
(19) United States
US 2017.0063892A1

(12) Patent Application Publication (10) Pub. No.: US 2017/0063892 A1
BartOS et al. (43) Pub. Date: Mar. 2, 2017

(54) ROBUST REPRESENTATION OF NETWORK (52) U.S. Cl.
TRAFFC FOR DETECTING MALWARE CPC H04L 63/1416 (2013.01); H04L 63/1425
VARATIONS (2013.01)

(71) Applicant: Cisco Technology, Inc., San Jose, CA (57) ABSTRACT
(US) Techniques are presented that identify malware network

communications between a computing device and a server
(72) Inventors: Karel Bartos, Praha 6 (CZ); Michal based on a cumulative feature vector generated from a group

Sofka, Pragues 5 (CZ) of network traffic records associated with communications
between computing devices and servers. Feature vectors are

(21) Appl. No.: 14/946,156 generated, each vector including features extracted from the
network traffic records in the group. A self-similarity matrix

(22) Filed: Nov. 19, 2015 is computed for each feature which is a representation of the
feature that is invariant to an increase or a decrease of

Related U.S. Application Data feature values across all feature vectors in the group. Each
(60) Provisional application No. 62/211,363, filed on Aug. self-similarity matrix is transformed into corresponding his

28, 2015. tograms to be invariant to a number of network traffic
records in the group. The cumulative feature vector is a

Publication Classification cumulative representation of the predefined set of features of
all network traffic records included in the at least one group

(51) Int. Cl. of network traffic records and is generated based on the
H04L 29/06 (2006.01) corresponding histograms.

160

ETWORK
INTERFACE

UNIT

COMPUTINGDEVICE

NETWORK
INTERFACE

UNIT
152

WAWARE

COMPUTING DEVICE

NETWORK
INTERFACE

UNIT

CONTROL
PROCESSOR

MEMORY

CONTROL
Enwork 128
TRAFFIC
RECORDS

NEWORK
SECURITY
DEVICE

REPRESENTATION
GENERATION

NEWORK
TRAFFIC
RECORDS

CASSIFIER

NEWORKINGDEVICE

NEWORKCOMMUNICATION

MAWARENEWORKCOMMUNICAICN

NETWORK
SERVER

10

Patent Application Publication

160

164

NETWORK
INTERFACE

UNIT

COPUTING DEVICE

50 154
NETWORK
INTERFACE

UNIT

COMPUTING DEVICE

152

NETWORK
INTERFACE

UNIT
16S

CONTROL
PROCESSOR

MEMORY
122

CONTROL
OGIC

REPRESENTATION
GENERATION

OGIC

NEWORK 128
RAFFIC

RECORDS
126

CLASSIFIER
LOGIC

120

NEWORKING DEVICE

NETWORK
24 TRAFFIC

RECORDS

Mar. 2, 2017. Sheet 1 of 9

NETWORK COMMUNICATION

66

MAWARENEWORKCOMMUNICATION

FIG.
128

NETWORK
SECURITY
DEVICE

130

100

US 2017/0063892 A1

r r

UNSAFE
NETWORK
SERVER

l------------ -

Patent Application Publication Mar. 2, 2017 Sheet 2 of 9 US 2017/0063892 A1

NETWORKTRAFFIC 200- 20M
RECORDS FEATURE -215 FEATURE

205(1)- 1 FEATURE WALUES A 25(1)-
BAG FLOW O FEATURE WECTOR OF FLOW 1

USERHOSTNAME town aes FEATURE VECTOR OFFLOWN

2N- 25N)-

LOCALLYSCALED
SELF-SIMLARITY

MATRICES

HISTOGRAMS

CUMULATIVE
FEATUREVECTOR

a
200

FIG2

US 2017/0063892 A1 Mar. 2, 2017. Sheet 3 of 9 Patent Application Publication

Patent Application Publication Mar. 2, 2017 Sheet 4 of 9 US 2017/0063892 A1

400
128

NETWORKERAFFIC
RECORDS

15

BAGS OF FLOWS

25

FOW-BASED
FEATUREVECTORS

435

FINAL BAG-BASED
FEATUREVECTORS

440
DOMAIN

AGGREGATOR SHIFTING
INVARANCE TRANSFORMATION

OGIC

4.

FLOW-BASED
FEATURE EXTRACTOR

SCANG
NVARANCE TRANSFORMATION

OGIC
4

450

PERMUATION
NVARANCE TRANSFORMATION

OGIC

BAG-BASED
FEATURE EXTRACTOR

455

SIZE
INVARANCE TRANSFORMATION

OGIC

FG4

Patent Application Publication Mar. 2, 2017 Sheet 5 of 9 US 2017/0063892 A1

500
DIVIDING NETWORKRAFFIC RECORDS SOAS TO CREATEATEAST ONE GROUP 505

OF METWORKTRAFFICRECORDS, THEATEAST ONEGROUPINCLUDING
RECORDS OF NETWORK COMMUNICATIONSBE WEENACOMPUTING DEVICE AND

ASERVER FORAPREDETERMINED PERIOD OF TIME

GENERATING ASET OF FEATUREVECTORS, EACHFEATURE VECTOR
REPRESENING ONE OF THE RECORDS OF THE NETWORKCOMMUNICATIONS |

INCLUDED INTHEAT EAST ONEGROUP OF NETWORKTRAFFICRECORDS,
WHERENEACHFEATURE WECOR COAPRISESAPREDEFINED SET OF FEATURES

EXTRACED FROM ONE OF THENETWORKTRAFFICRECORDS

COMPUTING ASELF-SIMARY NATRIX FOREACHFEATURE OF THE PREDEFINED
SE OF FEATURESUSING ALL FEATURE WECORS GENERATED FORTHEAEAST

ONE GROUP, EACHSELF-SIMILARITY MATRIX BEING AREPRESENTATION OFONE
FEATURE OFHE PREDEFINED SET OF FEATURES THAIS INNARANTO AN

INCREASE ORADECREASE OF WAUES OF THE ONE FEATUREACROSSAL OF
THE FEATURE WECORS GENERATED FORTHEAT EAST ONE GROUP OF

NETWORKTRAFFIC RECORDS

RANSFORMING EACHSELF-SIMARY NATRIX INOASE OF CORRESPONDING

HISTOGRAMS, EACH HISTOGRAMBEING AREPRESENTATION OF THE ONE
FEATURE HATS INVARIAN TO ANYBER OF NETWORKTRAFFIC RECORDSIN

THEAT LEASONE GROUP OF NEWORKTRAFFIC RECORDS

GENERATING ACUMULATIVE FEATUREVECTORBASED ON THE SET OF 525

CORRESPONDINGHISTOGRAMS, THE CUMULATIVE FEATURE VECTOR BEINGA
CUMULATIVE REPRESENTATION OF THE PREDEFINED SE OF FEATURES OFA

