: 

where X, denotes the k-th feature value of the 1-th network 
traffic record from bag X. In order to generate a represen 
tation of the i-th bag that guarantees shift invariance, a 
translation invariant distance function is provided that holds: 

d(x1, x2)=d(x1 +a, x2+a). 

0030 This translation invariant distance function can 
also be expressed as follows: 

A ric k Il-st 
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where I. I ? denote the k-th feature value of the p-th and 
q-th network traffic record from bag X, and s,? defines the 
difference between values X.. X. Then it holds for each 
translation invariant distance function d: 

0031. The feature value d(x, X) expresses the distance 
between the two values of k-th feature regardless of their 
absolute values. This value is more robust, however it could 
be less informative, as the information about the absolute 
values was removed. To compensate the possible informa 
tion loss, the bags are represented with a matrix of these 
distances d(I, X), which is called a self-similarity matrix 
S. The self-similarity matrix is a symmetric positive semi 
definite matrix, where rows and columns represent indi 
vidual flows, and an (i,j)-th element corresponds to the 
distance between the feature value of an i-th network traffic 
record and a j-th network traffic record. 
0032 Each bag is transformed into a set of self-similarity 
matrices. In other words, for the i-th bag X, a per-feature 
self-similarity set of matrices S.-S.", S,, . . . . S." } is 
computed, where 

sii si. ... sin d(xi. xi) d(xi, xii) ... d(xi, x,) 
S = s' s: ... sin d(xi, xi) d(x,x) ... d(x, y,) 

sh sh: ... so d(x, xi) d(x, y) ... d(x, y) 

and S. =d(x, X? is a distance between feature values and 
I. and X? of the k-th feature. 
0033 Scale invariance is introduced by local feature 
Scaling, where all values in each self-similarity matrix are 
scaled into interval [0,1]. Scaling as called “local’ because 
maximum and minimum values used for Scaling are com 
puted only for network traffic records within a bag. Thus, to 
guarantee the scale invariance, the matrix S, is locally 
scaled into the interval 0.1 as follows: 

sk sk sk si S2 Sin 
W sk sk k 

S = si: s?: ... 5 s'. = s' - min. (s) 
- , - . . . . 

: maxi (si)- mini (sii) 
sk sk Sml 52 Smn 

0034 Returning now to FIG. 2 (with continued reference 
to FIG. 1), at processing stage 2, for each feature 220C1) to 
220CM), corresponding locally-scaled self-similarity matri 
ces 230(1) to 230(M) are calculated by representation gen 
eration logic 124 of networking device 110. 
0035 Generally, since there is no restriction on the size 
of bag 210 (i.e., the number of network traffic records 
included in the bag) the corresponding locally-scaled self 
similarity matrices 230(1) to 230(M) can be of various sizes. 
Comparing Such matrices of various sizes may be quite 
burdensome and, therefore, the representation of bag 210 
needs to be invariant against the size of bag 210, i.e., it needs 
to be size invariant. Moreover, in highly dynamic environ 
ments, the network traffic records may occur in a variable 
ordering. Therefore, the representation of bag 210 needs also 
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be invariant against any reordering of rows and columns, 
i.e., it needs to be permutation invariant. 
0036. At processing stage 3 in FIG. 2, representation 
generation logic 124 creates histograms 240(1) to 240(M) 
from all values of each locally-scaled self-similarity matrix 
230(1) to 230(M). More specifically, to ensure permutation 
and size invariance, every locally-scaled self-similarity 
matrix 230(1) to 230(M) is transformed into a single histo 
gram 240(1) to 240(M). Calculating histograms 240(1) to 
240(M) ensures the same results for any reordering of 
network traffic records or the number of network traffic 
records in bag 210, respectively. 
0037 Each histogram 240(1) to 240(M) is associated 
with one of the features 220(1) to 220(M). At processing 
stage 4 in FIG. 2, all histograms 240(1) to 240(M) that 
belong to bag 210 are concatenated to generate a cumulative 
feature vector 250 which is the final representation of bag 
210. Cumulative feature vector 250 is invariant against shift, 
scale, permutation and size of bag 210. 
0038 Referring now to FIG. 4 (with continued reference 

to FIGS. 1 and 2). FIG. 4 is a diagram depicting a repre 
sentation generator 400 for generating final or cumulative 
bag-based feature vectors that correspond to feature vector 
250 in FIG. 2. Representation generator 400 includes a 
domain aggregator 410, a flow-based feature extractor 420 
and a bag-based feature extractor 430. Domain aggregator 
410, flow-based feature extractor 420 and bag-based feature 
extractor 430 may be implemented as elements of represen 
tation generation logic 124 shown in FIG. 1. 
0039. As shown in FIG. 4, domain aggregator 410 
obtains network traffic records 128 and divides them into 
bags of flows 415 (which correspond to bag 210 in FIG. 2). 
From the bags of flows 415, flow-based feature extractor 420 
generates flow-based feature vectors 425. Bag-based feature 
extractor logic 430 transforms the flow-based feature vectors 
425 into final bag-based feature vectors 435. These opera 
tions correspond to processing stage 1 described above with 
regard to FIG. 2. By using shifting invariance transformation 
logic 440, Scaling invariance transformation logic 445, per 
mutation invariance transformation logic 450 and size 
invariance transformation logic 455, bag-based feature 
extractor 430 transforms the flow-based feature vectors 425 
into final bag-based feature vectors 435 each of which 
corresponds to cumulative feature vector 250 in FIG. 2. 
0040. Referring now to FIG. 5 (with continued reference 
to FIGS. 1 and 2), a flow chart is described of method 500 
for generating a robust representation (e.g., the cumulative 
feature vector 250) of network traffic for detecting malware 
variations. Method 500 is performed by representation gen 
eration logic 124 depicted in FIG. 1. Method 500 begins at 
505 where network traffic records 128 are divided so as to 
create at least one group of network traffic records which 
corresponds to bag 210 in FIG. 2. The at least one group of 
network traffic records includes network traffic records asso 
ciated with network communications, such as malware net 
work communication 156 or network communication 166 
depicted in FIG. 1 between a computing device (e.g., 
computing device 150 or 160) and a server (e.g., unsafe 
network server 180 or safe network server 170) for a 
predetermined period of time. 
0041. At 510, a set of feature vectors 225 (1) to 225(N) 
is generated, each feature vector representing one of the 
records of the network communications included in the at 
least one group (bag 210) of network traffic records. Each 
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feature vector 225(1) to 225(N) includes a predefined set of 
features 220(1) to 220(M) extracted from one of the network 
traffic records. 
0042. At 515, a self-similarity matrix for each feature of 
the predefined set of features (matrices 230(1) to 230(M) is 
computed using all feature vectors 225(1) to 225(N) gener 
ated for the at least one group (bag 210), each self-similarity 
matrix being a representation of one feature of the pre 
defined set of features 220(1) to 220(M) that is invariant to 
an increase or a decrease of values of the one feature across 
all of the feature vectors 225(1) to 225(N) generated for the 
at least one group (bag 210) of network traffic records. 
0043. At 520, each self-similarity matrix 230(1) to 230 
(M) is transformed into a set of corresponding histograms 
240(1) to 240(M). Each histogram 240(1) to 240(M) is a 
representation of the one feature, e.g., feature 22001), that is 
invariant to a number of network traffic records in the at least 
one group (bag 210) of network traffic records. 
0044. At 525, a cumulative feature vector 250 is gener 
ated based on the set of corresponding histograms 240(1) to 
240(M), the cumulative feature vector 250 being a cumula 
tive representation of the predefined set of features 220(1) to 
220CM) of all network traffic records included in the at least 
one group of network traffic records, e.g., of bag 210. 
0045. At 530, a malware network communication (e.g., 
malware network communication 156 in FIG. 1) between 
the computing device (e.g., computing device 150) and the 
server (e.g., unsafe server 180) is identified based on the 
cumulative feature vector 250. 
0046 Reference is now made to FIG. 6. FIG. 6 is a 
system diagram illustrating how the process depicted in FIG. 
2 may be deployed in a network/computing environment 
600 according to another example embodiment. A device 
605, which may be a server computer, firewall, network 
intrusion device, etc., includes a plurality of network inter 
faces 610 (e.g., network ports of a network interface card), 
a processor 620 (or multiple processors), a bus 630 and 
memory 640. Memory stores instructions for, among other 
functions, control software 642. When the processor 620 
executes the software instructions for control software 642, 
the processor is operable to perform the operations described 
herein. The device 605 is configured to intercept network 
traffic from one or more web servers 650(1)-650(N) con 
nected to network 660 so as to detect attempts to inject 
malware into any device connected in network 660. Net 
work 660 may be an enterprise network. A network security 
device (e.g., firewall) or any network device connected to 
network 660 may generate proxy logs (or NetFlow reports) 
that are sent to the device 605 for use in techniques pre 
sented herein. 
0047. The memory 640 may include read only memory 
(ROM), random access memory (RAM), magnetic disk 
storage media devices, optical storage media devices, flash 
memory devices, electrical, optical, or other physical/tan 
gible memory storage devices. Thus, in general, the memory 
may comprise one or more tangible (non-transitory) com 
puter readable storage media (e.g., a memory device) 
encoded with Software comprising computer executable 
instructions and when the software is executed (by the 
processor 620) it is operable to perform the operations 
described herein. 