NETWORKTRAFFIC RECORDS INCUDED IN THE ALEASONE GROUP OF
NETWORK RAFFIC RECORDS

IDENTIFYING AMAWARENEWORKCOMMUNICATION BE WEEN THE COMPUTING
DEVICE AND THE SERVER BASED ON THE CUMULATIVE FEATURE VECTOR

530

FIG5

Patent Application Publication Mar. 2, 2017 Sheet 6 of 9 US 2017/0063892 A1

600 605

CONTROL
SOFTWARE

PROCESSORS)
62O

MEMORY

NETWORK NETWORK NETWORK
INTERFACE INTERFACE INTERFACE

PROXY LOGS
(EG, NETFLOW

670 REPORTS)

NETWORK 660
SECURITY
DEVICE

650(1) 650(N)

WEBSERVER WEBSERVER

FIG.6

Patent Application Publication Mar. 2, 2017 Sheet 8 of 9 US 2017/0063892 A1

Ns

%
N3

c
S
s

O
-
g/2

a.
1.

5
e
L
r

H
s
e
s

2

f
s
a.

CD
C
l
c

o Co

S5
SE
in st
92 s.
s

N N

US 2017/0063892 A1 Mar. 2, 2017. Sheet 9 of 9 Patent Application Publication

__----~\ ET /W90

^^^

US 2017/0063892 A1

ROBUST REPRESENTATION OF NETWORK
TRAFFC FOR DETECTING MALWARE

VARATIONS

CROSS REFERENCE TO RELATED
APPLICATION

0001. This application claims priority to U.S. Provisional
Patent Application No. 62/211,363, filed Aug. 28, 2015, the
entirety of which is incorporated herein by reference.

TECHNICAL FIELD

0002 The present disclosure relates to malware detec
tion.

BACKGROUND

0003 All corporate networks are infected by malware. As
the variability of malware samples has been rapidly increas
ing over the last years, existing signature-based security
devices, firewalls, oranti-virus solutions provide only partial
protection against these threats.
0004. The ability to detect new variants and modifica
tions of existing malware is becoming very important.
Machine learning is beginning to be successfully applied to
complement signature-based devices. However, machine
learning methods require a large amount of labeled data for
training, which limits their applicability due to high costs
associated with labeling. Moreover, a malware detector is
trained at a certain point in time, but malware evolves over
time to evade detection.

BRIEF DESCRIPTION OF THE DRAWINGS

0005 FIG. 1 is a diagram of a network environment in
which the malware detection techniques presented herein
may be used, according to an example embodiment.
0006 FIG. 2 is a diagram depicting a process for gener
ating a representation of network traffic for detecting mal
ware variations, according to an example embodiment.
0007 FIG. 3 is a diagram illustrating decomposition of a
Uniform Resource Locator (URL) into logical parts accord
ing to an example embodiment.
0008 FIG. 4 is a diagram depicting elements of a repre
sentation generator and operations performed by these ele
ments according to an example embodiment.
0009 FIG. 5 is a flow chart depicting operations per
formed by a networking device according to an example
embodiment.

0010 FIG. 6 is a diagram of a network environment in
which the malware detection techniques presented herein
may be used, according to another example embodiment.
0011 FIGS. 7A and 7B are diagrams illustrating analysis
of false negatives (number of missed malware samples) and
true positives (number of detected malware samples) based
on histograms computed directly from feature vectors, and
self-similarity histograms produced by the process depicted
in FIG. 2 according to an example embodiment.
0012 FIG. 8 is a diagram illustrating clustering results,
where input bags are used with the representation generated
according to the process of FIG. 2 according to an example
embodiment.

Mar. 2, 2017

DESCRIPTION OF EXAMPLE EMBODIMENTS

Overview

0013 Techniques are presented herein to generate a
robust representation of network traffic that is invariant
against changes of malware behavior over time and that can
be utilized to identify malware network communications
between a computing device and a server. The techniques
are used to generate a cumulative feature vector. The cumu
lative feature vector is invariant under shifting and Scaling of
feature values extracted from the network traffic records and
under permutation and size changes of groups of network
traffic records.

0014 Network traffic records are divided to create at least
one group of network traffic records, the at least one group
including network traffic records associated with network
communications between the computing device and the
server for a predetermined period of time. A set of feature
vectors is generated, each feature vector of the set of feature
vectors representing one of the network traffic records of the
network communications included in the at least one group
of network traffic records. Each feature vector includes a
predefined set of features extracted from one of the network
traffic records. A self-similarity matrix is computed for each
feature of the predefined set of features using all feature
vectors generated for the at least one group. Each self
similarity matrix is a representation of one feature of the
predefined set of features that is invariant to an increase or
a decrease of values of the one feature across all of the
feature vectors generated for the at least one group of
network traffic records. Each self-similarity matrix is trans
formed into a corresponding histogram to form a set of
histograms, each histogram being a representation of the one
feature that is invariant to a number of network traffic
records in the at least one group of network traffic records.
The cumulative feature vector is a cumulative representation
of the predefined set of features of all network traffic records
included in the at least one group of network traffic records
and is generated based on the set of histograms.

EXAMPLE EMBODIMENTS

00.15 Presented herein are techniques to solve the prob
lem of detecting variants of malicious behavior from net
work traffic records (e.g. proxy logs or NetFlow records)
associated with network communications between any given
computing device in a network to be protected and a device
(e.g., a server) outside the network that is to be protected. A
representation of malware samples is provided that is invari
ant against variations and temporal changes. This means that
new and unseen malware variants are represented with
similar feature vectors as existing known malware, which
greatly facilitates detecting new or modified malicious
behaviors. Representing network traffic according to these
techniques leads to significantly improved efficacy results,
as described below.

0016. In the context of malware, a representation that is
invariant against shifting, Scaling, permutation, and size
means that any change in the number of flows of an attack
(size invariance) or in the ordering of flows (permutation
invariance) will not avoid detection. Shift and scale invari
ance ensures that any internal variations of malware behav
ior described by a predefined set of features will not change
the representation as well.