0048 Reference is now made to FIGS. 7A, 7B and 8 
which show results of two experiments that were conducted 
to test the cumulative feature vector 250, i.e., the represen 
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tation of bag 210 that is invariant against shifting, Scaling, 
permutation, and size of bag 210 depicted in FIG. 2. In a first 
experiment, the results of which are depicted in FIGS. 7A 
and 7B, it was determined how the representation of bag 210 
influences the efficiency of classifier logic 126 in classifying 
bag 210. In a second experiment, the results of which are 
depicted in FIG. 8, the impact of the new representation of 
the bag 210 on clustering and correlation of samples was 
determined. 

0049. For the experiments, evaluation datasets were 
divided into two parts: training, and testing. Both datasets 
were obtained from real network traffic of 80 international 
companies (more than 500,000 seats) in form of proxy logs. 
Flows from proxy logs were grouped into bags, where each 
bag contained flows with the same user (or source IP) and 
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ues. Comparing these two approaches shows the importance 
of a self-similarity matrix when dealing with malware 
variations. 
0052 First, a two-class Support Vector Machine (SVM) 
classifier which corresponds to classifier logic 126 in FIG. 1 
was evaluated on both representations. To demonstrate the 
modifications in positive bags, only click fraud bags were 
used in the training set as positive bags. Also 5977 negative 
bags were included in the training set. The SVM classifier 
was evaluated on bags from C&C and DGA malware, DGA 
exfiltration, trojans, and 8000 negative background bags. 
The results are shown in Table 3. Both classifiers have the 
same results on the training set, however SVM classifier 
where the data were represented with the proposed self 
similarity approach achieved better performance on the test 
data. 

TABLE 3 

Summary of the SVM results from the baseline (second) 
representation and the Self-similarity (first) representation. 

Representation 

baseline 
self-similarity 

the same hostname domain. Thus, each bag represented a 
communication of a user with a particular domain. To be 
able to compute a representative histogram from feature 
values, samples with less than 5 flows were discarded. 
0050. There are 5 malware categories: malware with 
command & control (C&C) channels, malware with domain 
generation algorithm (DGA), DGA exfiltration, click fraud, 
and trojans. A Summary of malicious categories is shown in 
Table 2. 

TABLE 2 

Number of flows and bags of malware 
categories and background traffic 

Samples 

Category Flows Bags 

C&C malware 30,105 532 
DGA malware 3,772 105 
DGA exfiltration 1,233 70 
Click fraud 9.434 3O4 
Trojans 1,230 12 
Background 867,438 13,977 

Total 913,212 15,000 

0051. The rest of the background traffic was considered 
as legitimate traffic. Two approaches were compared: the 
proposed technique for generating a first representation 
described with regard to FIG. 2 and a less invariant second 
representation in which each bag is represented as a joint 
histogram of the input feature values. This means that one 
histogram is computed from values of every feature of the 
bag, and the histograms are then concatenated into one final 
feature vector for each bag. However, the second represen 
tation is not computed based on histograms from self 
similarity matrices, but directly from the input feature val 

Training Data Test Data 

TP FP TN precision recall TP FP TN precision recall 

3O4 O 6976 1.O 1.O 584 13 7987 O.998 O.81 
3O4 O 6976 1.O 1.O 633 6 7994 O.999 O.88 

0053 FIGS. 7A and 7B illustrate results from a more 
detailed analysis of false negatives for malware categories 
(number of missed malware samples) and true positives for 
malware categories (number of detected malware samples) 
for Cloud Web Security (CWS) blocks and SVM classifier 
(which corresponds to classifier logic 126 in FIG. 1). This 
analysis is based on two types of representations: histograms 
computed directly from feature vectors, and histograms such 
as histograms 240(1) to 240(M) that are computed based on 
locally-scaled self-similarity matrices such as matrices 230 
(1) to 230(M) shown in FIG. 2. Chart 710 in FIG. 7A shows 
numbers of false negatives for malware categories C&C, 
DGA, DGA exfiltration, and trojan of the bags. Chart 720 in 
FIG. 7B shows numbers of true positives for the same 
malware categories of the bags to compare three different 
approaches: CWS blocks and SVM classifier based on two 
types of representations: histograms computed directly from 
feature vectors, and self-similarity histograms. As shown in 
FIGS. 7A and 7B, due to the self-similarity representation 
presented herein, the SVM classifier was able to correctly 
classify all Domain Generation Algorithm (DGA) exfiltra 
tion, and trojan, and most of DGA malware bags, with a 
small increase of false negatives for C&C. Overall, the 
representation shows significant improvements when com 
pared to CWS blocks, and better robustness than the 
approach without self-similarity. 
0054 FIG. 8 is a two-dimensional graphical illustration 
of clustering results, where input bags are represented with 
the representation generated according to the process of FIG. 
2. The clustering properties of the new representation were 
evaluated with a similarity learning algorithm. FIG. 8 shows 
how changing malware parameters influence similarity of 
samples, i.e. whether a modified malware sample is still 
considered to be similar to other malware samples of the 
same category. Two malware categories were included into 
the training set (click fraud and C&C) together with 5000 
negative bags. As shown in FIG. 8, legitimate bags 805(1)- 
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805(3) are concentrated in three large clusters on the top and 
in groups of non-clustered bags 810(1) and 810(2) located in 
the center. Malicious bags were clustered into six clusters 
according to the malware categories. Cluster 820 represents 
the group of click fraud bags and cluster 830 represents the 
group of C&C bags. Further malicious bags were clustered 
in DGA C&C cluster 840, DGA cluster 850, DGA exfiltra 
tion cluster 860 and TorPig trojan cluster 870. 
0055. In summary, modern malware evades detection by 
changing its parameters, which complicates the design of 
new detection mechanisms. The techniques presented herein 
create a generalized representation of malware behaviors 
invariant to various changes exhibited as modified traffic 
patterns. The invariance ensures that the feature represen 
tations of behavior variations are still similar. The new 
representation improves the efficacy in data-driven classifi 
ers since malware variants are Successfully recognized. 
0056. There are numerous advantages to these tech 
niques. Malware samples are represented from bags of 
flows. As opposed to traditional flow-based representation, 
where each flow is represented with one feature vector, this 
approach uses bags (sets) of flows to capture much more 
information from each sample, most importantly malware 
dynamics and behavior in time. This enables more detailed 
and precise modeling of malware behaviors, resulting in 
better detection and classification performance. In addition, 
malware samples are represented robustly and invariantly 
against variations and temporal changes. Thus, detection of 
malware can be performed despite the malware changing its 
parameters (e.g. change in URL pattern, number of bytes, 
user Agent, etc.). These techniques have an immediate 
application in data driven detectors and classifiers. Since the 
features are more representative, they significantly improve 
the efficacy results. 
0057. Since most of the current undetected malicious 
behaviors are alternatives of known malware, these tech 
niques directly increase the number of detected threats and 
incidents. These techniques are useful in products that 
process flows (e.g. proxy logs or NetFlow records) with a 
possible extension to other logging systems. These tech 
niques enable automatic detection of malware variants that 
would otherwise have to be manually captured by security 
analysts. 
0058 Specifically, the new representation is invariant to 
the following changes: malicious code, payload, or obfus 
cation, server or hostname, URL path or filename, number of 
URL parameters, their names or values, encoded URL 
content, number of flows, time intervals between flows, 
ordering of flows and size of flows. 
0059 An advantage of all network-based security 
approaches is that they extract features from headers of 
network communication rather than from the content. As a 
result, any changes to the payload have Substantially no 
effect on the features. The representation operates on the 
level of bags, where each bag is a set of flows with the same 
user and hostname. If an attacker changes an IP address or 
a hostname of the remote server, the representation creates 
a new bag with similar feature values as in the previous bag 
with the original IP address or hostname. 
0060 A straightforward way of evading classifiers that 
rely on specific URL patterns is the change in path or 
filename, the number of URL parameters, and their names or 
values from sample to sample. Since the variability of these 
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features remains constant within each bag, these changes 
have Substantially no effect on the resulting new represen 
tation. 
0061 Hiding information in the URL string represents 
another way to exfiltrate sensitive data. When the URL is 
encrypted and encoded (e.g. with base 64), exfiltrated data 
change the URL length and may globally influence other 
features as well. As the new representation is invariant 
against shifting, changing the URL length does not change 
the histograms of feature differences. 
0062 Another option for an attacker to hide in the 
background traffic is increasing or reducing the number of 
flows related to the attack. Such modification of the attack 
does not affect the new representation, as long as there are 
enough flows to create the feature distributions. 
0063 Time intervals between flows have been used in 
many previous approaches for their descriptive properties. 
This feature is an alternative way to the new representation 
to model a relationship between individual flows. It has been 
determined that current malware samples frequently modify 
the inter-arrival time to remain hidden in the background 
traffic. 
0064. An attacker can easily change the ordering of flows 
to evade detection based on patterns or predefined sequences 
of flows. The new representation uses the flow-based feature 
values to compute a set of histograms and therefore the 
ordering of flows does not matter. In addition, increasing or 
decreasing a flow count has only a minor effect on the shape 
of the distributions represented by the histograms. 
0065. On the other hand, the new representation is not 
invariant to a change in static behavior, multiple behaviors 
in a bag and encrypted HTTPS traffic, and real-time changes 
and evolution. The new representation does not model 
malware behaviors, where all flows associated with a mal 
ware are identical. Such behavior has no dynamics and can 
be classified with flow-based approaches with comparable 
results. In case more behaviors are associated with a bag, 
Such as when a target hostname is compromised and com 
municates with a user with legitimate and malicious flows, 
the new representation does not guarantee the invariance 
against the attacker's changes. Such bags contain a mixture 
of legitimate and malicious flows and their combination 
could lead to a different representation. 
0066 URLs or other flow fields are not available in 
encrypted HTTPS traffic. In this case, only a limited set of 
flow-based features can be used, which reduces the discrimi 
native properties of the new representation. Finally, in case 
a malware sample for a given user and hostname starts 
changing its behavior dynamically and frequently, the new 
bag representation varies over time. Such inconsistency 
decreases the efficacy results. However, creating Such highly 
dynamic malware behavior requires a considerable effort. 
Therefore such samples are not seen very often in real 
network traffic. 
0067. In one form, a method is provided comprising: at a 
networking device, dividing network traffic records to create 
at least one group of network traffic records, the at least one 
group including network traffic records being associated 
with network communications between a computing device 
and a server for a predetermined period of time, generating 
a set of feature vectors, each feature vector of the set of 
feature vectors representing one of the network traffic 
records of the network communications included in the at 
least one group of network traffic records, wherein each 
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feature vector comprises a predefined set of features 
extracted from one of the network traffic records, computing 
a self-similarity matrix for each feature of the predefined set 
of features using all feature vectors generated for the at least 
one group, each self-similarity matrix being a representation 
of one feature of the predefined set of features that is 
invariant to an increase or a decrease of values of the one 
feature across all of the feature vectors generated for the at 
least one group of network traffic records, transforming each 
self-similarity matrix into a corresponding histogram to 
form a set of histograms, each histogram being a represen 
tation of the one feature that is invariant to a number of 
network traffic records in the at least one group of network 
traffic records, generating a cumulative feature vector based 
on the set of histograms, the cumulative feature vector being 
a cumulative representation of the predefined set of features 
of all network traffic records included in the at least one 
group of network traffic records, and identifying a malware 
network communication between the computing device and 
the server based on the cumulative feature vector. 