US 2017/0063892 A1

0017 FIG. 1 is a block diagram of a network environ
ment 100 in which the malware detection techniques pre
sented herein may be employed. Network environment 100,
includes networking device 110 which may be a server
computer, firewall, network intrusion device, etc. Network
ing device 110 includes network interface unit 114 (e.g., a
network port of a network interface card) which connects
networking device 110 with network 140 (e.g., the Internet),
a control processor 116 (or multiple processors) and a
memory 120. Memory 120 stores instructions for, among
other functions, control logic 122, representation generation
logic 124 and classifier logic 126. Network security device
130 (e.g., a firewall) or any other network device connected
to network 140 may generate network traffic records 128
(e.g. proxy logs or NetFlow records) that are sent to net
working device 110 and stored in memory 120.
0018. The memory 120 may be read only memory
(ROM), random access memory (RAM), magnetic disk
storage media devices, optical storage media devices, flash
memory devices, electrical, optical, or other physical/tan
gible memory storage devices. Thus, in general, the memory
120 may comprise one or more tangible (non-transitory)
computer readable storage media (e.g., a memory device)
encoded with Software comprising computer executable
instructions and when the software is executed (by the
processor 116) it is operable to perform the operations
described herein. The networking device 110 performs the
operations described below in connection with FIGS. 2-4
when executing the software stored in memory 120.
0019 FIG. 1 shows computing device 150 on which
malware 152 resides and is executed, and which is con
nected to network 140 via network interface unit 154. FIG.
1 also shows computing device 160 which is connected to
network 140 via network interface unit 164 and which is not
infected by malware. Computing devices 150 and 160 may
be, for example, part of an enterprise network (not shown),
and the enterprise network may include, but is not limited to,
a plurality of computing devices, servers and other network
ing devices that may be infected by malware. This malware
may change its behavior over time resulting in varying
network traffic records produced by the malware.
0020. In addition, several other network elements may be
connected to network 140. Such as for example, safe net
work server 170 and unsafe network server 180. FIG. 1
further shows malware network communication 156
between infected computing device 150 and unsafe network
server 180 and network communication 166 between com
puting device 160 and safe network server 170.
0021 Reference is now made to FIGS. 2 and 3 (with
continued reference to FIG. 1). FIG. 2 is a diagram depicting
a process performed by networking device 110 for generat
ing a representation of network traffic for detecting malware
variations through execution of representation generation
logic 124. FIG. 2 shows network traffic records stored in
memory 120 of networking device 110. As discussed above,
network traffic records may be generated by network Secu
rity device 130 or by any other networking device. Network
traffic records are associated with flows 205(1) to 205(N).
Each flow represents one communication between a com
puting device and a server. A flow is a group of packets
which have the same source and destination address, the
same source and destination port, and which use the same
protocol. For example, a group of packets exchanged
between computing device 150 and unsafe network server

Mar. 2, 2017

180 representing malware network communication 156 may
constitute flows 205(1)-205(N). Port numbers may be
changed during the communication which results in more
flows. Network traffic is bidirectional. Thus, network traffic
records such as proxy logs contain data for both directions
of a communication of a given flow.
0022. A flow may consist of the following flow fields:
user name, Source address (e.g., a source Internet protocol
(IP) address), source port, destination port, protocol, number
of bytes transferred from a client device (e.g., computing
devices 150 and 160) to a server (e.g., safe network server
170 and unsafe network server 180) and from the server to
the client device, flow duration, timestamp, user agent,
URL, referrer, Multipurpose Internet Mail Extensions
(MIME) type, and Hypertext Transfer Protocol (HTTP)
Status. The most informative flow field is the URL field 300
shown in FIG. 3. As shown in FIG. 3, URL field 300
includes seven logical parts, namely protocol 301, second
level domain 303, top-level domain 305, path 307, file name
309, query 311, and fragment 313.
0023 Returning back to FIG. 2, network traffic records
are grouped or divided into “bags” or buckets. Each “bag'
contains network traffic records with the same user name (or
with the same source address) and with the same hostname
of the server (second-level domain in the URL field of the
flow fields) for a given period of time. Thus, each bag
represents communication of a user with a particular
domain. There is no limit on the size of each bag, i.e., the
number of network traffic records in each bag. However, to
compute a meaningful histogram as discussed below, at least
5 network traffic records are included in the bag.
0024. In the example shown in FIG. 2, a plurality of
network traffic records belonging to flows 205(1) to 205(N)
is grouped together to form bag 210. At processing stage 1
shown in FIG. 2, from the flow fields of flows 205(1) to
205(N), feature values 215 for a predefined set of flow-based
features 220(1)-220(M) are extracted for each network traf
fic record in bag 210. The predefined set of flow-based
features 220C1) to 220CM) includes features describing URL
structures (such as URL length, decomposition, or character
distribution), the number of bytes transferred from the server
to the client device and vice versa, the user agent, the HTTP
status, the MIME type, and the port, etc. An example list of
extracted features is shown in Table 1. Features from the
right column of Table 1 are applied on all URL parts.

TABLE 1.

List of features extracted from proxy logs (flows

Features applied on all URL
Features parts + referrer

Duration length
HTTP Status digit ratio

lower case ratio
upper case ratio
vowel changes ratio
down has repetition of & and '=
starts with number
number of non-base64 characters
has a special character
max length of consonant stream
max length of vowel stream
max length of lower case stream
max length of upper case stream
max length of digit stream

is URL encrypted
is protocol HTTPS
number of bytes up
number of bytes
is URL in ASCII
client port number
server port number
user agent length
MIME-Type length
number off in path
number off in query
number off in referer

US 2017/0063892 A1

TABLE 1-continued

List of features extracted from proxy logs (flows

Features applied on all URL
Features parts + referrer

ratio of a character with max
OCCUCCE

is second-level domain raw|P

0025. At the end of processing stage 1, bag 210 is
represented as a set of feature vectors 225(1) to 225(N),
where there is one vector for each flow.

0026. At processing stages 2-4, the representation of bag
210 is transformed into a cumulative feature vector 250,
wherein such a representation of bag 210 is invariant against
several malware variations, including: shift, Scale, permu
tation, and size of the bags. The transformation process
begins at processing stage 2, in which locally-scaled self
similarity matrices 230(1) to 230(M) are calculated.
0027 Cumulative feature vectors are calculated for both
bags representing training data to train classifier logic 126
and bags to be classified by classifier logic 126. The prob
ability distribution of a bag representing training data may
be different from the probability distribution of the bag to be
classified. Therefore, the representation of the bags in the
form of feature vectors needs to be transformed to be
invariant to this shift. The shift is typically caused by the
dynamics of the domain or environment. A shift means that
some original feature values of all network traffic records in
the bag are increased or decreased by a given amount. Thus,
transforming the representation of a bag to be invariant
against shifts ensures that even if some original feature
values of all network traffic records in a bag are increased or
decreased by a given amount, the values in the new repre
sentation remain unchanged.
0028 Scale variance is caused by some original feature
values of all network traffic records in the bag being mul
tiplied by a common factor. Scale invariance guarantees that
even if some original feature values of all network traffic
records in a bag are multiplied by a common factor, the
values in the new representation remain unchanged.
0029 Shift invariance is ensured by computing a self
similarity matrix for each feature using all network traffic
records in a bag. The traditional representation of an i-th bag
X, that consists of a set of m network traffic records {x1, .

.., X} is in the form of a matrix:

where X, denotes the k-th feature value of the 1-th network
traffic record from bag X. In order to generate a represen
tation of the i-th bag that guarantees shift invariance, a
translation invariant distance function is provided that holds:

d(x1, x2)=d(x1 +a, x2+a).

0030 This translation invariant distance function can
also be expressed as follows:

A ric k Il-st

Mar. 2, 2017

where I. I ? denote the k-th feature value of the p-th and
q-th network traffic record from bag X, and s,? defines the
difference between values X.. X. Then it holds for each
translation invariant distance function d:

0031. The feature value d(x, X) expresses the distance
between the two values of k-th feature regardless of their
absolute values. This value is more robust, however it could
be less informative, as the information about the absolute
values was removed. To compensate the possible informa
tion loss, the bags are represented with a matrix of these
distances d(I, X), which is called a self-similarity matrix
S. The self-similarity matrix is a symmetric positive semi
definite matrix, where rows and columns represent indi
vidual flows, and an (i,j)-th element corresponds to the
distance between the feature value of an i-th network traffic
record and a j-th network traffic record.
0032 Each bag is transformed into a set of self-similarity
matrices. In other words, for the i-th bag X, a per-feature
self-similarity set of matrices S.-S.", S,, S." } is
computed, where

sii si. ... sin d(xi. xi) d(xi, xii) ... d(xi, x,)
S = s' s: ... sin d(xi, xi) d(x,x) ... d(x, y,)

sh sh: ... so d(x, xi) d(x, y) ... d(x, y)

and S. =d(x, X? is a distance between feature values and
I. and X? of the k-th feature.
0033 Scale invariance is introduced by local feature
Scaling, where all values in each self-similarity matrix are
scaled into interval [0,1]. Scaling as called “local’ because
maximum and minimum values used for Scaling are com
puted only for network traffic records within a bag. Thus, to
guarantee the scale invariance, the matrix S, is locally
scaled into the interval 0.1 as follows:

sk sk sk si S2 Sin
W sk sk k

S = si: s?: ... 5 s'. = s' - min. (s)
- , -

: maxi (si)- mini (sii)
sk sk Sml 52 Smn

0034 Returning now to FIG. 2 (with continued reference
to FIG. 1), at processing stage 2, for each feature 220C1) to
220CM), corresponding locally-scaled self-similarity matri
ces 230(1) to 230(M) are calculated by representation gen
eration logic 124 of networking device 110.
0035 Generally, since there is no restriction on the size
of bag 210 (i.e., the number of network traffic records
included in the bag) the corresponding locally-scaled self
similarity matrices 230(1) to 230(M) can be of various sizes.
Comparing Such matrices of various sizes may be quite
burdensome and, therefore, the representation of bag 210
needs to be invariant against the size of bag 210, i.e., it needs
to be size invariant. Moreover, in highly dynamic environ
ments, the network traffic records may occur in a variable
ordering. Therefore, the representation of bag 210 needs also

US 2017/0063892 A1

be invariant against any reordering of rows and columns,
i.e., it needs to be permutation invariant.
0036. At processing stage 3 in FIG. 2, representation
generation logic 124 creates histograms 240(1) to 240(M)
from all values of each locally-scaled self-similarity matrix
230(1) to 230(M). More specifically, to ensure permutation
and size invariance, every locally-scaled self-similarity
matrix 230(1) to 230(M) is transformed into a single histo
gram 240(1) to 240(M). Calculating histograms 240(1) to
240(M) ensures the same results for any reordering of
network traffic records or the number of network traffic
records in bag 210, respectively.
0037 Each histogram 240(1) to 240(M) is associated
with one of the features 220(1) to 220(M). At processing
stage 4 in FIG. 2, all histograms 240(1) to 240(M) that
belong to bag 210 are concatenated to generate a cumulative
feature vector 250 which is the final representation of bag
210. Cumulative feature vector 250 is invariant against shift,
scale, permutation and size of bag 210.
0038 Referring now to FIG. 4 (with continued reference

to FIGS. 1 and 2). FIG. 4 is a diagram depicting a repre
sentation generator 400 for generating final or cumulative
bag-based feature vectors that correspond to feature vector
250 in FIG. 2. Representation generator 400 includes a
domain aggregator 410, a flow-based feature extractor 420
and a bag-based feature extractor 430. Domain aggregator
410, flow-based feature extractor 420 and bag-based feature
extractor 430 may be implemented as elements of represen
tation generation logic 124 shown in FIG. 1.
0039. As shown in FIG. 4, domain aggregator 410
obtains network traffic records 128 and divides them into
bags of flows 415 (which correspond to bag 210 in FIG. 2).
From the bags of flows 415, flow-based feature extractor 420
generates flow-based feature vectors 425. Bag-based feature
extractor logic 430 transforms the flow-based feature vectors
425 into final bag-based feature vectors 435. These opera
tions correspond to processing stage 1 described above with
regard to FIG. 2. By using shifting invariance transformation
logic 440, Scaling invariance transformation logic 445, per
mutation invariance transformation logic 450 and size
invariance transformation logic 455, bag-based feature
extractor 430 transforms the flow-based feature vectors 425
into final bag-based feature vectors 435 each of which
corresponds to cumulative feature vector 250 in FIG. 2.
0040. Referring now to FIG. 5 (with continued reference
to FIGS. 1 and 2), a flow chart is described of method 500
for generating a robust representation (e.g., the cumulative
feature vector 250) of network traffic for detecting malware
variations. Method 500 is performed by representation gen
eration logic 124 depicted in FIG. 1. Method 500 begins at
505 where network traffic records 128 are divided so as to
create at least one group of network traffic records which
corresponds to bag 210 in FIG. 2. The at least one group of
network traffic records includes network traffic records asso
ciated with network communications, such as malware net
work communication 156 or network communication 166
depicted in FIG. 1 between a computing device (e.g.,
computing device 150 or 160) and a server (e.g., unsafe
network server 180 or safe network server 170) for a
predetermined period of time.
0041. At 510, a set of feature vectors 225 (1) to 225(N)
is generated, each feature vector representing one of the
records of the network communications included in the at
least one group (bag 210) of network traffic records. Each