0068. In another form, an apparatus is provided compris 
ing: one or more processors, one or more memory devices 
in communication with the one or more processors, and at 
least one network interface unit coupled to the one or more 
processors, wherein the one or more processors are config 
ured to: divide network traffic records to create at least one 
group of network traffic records, the at least one group 
including network traffic records being associated with 
network communications between a computing device and a 
server for a predetermined period of time, generate a set of 
feature vectors, each feature vector of the set of feature 
vectors representing one of the network traffic records of the 
network communications included in the at least one group 
of network traffic records, wherein each feature vector 
comprises a predefined set of features extracted from one of 
the network traffic records, compute a self-similarity matrix 
for each feature of the predefined set of features using all 
feature vectors generated for the at least one group, each 
self-similarity matrix being a representation of one feature 
of the predefined set of features that is invariant to an 
increase or a decrease of values of the one feature across all 
of the feature vectors generated for the at least one group of 
network traffic records, transform each self-similarity matrix 
into a corresponding histogram to form a set of histograms, 
each histogram being a representation of the one feature that 
is invariant to a number of network traffic records in the at 
least one group of network traffic records, generate a cumu 
lative feature vector based on the set of histograms, the 
cumulative feature vector being a cumulative representation 
of the predefined set of features of all network traffic records 
included in the at least one group of network traffic records, 
and identify a malware network communication between the 
computing device and the server based on the cumulative 
feature vector. 