Mar. 2, 2017

feature vector 225(1) to 225(N) includes a predefined set of
features 220(1) to 220(M) extracted from one of the network
traffic records.
0042. At 515, a self-similarity matrix for each feature of
the predefined set of features (matrices 230(1) to 230(M) is
computed using all feature vectors 225(1) to 225(N) gener
ated for the at least one group (bag 210), each self-similarity
matrix being a representation of one feature of the pre
defined set of features 220(1) to 220(M) that is invariant to
an increase or a decrease of values of the one feature across
all of the feature vectors 225(1) to 225(N) generated for the
at least one group (bag 210) of network traffic records.
0043. At 520, each self-similarity matrix 230(1) to 230
(M) is transformed into a set of corresponding histograms
240(1) to 240(M). Each histogram 240(1) to 240(M) is a
representation of the one feature, e.g., feature 22001), that is
invariant to a number of network traffic records in the at least
one group (bag 210) of network traffic records.
0044. At 525, a cumulative feature vector 250 is gener
ated based on the set of corresponding histograms 240(1) to
240(M), the cumulative feature vector 250 being a cumula
tive representation of the predefined set of features 220(1) to
220CM) of all network traffic records included in the at least
one group of network traffic records, e.g., of bag 210.
0045. At 530, a malware network communication (e.g.,
malware network communication 156 in FIG. 1) between
the computing device (e.g., computing device 150) and the
server (e.g., unsafe server 180) is identified based on the
cumulative feature vector 250.
0046 Reference is now made to FIG. 6. FIG. 6 is a
system diagram illustrating how the process depicted in FIG.
2 may be deployed in a network/computing environment
600 according to another example embodiment. A device
605, which may be a server computer, firewall, network
intrusion device, etc., includes a plurality of network inter
faces 610 (e.g., network ports of a network interface card),
a processor 620 (or multiple processors), a bus 630 and
memory 640. Memory stores instructions for, among other
functions, control software 642. When the processor 620
executes the software instructions for control software 642,
the processor is operable to perform the operations described
herein. The device 605 is configured to intercept network
traffic from one or more web servers 650(1)-650(N) con
nected to network 660 so as to detect attempts to inject
malware into any device connected in network 660. Net
work 660 may be an enterprise network. A network security
device (e.g., firewall) or any network device connected to
network 660 may generate proxy logs (or NetFlow reports)
that are sent to the device 605 for use in techniques pre
sented herein.
0047. The memory 640 may include read only memory
(ROM), random access memory (RAM), magnetic disk
storage media devices, optical storage media devices, flash
memory devices, electrical, optical, or other physical/tan
gible memory storage devices. Thus, in general, the memory
may comprise one or more tangible (non-transitory) com
puter readable storage media (e.g., a memory device)
encoded with Software comprising computer executable
instructions and when the software is executed (by the
processor 620) it is operable to perform the operations
described herein.

0048 Reference is now made to FIGS. 7A, 7B and 8
which show results of two experiments that were conducted
to test the cumulative feature vector 250, i.e., the represen

US 2017/0063892 A1

tation of bag 210 that is invariant against shifting, Scaling,
permutation, and size of bag 210 depicted in FIG. 2. In a first
experiment, the results of which are depicted in FIGS. 7A
and 7B, it was determined how the representation of bag 210
influences the efficiency of classifier logic 126 in classifying
bag 210. In a second experiment, the results of which are
depicted in FIG. 8, the impact of the new representation of
the bag 210 on clustering and correlation of samples was
determined.

0049. For the experiments, evaluation datasets were
divided into two parts: training, and testing. Both datasets
were obtained from real network traffic of 80 international
companies (more than 500,000 seats) in form of proxy logs.
Flows from proxy logs were grouped into bags, where each
bag contained flows with the same user (or source IP) and

Mar. 2, 2017

ues. Comparing these two approaches shows the importance
of a self-similarity matrix when dealing with malware
variations.
0052 First, a two-class Support Vector Machine (SVM)
classifier which corresponds to classifier logic 126 in FIG. 1
was evaluated on both representations. To demonstrate the
modifications in positive bags, only click fraud bags were
used in the training set as positive bags. Also 5977 negative
bags were included in the training set. The SVM classifier
was evaluated on bags from C&C and DGA malware, DGA
exfiltration, trojans, and 8000 negative background bags.
The results are shown in Table 3. Both classifiers have the
same results on the training set, however SVM classifier
where the data were represented with the proposed self
similarity approach achieved better performance on the test
data.

TABLE 3

Summary of the SVM results from the baseline (second)
representation and the Self-similarity (first) representation.

Representation

baseline
self-similarity

the same hostname domain. Thus, each bag represented a
communication of a user with a particular domain. To be
able to compute a representative histogram from feature
values, samples with less than 5 flows were discarded.
0050. There are 5 malware categories: malware with
command & control (C&C) channels, malware with domain
generation algorithm (DGA), DGA exfiltration, click fraud,
and trojans. A Summary of malicious categories is shown in
Table 2.

TABLE 2

Number of flows and bags of malware
categories and background traffic

Samples

Category Flows Bags

C&C malware 30,105 532
DGA malware 3,772 105
DGA exfiltration 1,233 70
Click fraud 9.434 3O4
Trojans 1,230 12
Background 867,438 13,977

Total 913,212 15,000

0051. The rest of the background traffic was considered
as legitimate traffic. Two approaches were compared: the
proposed technique for generating a first representation
described with regard to FIG. 2 and a less invariant second
representation in which each bag is represented as a joint
histogram of the input feature values. This means that one
histogram is computed from values of every feature of the
bag, and the histograms are then concatenated into one final
feature vector for each bag. However, the second represen
tation is not computed based on histograms from self
similarity matrices, but directly from the input feature val

Training Data Test Data

TP FP TN precision recall TP FP TN precision recall

3O4 O 6976 1.O 1.O 584 13 7987 O.998 O.81
3O4 O 6976 1.O 1.O 633 6 7994 O.999 O.88

0053 FIGS. 7A and 7B illustrate results from a more
detailed analysis of false negatives for malware categories
(number of missed malware samples) and true positives for
malware categories (number of detected malware samples)
for Cloud Web Security (CWS) blocks and SVM classifier
(which corresponds to classifier logic 126 in FIG. 1). This
analysis is based on two types of representations: histograms
computed directly from feature vectors, and histograms such
as histograms 240(1) to 240(M) that are computed based on
locally-scaled self-similarity matrices such as matrices 230
(1) to 230(M) shown in FIG. 2. Chart 710 in FIG. 7A shows
numbers of false negatives for malware categories C&C,
DGA, DGA exfiltration, and trojan of the bags. Chart 720 in
FIG. 7B shows numbers of true positives for the same
malware categories of the bags to compare three different
approaches: CWS blocks and SVM classifier based on two
types of representations: histograms computed directly from
feature vectors, and self-similarity histograms. As shown in
FIGS. 7A and 7B, due to the self-similarity representation
presented herein, the SVM classifier was able to correctly
classify all Domain Generation Algorithm (DGA) exfiltra
tion, and trojan, and most of DGA malware bags, with a
small increase of false negatives for C&C. Overall, the
representation shows significant improvements when com
pared to CWS blocks, and better robustness than the
approach without self-similarity.
0054 FIG. 8 is a two-dimensional graphical illustration
of clustering results, where input bags are represented with
the representation generated according to the process of FIG.
2. The clustering properties of the new representation were
evaluated with a similarity learning algorithm. FIG. 8 shows
how changing malware parameters influence similarity of
samples, i.e. whether a modified malware sample is still
considered to be similar to other malware samples of the
same category. Two malware categories were included into
the training set (click fraud and C&C) together with 5000
negative bags. As shown in FIG. 8, legitimate bags 805(1)-

US 2017/0063892 A1

805(3) are concentrated in three large clusters on the top and
in groups of non-clustered bags 810(1) and 810(2) located in
the center. Malicious bags were clustered into six clusters
according to the malware categories. Cluster 820 represents
the group of click fraud bags and cluster 830 represents the
group of C&C bags. Further malicious bags were clustered
in DGA C&C cluster 840, DGA cluster 850, DGA exfiltra
tion cluster 860 and TorPig trojan cluster 870.
0055. In summary, modern malware evades detection by
changing its parameters, which complicates the design of
new detection mechanisms. The techniques presented herein
create a generalized representation of malware behaviors
invariant to various changes exhibited as modified traffic
patterns. The invariance ensures that the feature represen
tations of behavior variations are still similar. The new
representation improves the efficacy in data-driven classifi
ers since malware variants are Successfully recognized.
0056. There are numerous advantages to these tech
niques. Malware samples are represented from bags of
flows. As opposed to traditional flow-based representation,
where each flow is represented with one feature vector, this
approach uses bags (sets) of flows to capture much more
information from each sample, most importantly malware
dynamics and behavior in time. This enables more detailed
and precise modeling of malware behaviors, resulting in
better detection and classification performance. In addition,
malware samples are represented robustly and invariantly
against variations and temporal changes. Thus, detection of
malware can be performed despite the malware changing its
parameters (e.g. change in URL pattern, number of bytes,
user Agent, etc.). These techniques have an immediate
application in data driven detectors and classifiers. Since the
features are more representative, they significantly improve
the efficacy results.
0057. Since most of the current undetected malicious
behaviors are alternatives of known malware, these tech
niques directly increase the number of detected threats and
incidents. These techniques are useful in products that
process flows (e.g. proxy logs or NetFlow records) with a
possible extension to other logging systems. These tech
niques enable automatic detection of malware variants that
would otherwise have to be manually captured by security
analysts.
0058 Specifically, the new representation is invariant to
the following changes: malicious code, payload, or obfus
cation, server or hostname, URL path or filename, number of
URL parameters, their names or values, encoded URL
content, number of flows, time intervals between flows,
ordering of flows and size of flows.
0059 An advantage of all network-based security
approaches is that they extract features from headers of
network communication rather than from the content. As a
result, any changes to the payload have Substantially no
effect on the features. The representation operates on the
level of bags, where each bag is a set of flows with the same
user and hostname. If an attacker changes an IP address or
a hostname of the remote server, the representation creates
a new bag with similar feature values as in the previous bag
with the original IP address or hostname.
0060 A straightforward way of evading classifiers that
rely on specific URL patterns is the change in path or
filename, the number of URL parameters, and their names or
values from sample to sample. Since the variability of these

Mar. 2, 2017

features remains constant within each bag, these changes
have Substantially no effect on the resulting new represen
tation.
0061 Hiding information in the URL string represents
another way to exfiltrate sensitive data. When the URL is
encrypted and encoded (e.g. with base 64), exfiltrated data
change the URL length and may globally influence other
features as well. As the new representation is invariant
against shifting, changing the URL length does not change
the histograms of feature differences.
0062 Another option for an attacker to hide in the
background traffic is increasing or reducing the number of
flows related to the attack. Such modification of the attack
does not affect the new representation, as long as there are
enough flows to create the feature distributions.
0063 Time intervals between flows have been used in
many previous approaches for their descriptive properties.
This feature is an alternative way to the new representation
to model a relationship between individual flows. It has been
determined that current malware samples frequently modify
the inter-arrival time to remain hidden in the background
traffic.
0064. An attacker can easily change the ordering of flows
to evade detection based on patterns or predefined sequences
of flows. The new representation uses the flow-based feature
values to compute a set of histograms and therefore the
ordering of flows does not matter. In addition, increasing or
decreasing a flow count has only a minor effect on the shape
of the distributions represented by the histograms.
0065. On the other hand, the new representation is not
invariant to a change in static behavior, multiple behaviors
in a bag and encrypted HTTPS traffic, and real-time changes
and evolution. The new representation does not model
malware behaviors, where all flows associated with a mal
ware are identical. Such behavior has no dynamics and can
be classified with flow-based approaches with comparable
results. In case more behaviors are associated with a bag,
Such as when a target hostname is compromised and com
municates with a user with legitimate and malicious flows,
the new representation does not guarantee the invariance
against the attacker's changes. Such bags contain a mixture
of legitimate and malicious flows and their combination
could lead to a different representation.
0066 URLs or other flow fields are not available in
encrypted HTTPS traffic. In this case, only a limited set of
flow-based features can be used, which reduces the discrimi
native properties of the new representation. Finally, in case
a malware sample for a given user and hostname starts
changing its behavior dynamically and frequently, the new
bag representation varies over time. Such inconsistency
decreases the efficacy results. However, creating Such highly
dynamic malware behavior requires a considerable effort.
Therefore such samples are not seen very often in real
network traffic.
0067. In one form, a method is provided comprising: at a
networking device, dividing network traffic records to create
at least one group of network traffic records, the at least one
group including network traffic records being associated
with network communications between a computing device
and a server for a predetermined period of time, generating
a set of feature vectors, each feature vector of the set of
feature vectors representing one of the network traffic
records of the network communications included in the at
least one group of network traffic records, wherein each

US 2017/0063892 A1

feature vector comprises a predefined set of features
extracted from one of the network traffic records, computing
a self-similarity matrix for each feature of the predefined set
of features using all feature vectors generated for the at least
one group, each self-similarity matrix being a representation
of one feature of the predefined set of features that is
invariant to an increase or a decrease of values of the one
feature across all of the feature vectors generated for the at
least one group of network traffic records, transforming each
self-similarity matrix into a corresponding histogram to
form a set of histograms, each histogram being a represen
tation of the one feature that is invariant to a number of
network traffic records in the at least one group of network
traffic records, generating a cumulative feature vector based
on the set of histograms, the cumulative feature vector being
a cumulative representation of the predefined set of features
of all network traffic records included in the at least one
group of network traffic records, and identifying a malware
network communication between the computing device and
the server based on the cumulative feature vector.