0069. In still another form, one or more computer-read 
able non-transitory storage media are provided encoded with 
Software comprising computer executable instructions that 
when executed by one or more processors cause the one or 
more processor to: divide network traffic records to create at 
least one group of network traffic records, the at least one 
group including network traffic records being associated 
with network communications between a computing device 
and a server for a predetermined period of time, generate a 
set of feature vectors, each feature vector of the set of feature 
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vectors representing one of the network traffic records of the 
network communications included in the at least one group 
of network traffic records, wherein each feature vector 
comprises a predefined set of features extracted from one of 
the network traffic records, compute a self-similarity matrix 
for each feature of the predefined set of features using all 
feature vectors generated for the at least one group, each 
self-similarity matrix being a representation of one feature 
of the predefined set of features that is invariant to an 
increase or a decrease of values of the one feature across all 
of the feature vectors generated for the at least one group of 
network traffic records, transform each self-similarity matrix 
into a corresponding histogram to form a set of histograms, 
each histogram being a representation of the one feature that 
is invariant to a number of network traffic records in the at 
least one group of network traffic records, generate a cumu 
lative feature vector based on the set of histograms, the 
cumulative feature vector being a cumulative representation 
of the predefined set of features of all network traffic records 
included in the at least one group of network traffic records, 
and identify a malware network communication between the 
computing device and the server based on the cumulative 
feature vector. 

0070 The above description is intended by way of 
example only. Although the techniques are illustrated and 
described herein as embodied in one or more specific 
examples, it is nevertheless not intended to be limited to the 
details shown, since various modifications and structural 
changes may be made within the scope and range of equiva 
lents of the claims. 

What is claimed is: 
1. A method comprising: 
at a networking device, dividing network traffic records to 

create at least one group of network traffic records, the 
at least one group including network traffic records 
being associated with network communications 
between a computing device and a server for a prede 
termined period of time; 

generating a set of feature vectors, each feature vector of 
the set of features vectors representing one of the 
network traffic records of the network communications 
included in the at least one group of network traffic 
records, wherein each feature vector comprises a pre 
defined set of features extracted from one of the net 
work traffic records: 

computing a self-similarity matrix for each feature of the 
predefined set of features using all feature vectors 
generated for the at least one group, each self-similarity 
matrix being a representation of one feature of the 
predefined set of features that is invariant to an increase 
or a decrease of values of the one feature across all of 
the feature vectors generated for the at least one group 
of network traffic records; 

transforming each self-similarity matrix into a corre 
sponding histogram to form a set of histograms, each 
histogram being a representation of the one feature that 
is invariant to a number of network traffic records in the 
at least one group of network traffic records; 

generating a cumulative feature vector based on the set of 
histograms, the cumulative feature vector being a 
cumulative representation of the predefined set of fea 
tures of all network traffic records included in the at 
least one group of network traffic records; and 
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identifying a malware network communication between 
the computing device and the server based on the 
cumulative feature vector. 

2. The method of claim 1, further comprising: 
transforming each self-similarity matrix into a locally 

Scaled self-similarity matrix, each locally-scaled self 
similarity matrix being a representation of the one 
feature of the predefined set of features that is invariant 
to values of the one feature across all of the feature 
vectors being multiplied by a common factor. 

3. The method of claim 1, wherein generating the cumu 
lative feature vector comprises concatenating the histograms 
in the set of histograms to form the cumulative feature 
Vector. 