0068. In another form, an apparatus is provided compris
ing: one or more processors, one or more memory devices
in communication with the one or more processors, and at
least one network interface unit coupled to the one or more
processors, wherein the one or more processors are config
ured to: divide network traffic records to create at least one
group of network traffic records, the at least one group
including network traffic records being associated with
network communications between a computing device and a
server for a predetermined period of time, generate a set of
feature vectors, each feature vector of the set of feature
vectors representing one of the network traffic records of the
network communications included in the at least one group
of network traffic records, wherein each feature vector
comprises a predefined set of features extracted from one of
the network traffic records, compute a self-similarity matrix
for each feature of the predefined set of features using all
feature vectors generated for the at least one group, each
self-similarity matrix being a representation of one feature
of the predefined set of features that is invariant to an
increase or a decrease of values of the one feature across all
of the feature vectors generated for the at least one group of
network traffic records, transform each self-similarity matrix
into a corresponding histogram to form a set of histograms,
each histogram being a representation of the one feature that
is invariant to a number of network traffic records in the at
least one group of network traffic records, generate a cumu
lative feature vector based on the set of histograms, the
cumulative feature vector being a cumulative representation
of the predefined set of features of all network traffic records
included in the at least one group of network traffic records,
and identify a malware network communication between the
computing device and the server based on the cumulative
feature vector.

0069. In still another form, one or more computer-read
able non-transitory storage media are provided encoded with
Software comprising computer executable instructions that
when executed by one or more processors cause the one or
more processor to: divide network traffic records to create at
least one group of network traffic records, the at least one
group including network traffic records being associated
with network communications between a computing device
and a server for a predetermined period of time, generate a
set of feature vectors, each feature vector of the set of feature

Mar. 2, 2017

vectors representing one of the network traffic records of the
network communications included in the at least one group
of network traffic records, wherein each feature vector
comprises a predefined set of features extracted from one of
the network traffic records, compute a self-similarity matrix
for each feature of the predefined set of features using all
feature vectors generated for the at least one group, each
self-similarity matrix being a representation of one feature
of the predefined set of features that is invariant to an
increase or a decrease of values of the one feature across all
of the feature vectors generated for the at least one group of
network traffic records, transform each self-similarity matrix
into a corresponding histogram to form a set of histograms,
each histogram being a representation of the one feature that
is invariant to a number of network traffic records in the at
least one group of network traffic records, generate a cumu
lative feature vector based on the set of histograms, the
cumulative feature vector being a cumulative representation
of the predefined set of features of all network traffic records
included in the at least one group of network traffic records,
and identify a malware network communication between the
computing device and the server based on the cumulative
feature vector.

0070 The above description is intended by way of
example only. Although the techniques are illustrated and
described herein as embodied in one or more specific
examples, it is nevertheless not intended to be limited to the
details shown, since various modifications and structural
changes may be made within the scope and range of equiva
lents of the claims.

What is claimed is:
1. A method comprising:
at a networking device, dividing network traffic records to

create at least one group of network traffic records, the
at least one group including network traffic records
being associated with network communications
between a computing device and a server for a prede
termined period of time;

generating a set of feature vectors, each feature vector of
the set of features vectors representing one of the
network traffic records of the network communications
included in the at least one group of network traffic
records, wherein each feature vector comprises a pre
defined set of features extracted from one of the net
work traffic records:

computing a self-similarity matrix for each feature of the
predefined set of features using all feature vectors
generated for the at least one group, each self-similarity
matrix being a representation of one feature of the
predefined set of features that is invariant to an increase
or a decrease of values of the one feature across all of
the feature vectors generated for the at least one group
of network traffic records;

transforming each self-similarity matrix into a corre
sponding histogram to form a set of histograms, each
histogram being a representation of the one feature that
is invariant to a number of network traffic records in the
at least one group of network traffic records;

generating a cumulative feature vector based on the set of
histograms, the cumulative feature vector being a
cumulative representation of the predefined set of fea
tures of all network traffic records included in the at
least one group of network traffic records; and

US 2017/0063892 A1

identifying a malware network communication between
the computing device and the server based on the
cumulative feature vector.

2. The method of claim 1, further comprising:
transforming each self-similarity matrix into a locally

Scaled self-similarity matrix, each locally-scaled self
similarity matrix being a representation of the one
feature of the predefined set of features that is invariant
to values of the one feature across all of the feature
vectors being multiplied by a common factor.

3. The method of claim 1, wherein generating the cumu
lative feature vector comprises concatenating the histograms
in the set of histograms to form the cumulative feature
Vector.

4. The method of claim 1, further comprising:
training a classifier based on the cumulative feature vector

to produce a trained classifier;
classifying, by the trained classifier, the at least one group

as malicious; and
identifying the malware network communication utilizing

the at least one classified group,
wherein the cumulative feature vector enables detection

of variations and modifications of the malware network
communication.

5. The method of claim 4, wherein the variations and
modifications of the malware network communication
include a variation in one or more of: a shift of the
flow-based features, a scale of the flow-based features, a
permutation of the flow-based features, a number of the
flow-based features, or in a size of the at least one group of
network traffic records, and

further comprising transforming a representation of the at
least one group of network traffic records to be invari
ant against the variations and modifications of the
malware network communication.

6. The method of claim 1, wherein the network traffic
records include proxy logs and network flow reports, and

wherein the predefined set of flow-based feature values
includes values describing a structure of a Uniform
Resource Locator (URL), a number of bytes transferred
from the server to the computing device, a status of a
user agent, a Hypertext Transfer Protocol (HTTP)
status, a Multipurpose Internet Mail Extension (MIME)
type, and a port value.

7. The method of claim 1, wherein the self-similarity
matrix is a symmetric positive semidefinite matrix in which
rows and columns represent individual network communi
cations between the computing device and the server, and

wherein an (i,j)-th element of the self-similarity matrix
corresponds to a distance between a feature value of an
i-th flow and a feature value of a j-th flow.

8. An apparatus comprising:
one or more processors;
one or more memory devices in communication with the

one or more processors; and
at least one network interface unit coupled to the one or
more processors,

wherein the one or more processors are configured to:
divide network traffic records to create at least one

group of network traffic records, the at least one
group including network traffic records being asso
ciated with network communications between a
computing device and a server for a predetermined
period of time;

Mar. 2, 2017

generate a set of feature vectors, each feature vector of
the set of feature vectors representing one of the
network traffic records of the network communica
tions included in the at least one group of network
traffic records, wherein each feature vector com
prises a predefined set of features extracted from one
of the network traffic records;

compute a self-similarity matrix for each feature of the
predefined set of features using all feature vectors
generated for the at least one group, each self
similarity matrix being a representation of one fea
ture of the predefined set of features that is invariant
to an increase or a decrease of values of the one
feature across all of the feature vectors generated for
the at least one group of network traffic records;

transform each self-similarity matrix into a correspond
ing histogram to form a set of histograms, each
histogram being a representation of the one feature
that is invariant to a number of network traffic
records in the at least one group of network traffic
records;

generate a cumulative feature vector based on the set of
histograms, the cumulative feature vector being a
cumulative representation of the predefined set of
features of all network traffic records included in the
at least one group of network traffic records; and

identify a malware network communication between
the computing device and the server based on the
cumulative feature vector.

9. The apparatus of claim 8, wherein the one or more
processors are configured to:

transform each self-similarity matrix into a locally-scaled
self-similarity matrix, each locally-scaled self-similar
ity matrix being a representation of the one feature of
the predefined set of features that is invariant to values
of the one feature across all of the feature vectors being
multiplied by a common factor.

10. The apparatus of claim 8, wherein the one or more
processors generate the cumulative feature vector by con
catenating the histograms in the set of histograms to form the
cumulative feature vector.

11. The apparatus of claim 8, wherein the one or more
processors are configured to:

train a classifier based on the cumulative feature vector to
produce a trained classifier,

classify, by the trained classifier, the at least one group as
malicious; and

identify the malware network communication utilizing
the at least one classified group,

wherein the cumulative feature vector enables detection
of variations and modifications of the malware network
communication.

12. The apparatus of claim 9, wherein the variations and
modifications of the malware network communication
include a variation in one or more of a shift of the
flow-based features, a scale of the flow-based features, a
permutation of the flow-based features, a number of the
flow-based features, or in a size of the at least one group of
network traffic records, and
wherein the one or more processors are configured to:
transform a representation of the at least one group of

network traffic records to be invariant against the
variations and modifications of the malware network
communication.

US 2017/0063892 A1

13. The apparatus of claim 8, wherein the network traffic
records include proxy logs and network flow reports, and

wherein the predefined set of flow-based feature values
includes values describing a structure of a Uniform
Resource Locator (URL), a number of bytes transferred
from the server to the computing device, a status of a
user agent, a Hypertext Transfer Protocol (HTTP)
status, a Multipurpose Internet Mail Extension (MIME)
type, and a port value.

14. The apparatus of claim 8, wherein the self-similarity
matrix is a symmetric positive semidefinite matrix in which
rows and columns represent individual network communi
cations between the computing device and the server, and

wherein an (i,j)-th element of the self-similarity matrix
corresponds to a distance between a feature value of an
i-th flow and a feature value of a j-th flow.

15. One or more computer readable non-transitory storage
media encoded with software comprising computer execut
able instructions that when executed by one or more pro
cessors cause the one or more processor to:

divide network traffic records to create at least one group
of network traffic records, the at least one group includ
ing network traffic records being associated with net
work communications between a computing device and
a server for a predetermined period of time;

generate a set of feature vectors, each feature vector of the
set of feature vectors representing one of the network
traffic records of the network communications included
in the at least one group of network traffic records,
wherein each feature vector comprises a predefined set
of features extracted from one of the network traffic
records;

compute a self-similarity matrix for each feature of the
predefined set of features using all feature vectors
generated for the at least one group, each self-similarity
matrix being a representation of one feature of the
predefined set of features that is invariant to an increase
or a decrease of values of the one feature across all of
the feature vectors generated for the at least one group
of network traffic records;

transform each self-similarity matrix into a corresponding
histogram to form a set of histograms, each histogram
being a representation of the one feature that is invari
ant to a number of network traffic records in the at least
one group of network traffic records;

generate a cumulative feature vector based on the set of
histograms, the cumulative feature vector being a
cumulative representation of the predefined set of fea
tures of all network traffic records included in the at
least one group of network traffic records; and

identify a malware network communication between the
computing device and the server based on the cumu
lative feature vector.

16. The computer readable non-transitory storage media
of claim 15, wherein the executable instructions further
cause the one or more processors to:

transform each self-similarity matrix into a locally-scaled
self-similarity matrix, each locally-scaled self-similar

Mar. 2, 2017

ity matrix being a representation of the one feature of
the predefined set of features that is invariant to values
of the one feature across all of the feature vectors being
multiplied by a common factor.

17. The computer readable non-transitory storage media
of claim 15, wherein the executable instructions cause the
one or more processors to generate the cumulative feature
vector by concatenating the histograms in the set of histo
grams to form the cumulative feature vector.

18. The computer readable non-transitory storage media
of claim 15, wherein the executable instructions further
cause the one or more processors tO:

train a classifier based on the cumulative feature vector to
produce a trained classifier,

classify, by the trained classifier, the at least one group as
malicious; and

identify the malware network communication utilizing
the at least one classified group,

wherein the cumulative feature vector enables detection
of variations and modifications of the malware network
communication.

19. The computer readable non-transitory storage media
of claim 18, wherein the variations and modifications of the
malware network communication include a variation in one
or more of:

a shift of the flow-based features, a scale of the flow-based
features, a permutation of the flow-based features, a
number of the flow-based features, or in a size of the at
least one group of network traffic records, and
wherein the executable instructions further cause the

one or more processors to:
transform a representation of the at least one group of

network traffic records to be invariant against the
variations and modifications of the malware network
communication.

20. The computer readable non-transitory storage media
of claim 15, wherein the network traffic records include
proxy logs and network flow reports,

wherein the predefined set of flow-based feature values
includes values describing a structure of a Uniform
Resource Locator (URL), a number of bytes transferred
from the server to the computing device, a status of a
user agent, a Hypertext Transfer Protocol (HTTP)
status, a Multipurpose Internet Mail Extension (MIME)
type, and a port value,

wherein the self-similarity matrix is a symmetric positive
semidefinite matrix in which rows and columns repre
sent individual network communications between the
computing device and the server, and

wherein an (i,j)-th element of the self-similarity matrix
corresponds to a distance between a feature value of an
i-th flow and a feature value of a j-th flow.

k k k k k