4. The method of claim 1, further comprising: 
training a classifier based on the cumulative feature vector 

to produce a trained classifier; 
classifying, by the trained classifier, the at least one group 

as malicious; and 
identifying the malware network communication utilizing 

the at least one classified group, 
wherein the cumulative feature vector enables detection 

of variations and modifications of the malware network 
communication. 

5. The method of claim 4, wherein the variations and 
modifications of the malware network communication 
include a variation in one or more of: a shift of the 
flow-based features, a scale of the flow-based features, a 
permutation of the flow-based features, a number of the 
flow-based features, or in a size of the at least one group of 
network traffic records, and 

further comprising transforming a representation of the at 
least one group of network traffic records to be invari 
ant against the variations and modifications of the 
malware network communication. 

6. The method of claim 1, wherein the network traffic 
records include proxy logs and network flow reports, and 

wherein the predefined set of flow-based feature values 
includes values describing a structure of a Uniform 
Resource Locator (URL), a number of bytes transferred 
from the server to the computing device, a status of a 
user agent, a Hypertext Transfer Protocol (HTTP) 
status, a Multipurpose Internet Mail Extension (MIME) 
type, and a port value. 

7. The method of claim 1, wherein the self-similarity 
matrix is a symmetric positive semidefinite matrix in which 
rows and columns represent individual network communi 
cations between the computing device and the server, and 

wherein an (i,j)-th element of the self-similarity matrix 
corresponds to a distance between a feature value of an 
i-th flow and a feature value of a j-th flow. 

8. An apparatus comprising: 
one or more processors; 
one or more memory devices in communication with the 

one or more processors; and 
at least one network interface unit coupled to the one or 
more processors, 

wherein the one or more processors are configured to: 
divide network traffic records to create at least one 

group of network traffic records, the at least one 
group including network traffic records being asso 
ciated with network communications between a 
computing device and a server for a predetermined 
period of time; 
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generate a set of feature vectors, each feature vector of 
the set of feature vectors representing one of the 
network traffic records of the network communica 
tions included in the at least one group of network 
traffic records, wherein each feature vector com 
prises a predefined set of features extracted from one 
of the network traffic records; 

compute a self-similarity matrix for each feature of the 
predefined set of features using all feature vectors 
generated for the at least one group, each self 
similarity matrix being a representation of one fea 
ture of the predefined set of features that is invariant 
to an increase or a decrease of values of the one 
feature across all of the feature vectors generated for 
the at least one group of network traffic records; 

transform each self-similarity matrix into a correspond 
ing histogram to form a set of histograms, each 
histogram being a representation of the one feature 
that is invariant to a number of network traffic 
records in the at least one group of network traffic 
records; 

generate a cumulative feature vector based on the set of 
histograms, the cumulative feature vector being a 
cumulative representation of the predefined set of 
features of all network traffic records included in the 
at least one group of network traffic records; and 

identify a malware network communication between 
the computing device and the server based on the 
cumulative feature vector. 

9. The apparatus of claim 8, wherein the one or more 
processors are configured to: 

transform each self-similarity matrix into a locally-scaled 
self-similarity matrix, each locally-scaled self-similar 
ity matrix being a representation of the one feature of 
the predefined set of features that is invariant to values 
of the one feature across all of the feature vectors being 
multiplied by a common factor. 

10. The apparatus of claim 8, wherein the one or more 
processors generate the cumulative feature vector by con 
catenating the histograms in the set of histograms to form the 
cumulative feature vector. 

11. The apparatus of claim 8, wherein the one or more 
processors are configured to: 

train a classifier based on the cumulative feature vector to 
produce a trained classifier, 

classify, by the trained classifier, the at least one group as 
malicious; and 

identify the malware network communication utilizing 
the at least one classified group, 

wherein the cumulative feature vector enables detection 
of variations and modifications of the malware network 
communication. 

12. The apparatus of claim 9, wherein the variations and 
modifications of the malware network communication 
include a variation in one or more of a shift of the 
flow-based features, a scale of the flow-based features, a 
permutation of the flow-based features, a number of the 
flow-based features, or in a size of the at least one group of 
network traffic records, and 
wherein the one or more processors are configured to: 
transform a representation of the at least one group of 

network traffic records to be invariant against the 
variations and modifications of the malware network 
communication. 
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13. The apparatus of claim 8, wherein the network traffic 
records include proxy logs and network flow reports, and 

wherein the predefined set of flow-based feature values 
includes values describing a structure of a Uniform 
Resource Locator (URL), a number of bytes transferred 
from the server to the computing device, a status of a 
user agent, a Hypertext Transfer Protocol (HTTP) 
status, a Multipurpose Internet Mail Extension (MIME) 
type, and a port value. 

14. The apparatus of claim 8, wherein the self-similarity 
matrix is a symmetric positive semidefinite matrix in which 
rows and columns represent individual network communi 
cations between the computing device and the server, and 

wherein an (i,j)-th element of the self-similarity matrix 
corresponds to a distance between a feature value of an 
i-th flow and a feature value of a j-th flow. 

15. One or more computer readable non-transitory storage 
media encoded with software comprising computer execut 
able instructions that when executed by one or more pro 
cessors cause the one or more processor to: 

divide network traffic records to create at least one group 
of network traffic records, the at least one group includ 
ing network traffic records being associated with net 
work communications between a computing device and 
a server for a predetermined period of time; 

generate a set of feature vectors, each feature vector of the 
set of feature vectors representing one of the network 
traffic records of the network communications included 
in the at least one group of network traffic records, 
wherein each feature vector comprises a predefined set 
of features extracted from one of the network traffic 
records; 

compute a self-similarity matrix for each feature of the 
predefined set of features using all feature vectors 
generated for the at least one group, each self-similarity 
matrix being a representation of one feature of the 
predefined set of features that is invariant to an increase 
or a decrease of values of the one feature across all of 
the feature vectors generated for the at least one group 
of network traffic records; 

transform each self-similarity matrix into a corresponding 
histogram to form a set of histograms, each histogram 
being a representation of the one feature that is invari 
ant to a number of network traffic records in the at least 
one group of network traffic records; 

generate a cumulative feature vector based on the set of 
histograms, the cumulative feature vector being a 
cumulative representation of the predefined set of fea 
tures of all network traffic records included in the at 
least one group of network traffic records; and 

identify a malware network communication between the 
computing device and the server based on the cumu 
lative feature vector. 

16. The computer readable non-transitory storage media 
of claim 15, wherein the executable instructions further 
cause the one or more processors to: 

transform each self-similarity matrix into a locally-scaled 
self-similarity matrix, each locally-scaled self-similar 
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ity matrix being a representation of the one feature of 
the predefined set of features that is invariant to values 
of the one feature across all of the feature vectors being 
multiplied by a common factor. 

17. The computer readable non-transitory storage media 
of claim 15, wherein the executable instructions cause the 
one or more processors to generate the cumulative feature 
vector by concatenating the histograms in the set of histo 
grams to form the cumulative feature vector. 

18. The computer readable non-transitory storage media 
of claim 15, wherein the executable instructions further 
cause the one or more processors tO: 

train a classifier based on the cumulative feature vector to 
produce a trained classifier, 

classify, by the trained classifier, the at least one group as 
malicious; and 

identify the malware network communication utilizing 
the at least one classified group, 

wherein the cumulative feature vector enables detection 
of variations and modifications of the malware network 
communication. 

19. The computer readable non-transitory storage media 
of claim 18, wherein the variations and modifications of the 
malware network communication include a variation in one 
or more of: 

a shift of the flow-based features, a scale of the flow-based 
features, a permutation of the flow-based features, a 
number of the flow-based features, or in a size of the at 
least one group of network traffic records, and 
wherein the executable instructions further cause the 

one or more processors to: 
transform a representation of the at least one group of 

network traffic records to be invariant against the 
variations and modifications of the malware network 
communication. 

20. The computer readable non-transitory storage media 
of claim 15, wherein the network traffic records include 
proxy logs and network flow reports, 

wherein the predefined set of flow-based feature values 
includes values describing a structure of a Uniform 
Resource Locator (URL), a number of bytes transferred 
from the server to the computing device, a status of a 
user agent, a Hypertext Transfer Protocol (HTTP) 
status, a Multipurpose Internet Mail Extension (MIME) 
type, and a port value, 

wherein the self-similarity matrix is a symmetric positive 
semidefinite matrix in which rows and columns repre 
sent individual network communications between the 
computing device and the server, and 

wherein an (i,j)-th element of the self-similarity matrix 
corresponds to a distance between a feature value of an 
i-th flow and a feature value of a j-th flow. 
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